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SUMMARY

In this paper, the influence of measurement errors in exposure doses in a regression model with binary
response is studied. Recently, it has been recognized that uncertainty in exposure dose is characterized
by errors of two types: classical additive errors and Berkson multiplicative errors. The combination of
classical additive and Berkson multiplicative errors has not been considered in the literature previously. In
a simulation study based on data from radio-epidemiological research of thyroid cancer in Ukraine caused
by the Chornobyl accident, it is shown that ignoring measurement errors in doses leads to overestimation of
background prevalence and underestimation of excess relative risk. In the work, several methods to reduce
these biases are proposed. They are new regression calibration, an additive version of efficient SIMEX,
and novel corrected score methods.
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2 S. V. MASIUK AND OTHERS

1. INTRODUCTION

As a result of the 1986 Chornobyl accident, significant territory of Ukraine, Russia, and Belarus were
under radioactive contamination and the inhabitants of that territories suffered from radioactive exposure.

Even 5–6 years after the accident, an inflation of the incidence of thyroid cancer cases was observed for
children and adolescents who lived in the territories where the estimated thyroid exposure doses were quite
high, see Likhtarev, Sobolev and others (1995b), Jacob and other (2006), and Buglova and others (1996).

In fact, the growth of thyroid cancer prevalence for children and adolescents caused by inter-
nal irradiation from Chornobyl fallouts turned out to be the main (if not the unique) statistically
reliable effect of the Chornobyl accident. Consequently this effect was of great interest for radi-
ation epidemiologists all over the world, leading to a series of studies in Ukraine, Belarus and
Russia, see Likhtarov, Kovgan, Vavilov, Chepurny, Ron and others (2006), Kopecky and other (2006), and
Zablotska and other (2011).

However, interpretation of the results for most of the radiation epidemiological studies was based on
risk estimation methods which do not take into account the presence of significant uncertainties in doses.
One of the consequences of the assumption about the absence of errors in doses can be that the risk esti-
mates are biased and the dose-response curve is distorted. The reasons for risk estimates distortions are
not only systematic but also due to random errors in the dose estimates. In radiation epidemiology, various
attempts have been made to construct statistical methods for analyzing not only uncertainty in the effect
of the dose but also uncertainty in the dose itself, see Mallick and other (2002), Carroll and other (2006),
Lyon and other (2006), Kopecky and other (2006), Li and other (2007), Hofer (2008), Kukush and other
(2011), and Likhtarov, Kovgan, Masiuk and others (2014). The literature now recognizes that dose mea-
surements are inevitably affected by errors of either classical or Berkson type, or a combination of the two,
see Mallick and other (2002). Unfortunately, the most popular computer package in radiation epidemiol-
ogy, EPICURE (Preston and other, 1993) does not account for dose uncertainty.

Previous attempts at dose–response estimation while accounting for uncertainties in doses have almost
exclusively treated the dose uncertainties as multiplicative in structure. However, in the Chornobyl acci-
dent, recent detailed analyses of radioactivity registration mechanisms have shown that classical errors
in thyroid exposure doses that were reconstructed in Likhtarov, Kovgan, Vavilov, Chepurny, Bouville
and others (2005), and Likhtarov, Kovgan, Masiuk and others (2014) are of additive rather than multiplica-
tive type, see Likhtarov, Masiuk and others (2013). In addition, Likhtarov, Masiuk and others (2013) show
that thyroid radioactivity registration errors have a Poisson distribution. Because in most cases the intensity
of measurements was quite high (Likhtarev, Prohl and others, 1993; Likhtarev, Goulko and others, 1995a),
the exposure dose measurement errors can be regarded normally distributed, although heteroscedastic, see
Likhtarov, Masiuk and others (2013).

The aim of the present paper is to study radiation risk estimates and methods of risk estimation in mod-
els with additive measurement errors and multiplicative Berkson errors in exposure doses. In Section 2, we
present the measurement error model and the risk model. In Section 3, we note that standard methods per-
form poorly in our context, and we develop three new methods: (a) a novel version of Corrected Scores, (b) a
new version of Regression Calibration, and (c) a new version of efficient SIMEX (see Cook and Stefanski,
1994; Carroll and other, 2006; Kukush and other, 2011). Section 4 presents results of simulation studies,
while Section 5 has concluding remarks. Technical details are given in Appendices of supplementary mate-
rial available at Biostatistics online.

2. MODELS

2.1 Model of dose with classical additive and Berkson multiplicative errors

In May and June 1986, >150 000 measurements of thyroid radioactivity were made among inhabitants
of the northern part of Ukraine, which suffered from the most intensive radionuclide fallouts, including
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Mixed errors in dosimetry 3

115 000 measurements among children and adolescents aged 0–18 years (Likhtarev, Prohl and others,
1993; Likhtarev, Goulko and others, 1995a). Further, the measurements will be denoted Qmes

i . In what
follows, a superscript “mes” refers to measured versions of the true variables, and a superscript “tr” refers
to the true variables. Here i = 1, . . . , N denotes an individual.

As shown in Likhtarov, Kovgan, Vavilov, Chepurny, Bouville and others (2005) and Likhtarov,
Kovgan, Masiuk and others (2014), the measured individual thyroid dose for the i th person can be
written as

Dmes
i = f mes

i Qmes
i /Mmes

i , (2.1)

where Mmes
i is the measured thyroid mass, f mes

i is a factor that is obtained from the ecological model of
radioactivity transition, and Qmes

i is the measured radioactivity in the thyroid.
Ecological coefficient f mes

i includes the error of Berkson type, see Likhtarov, Kovgan, Masiuk
and others (2014). Denote the factor with Berkson error f mes

i /Mmes
i = Fmes

i , so that (2.1) becomes

Dmes
i = Fmes

i Qmes
i . (2.2)

The true dose is decomposed as

Dtr
i = F tr

i Qtr
i .

Here the relation between F tr
i and Fmes

i includes multiplicative Berkson error of the form F tr
i =

Fmes
i δF,i , where E(δF,i ) = 1 and log(δF,i ) ∼ Normal

( − σ 2
F,i/2, σ 2

F,i

)
, where σ 2

F,i is known. The variables
Fmes

i and δF,i are stochastically independent, for details, see Eq. (8) in Kukush and other (2011). The
empirical distribution of F tr

i and its characteristics (expectation, variance, etc.) can be obtained by the
Monte-Carlo procedure described in Likhtarov, Kovgan, Masiuk and others (2014).

As shown in Likhtarov, Masiuk and others (2013), radioactivity measurements of the thyroid are now
known to have additive error, so that Qmes

i , the measured thyroid radioactivity, is

Qmes
i = Qtr

i + σ mes
Q,i γi , (2.3)

where the γi are independent standard normal variables, the value σ mes
Q,i is known and Qtr

i are independent
random variables.

Plug (2.3) into (2.2) and set D̄tr
i = Fmes

i Qtr
i . We get

Dmes
i = Fmes

i Qmes
i = Fmes

i

(
Qtr

i + σ mes
Q,i γi

) = D̄tr
i + Fmes

i σ mes
Q,i γi . (2.4)

The random variables {δF,i }, {γi }, and {(Fmes
i , Qtr

i )} are jointly independent, although we allow corre-
lation between Fmes

i and Qtr
i . Define σi = Fmes

i σ mes
Q,i , then (2.4) takes a form

Dmes
i = D̄tr

i + σiγi , (2.5)

Dtr
i = D̄tr

i δF,i . (2.6)

Actually, (2.5) and (2.6) are a model of dose observations with additive classical and multiplicative
Berkson errors. It is straightforward to see that E[D̄tr

i | Dmes
i ] = E[Dtr

i | Dmes
i ].

2.2 Prevalence model

In order to model cases of cancer for a fixed time interval, we use a model of rare events with binary
response variable Yi , where Yi = 1 in the case of thyroid cancer and Yi = 0 in the absence of disease.
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4 S. V. MASIUK AND OTHERS

Define λ0 to be background prevalence intensity, i.e., in the absence of dose, and define θ = (λ0, β)′.
Then define

λ(Dtr
i , θ) = λi = λ0(1 + βDtr

i ) = λ0 + EAR · Dtr
i , (2.7)

where EAR is excess absolute risk. Then the conditional distribution of Yi given the exposure dose is
defined by

P[Yi = 1 | Dtr
i ] = λi

1 + λi
, P[Yi = 0 | Dtr

i ] = 1

1 + λi
. (2.8)

The observed sample consists of couples (Yi , Dmes
i ), for i = 1, . . . , N . The parameters λ0 and β (or, in

other parameterization, λ0 and EAR), are positive and to be estimated.

3. METHODS

3.1 Existing methods

Common methods include (a) the naı̈ve estimator, which is maximum likelihood estimator not account-
ing for measurement errors in doses; (b) parametric and linear regression calibration as defined in
Appendix A of supplementary material available at Biostatistics online; and (c) the ordinary SIMEX
method (Cook and Stefanski, 1994; Carroll and other, 2006). The simulation results show that methods
(a) and (b) yield estimates with significant bias, see Appendix A of supplementary material available at
Biostatistics online. This can be explained by specific structure of the data problem, where we have a kind
of mixture of lognormal and normal variables. The ordinary SIMEX has larger bias compared with the
efficient SIMEX, see Kukush and other (2011). Instead, we developed three new methods described in
Sections 3.2–3.5.

3.2 Corrected Score estimator

Within the Corrected Score method, we adjust the unbiased estimating function to measurement errors
(Carroll and other, 2006, Section 7.4). Introduce the estimating function S̃C as a solution to the deconvo-
lution problem

E[S̃C(Y, Dmes; λ0, β) | Y, Dtr] = S̃ML(Y, Dtr; λ0, β),

where SML is an unbiased estimating functions, see Appendix B of supplementary material available at
Biostatistics online; S̃ML is a product of a matrix and a vector

S̃ML(Y, Dtr; λ0, β) =
(

1 β

0 λ0

) (
(Y − 1)λ0(1 + Dtrβ) + Y

(Y − 1)λ0(Dtr + (Dtr)2β) + Y Dtr

)
. (3.1)

The explicit expression for S̃C is

S̃C(Y, Dmes; λ0, β) =
(

1 β

0 λ0

) (
(Y − 1)λ0(1 + Dmesβ) + Y

(Y − 1)λ0(Dmes + ((Dmes)2 − σ 2)β) + Y Dmes

)
. (3.2)

A consistent estimator of θ is a solution θ̂N to an unbiased estimating equation, namely a solution to

N∑
i=1

S̃C(Yi , Dmes
i ; θ) = 0. (3.3)

Equation (3.3) is linear in λ0 and λ0β, and therefore, it can be solved efficiently.
In Appendix B of supplementary material available at Biostatistics online, we establish the asymptotic

normality of θ̂N , and construct a data-based covariance matrix estimator.
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Mixed errors in dosimetry 5

3.3 New regression calibration handling Berkson error

As mentioned in Section 3.1, the conventional parametric regression calibration has quite poor behavior
in our simulation studies. In this section, we develop an approximation to regression calibration that has
much more satisfactory behavior.

The idea is to treat the additive normal error in dose (2.5) as if it was multiplicative log-normal error,
but with approximately the same conditional variance of Dmes

i given D̄tr
i . Denote the log-normal error

by δL ,i , log(δL ,i ) ∼ Normal(0, σ 2
L ,i ). Equating the variance of the multiplicative error δL ,i to the relative

variance σ 2
i /(D̄tr

i )2 and replacing the unknown D̄tr
i with a feasible value Dmes

i , we obtain

var(δL ,i ) = exp(2σ 2
L ,i ) − exp(σ 2

L ,i ) = (σi/Dmes
i )2.

This yields

σ 2
L ,i = log

{
(1/2) +

√
(1/4) + (σi/Dmes

i )2

}
.

Then calibration is performed in the same manner as described in Kukush and other (2011), namely

E(Dtr
i | Dmes

i ) ≈ exp

{
σ 2

D̄tr log Dmes
i + σ 2

L ,iμD̄tr + 1
2σ 2

D̄trσ
2
L ,i

σ 2
D̄tr + σ 2

L ,i

}
.

Here the estimators of μD̄tr and σ 2
D̄tr are taken from Likhtarov, Masiuk and others (2013), namely

μ̂D̄tr = log{(m̂ D̄tr)
2/

√
v̂D̄tr + (m̂ D̄tr)2}, (3.4)

σ̂ 2
D̄tr = log{(v̂D̄tr/(m̂ D̄tr)

2) + 1}, (3.5)

where

m̂ D̄tr = 1

N

N∑
i=1

Dmes
i ,

v̂D̄tr = 1

N − 1

N∑
i=1

(Dmes
i − m̂ D̄tr)

2 − 1

N

N∑
i=1

σ 2
i .

After preliminary calibration of doses, the maximum likelihood method described in Masiuk and other
(2013) is used for accounting for Berkson error, see Appendix C of supplementary material available at
Biostatistics online.

3.4 Efficient SIMEX

As a prerequisite to classical SIMEX method, assume that we can evaluate an estimator θ̂ = �̂(Dtr
i , Yi ,

i = 1, 2, . . . , N ) in the model without measurement errors (e.g., the maximum likelihood estimator).
Classical SIMEX algorithm is described in Carroll and other (2006, Section 5). It consists of the fol-

lowing steps:

(1) Select a “large” number B and a finite set of non-negative numbers 	.
(2) For all b = 1, 2, . . . , B and all i = 1, 2, . . . , N , generate normal random variables U ∗

b,i ∼
Normal(0, σ 2

i ), where σi comes from (2.5).
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6 S. V. MASIUK AND OTHERS

(3) For all b = 1, . . . , B and κ ∈ 	, evaluate the naive estimator for perturbed data

θ∗
b (κ) = �̂

(
Dmes

i + √
κU ∗

b,i , Yi , i = 1, 2, . . . , N
)
, b = 1, 2, . . . , B, κ ∈ 	,

and evaluate averaged estimate

θ∗(κ) = 1

B

B∑
b=1

θ∗
b (κ), κ ∈ 	.

(4) Extrapolate θ∗(κ) to point −1 and assign θ̂SIMEX = θ∗(−1).

In Kukush and other (2011), the “efficient SIMEX estimator” of the risk parameters of the model with
multiplicative error was derived as an alternative to the ordinary SIMEX. It differed in the way that Dmes

i
is perturbed only if Yi = 1. Here we develop this idea in the model with additive errors.

(i) Setting tuning parameters. Select a “large” number B and a finite set of non-negative numbers 	.
We use B = 1000 and 	 = {0, 0.2, 0.4, 0.6} in our numerical work.

(ii) Simulation. For all b = 1, 2, . . . , B and all i such that Yi = 1, generate normal random variables

U ∗
b,i ∼ Normal(0, σ 2

i ).

As an optional refinement, generate them such that
∑B

b=1 U ∗
b,i = 0.

(iii) Estimation. For all b = 1, . . . , B and κ ∈ 	, solve the system of equations in β and λ

N∑
i=1

(1 − Yi )(1 + βDmes
i ) = λ−1

N∑
i=1

Yi , (3.6)

N∑
i=1

(1−Yi ) = λ−1∑
Yi =1{1 + β max(0, Dmes

i +√
κU ∗

b,i )}−1. (3.7)

The perturbed dose Dmes
i + √

κU ∗
b,i can be negative, and significant negative doses break down the

naı̈ve estimator. Therefore, we use the censored perturbed doses given by max(0, Dmes
i + √

κU ∗
b,i ).

Denote the solution as β∗
b (κ) = β, λ∗

0,b(κ) = λ0.
For κ ∈ 	 average λ∗

0,b(κ) and λ∗
0,b(κ)β∗

b (κ) in b:

λ∗
0(κ) = 1

B

B∑
b=1

λ∗
0,b(κ), EAR∗(κ) = 1

B

B∑
b=1

λ∗
0,b(κ)β∗

b (κ).

(iv) Extrapolation. Extrapolate numerically the functions λ∗
0(κ) and EAR∗(κ) to −1. In extrapolation, we

approximate λ∗
0(κ) and EAR∗(κ) with quadratic polynomial. Such a choice of extrapolant function

is the simplest one, and it allows to express the estimates explicitly through λ∗
0(κ) and EAR∗(κ), see

Kukush and other (2011).
The values λ∗

0(−1) and EAR∗(−1) are the efficient SIMEX estimates of λ0 and EAR.

3.5 Efficient SIMEX handling Berkson error

In this section, we introduce the SIMEX estimator which uses variances of both classical and Berkson
errors. We start with unbiased estimating equation in the model with Berkson error only, see Appendix C.2
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Mixed errors in dosimetry 7

of supplementary material available at Biostatistics online. Assume for the moment that D̄i are known.
Denote the conditional probability

m(D̄; λ0, β, σ 2
F,i ) = P[Yi = 1 | D̄tr = D̄].

The following equations are unbiased:

N∑
i=1

Yi

m(D̄tr
i ; λ0, β, σ 2

F,i )
= N ,

N∑
i=1

Yi D̄tr
i

m(D̄tr
i ; λ0, β, σ 2

F,i )
=

N∑
i=1

D̄tr
i ,

that is, with true parameters substituted, expectations of the left-hand and right-hand sides of these equa-
tions coincide.

With (2.6), the expression for m(D̄; λ0, β, σ 2
F ) is

m(D̄; λ0, β, σ 2
F ) = E

λ0(1 + β D̄δ)

1 + λ0(1 + β D̄δ)

= 1√
2πσF

∫
λ0(1 + β D̄ exp{u− 1

2σ 2
F })

1 + λ0(1 + β D̄ exp{u− 1
2σ 2

F }) exp

{−u2

2σ 2
F

}
du, (3.8)

where expectation is taken for nonrandom D̄ and lognormal δ, log δ ∼ Normal
( − 1

2σ 2
F , σ 2

F

)
, see

Likhtarov, Masiuk and others (2013). In generic case D̄ > 0, λ0 > 0, β > 0, and the integral in (3.8)
is taken from −∞ to +∞. In other case, we integrate over the interval where the numerator λ0(1 +
β D̄ exp{u− 1

2σ 2
F }) is positive.

Now, consider the model with both Berkson and classical errors. In SIMEX method, perturbed measured
doses are substituted for true doses. Therefore, substitute D∗

b,i (κ) = Dmes
i + √

κU ∗
b,i for D̄tr

i :

N∑
i=1

Yi

m(D∗
b,i (κ); λ0, β, σ 2

F,i )
= N ,

N∑
i=1

Yi D∗
b,i (κ)

m(D∗
b,i (κ); λ0, β, σ 2

F,i )
=

N∑
i=1

D∗
b,i (κ).

Change the right-hand side of the second equation to
∑N

i=1 Dmes
i . This is equivalent to formal adding to

the latter equation the unbiased equation
∑N

i=1 D∗
b,i (κ) = ∑N

i=1 Dmes
i ; the unbiasedness holds true because

N∑
i=1

D∗
b,i −

N∑
i=1

Dmes
i = √

κ

N∑
i=1

U ∗
b,i ,

E

[
N∑

i=1

D∗
b,i −

N∑
i=1

Dmes
i

]
= √

κ E
N∑

i=1

U ∗
b,i = 0.
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8 S. V. MASIUK AND OTHERS

This simplification is done in order to avoid perturbations of doses for non-cases Yi = 0. We get

N∑
i=1

Yi

m(D∗
b,i (κ); λ, β, σ 2

F,i )
= N , (3.9)

N∑
i=1

Yi D∗
b,i (κ)

m(D∗
b,i (κ); λ, β, σ 2

F,i )
=

N∑
i=1

Dmes
i , (3.10)

The efficient SIMEX estimator is defined similarly to the one in Section 3.4. We just replace equations
(3.6) and (3.7) with (3.9) and (3.10).

For significant perturbations, the modified dose Dmes
i + √

κU ∗
b,i may be negative, which may

break down the estimation procedure. Therefore, the negative doses are changed to zeros, i.e.,
D∗

b,i (κ) = max{0, Dmes
i + √

κU ∗
b,i } is used instead of D∗

b,i (κ) = Dmes
i + √

κU ∗
b,i .

4. SIMULATION STUDY

4.1 Simulation setup

In order to simulate exposure doses, we used a real subpopulation of children and adolescents under 18,
consisting of ∼13 000 persons from the settlements of Zhytomyr, Kyiv, and Chernihiv, which had direct
measurements of thyroid activity in May–June 1986. Exposure doses for this subpopulation were con-
structed via the framework of the Ukrainian-American project on thyroid cancer prevalence in Ukraine
after the Chornobyl accident; see Likhtarov, Kovgan, Masiuk and others (2014).

Parameters of the absolute risk model (2.7) for the observation period from 1991 to 2001 were given by
values close to ones obtained in epidemiological studies of thyroid cancer in Ukraine, see Jacob and other
(2006) and Likhtarov, Kovgan, Vavilov, Chepurny, Ron and others (2006), namely

λ0 = 2 × 10−3 cases

persons
, EAR = 5 × 10−3 cases

Gray × persons
. (4.1)

In our simulation study, 1000 different data sets were simulated for different levels of classical (δQ)
and Berkson (σF ) uncertainty. The classical error level was defined as the constant value δQ = σ mes

Q,i /Qtr
i

varied from 0.2 to 1. The Berkson error level was set in such a way that geometric standard deviation of
F tr given Fmes, GSDF = exp(σF ), took on the values 1 (no error), 1.5, 2, 3, 5, and 8. All the listed values
are realistic.

Simulation study is performed in four steps:

(1) Initial doses D̄tr
i are taken from the real thyroid doses of children and adolescents internally exposed

to 131I in 1986, see Figure 1.
(2) True dose values are generated for the cohort by using D̄tr

i and taking into account the uncertainty
levels GSDF given in the first column of Tables 1 and 2, see (2.6).

(3) Using the data from Step (2), as well as the model in equations (2.7) and (2.8), with the parameter
values λ0 and EAR in (4.1), a disease vector is generated.

(4) Initial doses D̄tr
i were perturbed, and thus, the measured doses Dmes

i were generated according to
equation (2.5), with the error standard deviation σi = δQ D̄tr

i , where δQ enters the second column
of Tables 1 and 2. As a result, we obtain an observation model with classical additive and Berkson
multiplicative errors in doses.
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Mixed errors in dosimetry 9

Fig. 1. Histogram of log(D̄tr).

(5) Based on the measured doses Dmes
i , the information of measurement errors GSDF and σi , as well

as the disease vector generated in Step (3), the parameter values λ0 and EAR are estimated by three
methods.

Steps (1) to (5) are repeated 1000 times and the median values of the estimated risk coefficients as well as
standard deviations are presented in Tables 1 and 2.

Sometimes measured doses Dmes
i can take negative values as a result of large errors in the additive

error model (2.5). In such cases, negative doses were replaced by a small positive number, except for the
Corrected Score estimator, because the Corrected Score method can handle negative doses.

For each of the various values of GSDF , the averaged number of cases over 1000 realizations was 68,
with corresponding frequency of thyroid cancer disease 0.51%.

4.2 Results and discussion

Estimation of absolute risk parameters was performed by the naı̈ve method, the Corrected Score method
presented in Section 3.2 that takes into account only classical error, and also by the new regression calibra-
tion method and the efficient SIMEX method described in Sections 3.3 and 3.5, respectively. The latter two
methods take into account both classical and Berkson errors. Because in our case the distribution of data
set D̄tr is strictly positive and its logarithm is approximately symmetric (see Figure 1), in our simulation
any parametric method assumes a log-normal distribution of D̄tr.

The medians of the estimates of the baseline incidence rates and the standard deviations (SD) of the
estimates are given in Table 1, while the medians of the estimates of the excess absolute risk and the stan-
dard deviations of the estimates are given in Table 2. In Appendix D of supplementary material available
at Biostatistics online, we display 95% deviance intervals computed based on the obtained empirical dis-
tribution for risk parameters estimators with truncation of 2.5% quantiles from both sides, and hence an
interval estimate for risk parameters.

4.2.1 Naı̈ve estimator. The simulation results showed that the naı̈ve method underestimates EAR and
overestimates background prevalence intensity. The risk estimates have larger bias for larger measurement
errors in doses. For δQ = 1, EAR is underestimated twice. The level of uncertainty δQ = 1 for additive
measurement errors in doses corresponds to the geometric standard deviation equal 2.3 for multiplicative
errors. Comparison with results from Kukush and other (2011) shows reasonable consistency. It is worth
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Table 1. Estimates of baseline incidence rate (medians over 1000 simulations and standard deviations)

Estimates of λ0 × 103 by different methods

New calibrate handling Corrected Efficient SIMEX handling
Error Naı̈ve Berkson error Score Berkson error

GSDF δQ Median SD Median SD Median SD Median SD

1 no error 0 1.95 (0.53) 1.95 (0.53) 1.93 (0.97) 1.94 (0.53)
0.2 1.99 (0.54) 2.00 (0.55) 1.95 (1.01) 1.94 (0.55)
0.4 2.20 (0.56) 2.11 (0.57) 1.98 (1.11) 1.93 (0.75)
0.6 2.57 (0.59) 2.46 (0.58) 1.93 (1.28) 2.52 (1.11)
0.8 2.91 (0.61) 2.79 (0.59) 1.90 (1.49) 3.52 (1.39)
1 3.15 (0.62) 3.05 (0.60) 1.98 (1.80) 4.49 (1.59)

1.5 0 1.96 (0.55) 1.95 (0.55) 1.97 (0.97) 1.95 (0.55)
0.2 2.01 (0.56) 2.01 (0.58) 1.97 (1.01) 1.95 (0.56)
0.4 2.20 (0.58) 2.14 (0.60) 1.97 (1.12) 1.93 (0.73)
0.6 2.57 (0.58) 2.46 (0.59) 2.00 (1.25) 2.40 (1.10)
0.8 2.89 (0.59) 2.79 (0.59) 2.04 (1.48) 3.50 (1.44)
1 3.11 (0.60) 3.06 (0.58) 2.06 (1.79) 4.43 (1.59)

2 0 1.95 (0.54) 1.94 (0.55) 2.05 (0.94) 1.93 (0.54)
0.2 2.00 (0.54) 1.99 (0.56) 2.05 (1.02) 1.94 (0.54)
0.4 2.21 (0.54) 2.14 (0.59) 2.05 (1.10) 1.95 (0.71)
0.6 2.57 (0.58) 2.47 (0.59) 2.07 (1.24) 2.40 (1.13)
0.8 2.90 (0.58) 2.80 (0.60) 2.06 (1.42) 3.43 (1.38)
1 3.13 (0.59) 3.04 (0.58) 2.11 (1.67) 4.39 (1.56)

3 0 2.00 (0.56) 1.97 (0.57) 2.18 (0.94) 1.95 (0.56)
0.2 2.04 (0.56) 2.02 (0.57) 2.20 (0.94) 1.95 (0.56)
0.4 2.23 (0.56) 2.15 (0.60) 2.19 (1.03) 1.94 (0.74)
0.6 2.60 (0.57) 2.42 (0.58) 2.20 (1.18) 2.43 (1.14)
0.8 2.89 (0.59) 2.82 (0.61) 2.24 (1.34) 3.46 (1.34)
1 3.12 (0.59) 3.06 (0.60) 2.23 (1.62) 4.38 (1.52)

5 0 2.12 (0.55) 2.03 (0.57) 2.37 (0.83) 1.94 (0.55)
0.2 2.17 (0.56) 2.02 (0.59) 2.38 (0.88) 1.95 (0.56)
0.4 2.34 (0.57) 2.12 (0.59) 2.39 (0.96) 1.95 (0.73)
0.6 2.65 (0.57) 2.44 (0.58) 2.38 (1.08) 2.40 (1.07)
0.8 2.94 (0.57) 2.75 (0.57) 2.39 (1.21) 3.40 (1.37)
1 3.14 (0.57) 2.99 (0.57) 2.44 (1.46) 4.24 (1.46)

8 0 2.23 (0.56) 2.07 (0.56) 2.59 (0.76) 1.92 (0.57)
0.2 2.27 (0.56) 2.04 (0.58) 2.58 (0.78) 1.93 (0.56)
0.4 2.43 (0.57) 2.13 (0.58) 2.59 (0.85) 1.92 (0.76)
0.6 2.71 (0.57) 2.45 (0.57) 2.59 (0.91) 2.39 (1.08)
0.8 2.96 (0.57) 2.71 (0.56) 2.61 (1.03) 3.25 (1.38)
1 3.13 (0.57) 2.93 (0.55) 2.64 (1.26) 4.04 (1.40)

True value λ0 = 2 × 10−3.
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Table 2. Estimates of absolute excess risk (medians over 1000 simulations and standard deviations)

Estimates of EAR × 103 by different methods

New calibrate handling Corrected Efficient SIMEX handling
Error Naı̈ve Berkson error Score Berkson error

GSDF δQ Median SD Median SD Median SD Median SD

1 no error 0 4.98 (1.03) 5.01 (1.03) 5.03 (1.58) 4.99 (1.04)
0.2 4.93 (1.02) 5.05 (1.02) 4.97 (1.64) 5.00 (1.03)
0.4 4.63 (1.01) 4.88 (1.03) 4.93 (1.76) 5.04 (1.27)
0.6 4.01 (0.92) 4.07 (0.87) 4.98 (2.03) 4.07 (1.65)
0.8 3.39 (0.84) 3.31 (0.80) 5.02 (2.42) 2.36 (1.90)
1 2.91 (0.73) 2.80 (0.72) 5.02 (2.91) 0.84 (2.09)

1.5 0 4.98 (1.04) 4.99 (1.04) 5.00 (1.59) 4.99 (1.04)
0.2 4.90 (1.02) 5.07 (0.99) 4.94 (1.65) 4.99 (1.04)
0.4 4.57 (0.98) 4.90 (0.99) 4.93 (1.77) 5.04 (1.31)
0.6 3.98 (0.88) 4.05 (0.92) 4.94 (2.03) 4.17 (1.73)
0.8 3.38 (0.83) 3.34 (0.82) 4.94 (2.42) 2.46 (1.96)
1 2.91 (0.76) 2.83 (0.71) 4.90 (2.86) 0.88 (2.13)

2 0 4.90 (1.06) 5.04 (1.06) 4.84 (1.59) 5.00 (1.07)
0.2 4.84 (1.02) 5.05 (1.04) 4.84 (1.68) 5.01 (1.06)
0.4 4.52 (0.99) 4.89 (1.05) 4.78 (1.85) 5.04 (1.34)
0.6 3.92 (0.89) 4.03 (0.92) 4.82 (2.07) 4.13 (1.85)
0.8 3.33 (0.85) 3.31 (0.79) 4.80 (2.35) 2.57 (2.02)
1 2.87 (0.77) 2.80 (0.70) 4.79 (2.73) 0.98 (2.06)

3 0 4.75 (1.02) 5.15 (1.01) 4.54 (1.57) 5.03 (1.08)
0.2 4.68 (1.01) 5.08 (1.07) 4.51 (1.64) 5.02 (1.09)
0.4 4.36 (0.97) 4.89 (1.07) 4.48 (1.79) 5.03 (1.37)
0.6 3.75 (0.90) 4.02 (1.34) 4.44 (1.96) 4.13 (1.90)
0.8 3.19 (0.84) 3.30 (0.82) 4.40 (2.26) 2.37 (2.15)
1 2.74 (0.76) 2.78 (0.73) 4.42 (2.71) 0.90 (2.18)

5 0 4.30 (0.99) 5.07 (0.99) 3.79 (1.42) 5.00 (1.22)
0.2 4.24 (0.98) 5.13 (1.25) 3.80 (1.49) 4.98 (1.23)
0.4 3.94 (0.96) 4.99 (1.26) 3.77 (1.57) 4.96 (1.49)
0.6 3.37 (0.90) 4.04 (1.06) 3.73 (1.71) 4.07 (2.09)
0.8 2.85 (0.81) 3.32 (0.94) 3.72 (1.95) 2.28 (2.38)
1 2.50 (0.74) 2.80 (0.83) 3.71 (2.38) 0.79 (2.26)

8 0 3.64 (0.90) 5.15 (1.15) 2.99 (1.25) 4.98 (1.43)
0.2 3.59 (0.89) 5.19 (1.48) 2.96 (1.29) 5.00 (1.44)
0.4 3.30 (0.86) 4.98 (1.41) 2.89 (1.37) 4.94 (1.79)
0.6 2.88 (0.79) 4.02 (1.22) 2.87 (1.55) 3.96 (2.21)
0.8 2.41 (0.75) 3.30 (1.08) 2.89 (1.72) 2.23 (2.51)
1 2.08 (0.67) 2.78 (1.95) 2.84 (2.04) 0.65 (2.51)

True value EAR = 5.0 × 10−3.
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12 S. V. MASIUK AND OTHERS

mentioning that for δQ � 0.2 and for GSDF � 2, the bias of the background prevalence and the bias of EAR
do not exceed 5%. Thus, for small level of uncertainty, the naı̈ve method gives quite satisfactory results,
as expected.

Nevertheless the effect of Berkson error on the results of risk analysis is much smaller. If GSDF � 2,
then the effect is negligible. When GSDF is increasing up to 3 and more, then the bias of the estimate is
more essential and should be taken into account.

4.2.2 Regression calibration and efficient SIMEX. Though parametric regression calibration defined in
Likhtarov, Masiuk and others (2013) takes into account the shape of the distribution of D̄tr, the estimates
computed by this method are considerably biased, with underestimated background prevalence intensity
and overestimated of EAR (the results are shown in Appendix A of supplementary material available at
Biostatistics online). This is unexpected effect compared with simulation results from Kukush and other
(2011), where for multiplicative measurement errors in doses, the parametric estimates were quite accept-
able. It looks like the reason for this is the structure of the normal measurement errors σiγi and the log-
normal distribution of D̄tr, but we have no definite explanation.

Estimates obtained by the new regression calibration are much more stable and less biased compared
with the ones obtained by other methods of regression calibration, and are quite satisfactory when the clas-
sical error in dose is not too large, in particular for δQ � 0.4. However, when δQ � 0.6, there is considerable
bias.

Estimates of absolute risk parameters obtained by efficient SIMEX method fit the model values only
for small classical errors. The estimates are satisfactory (that is bias does not exceed 10%) if δQ � 0.4.
However, when δQ � 0.6, there is considerable bias.

These methods can handle quite large Berkson errors.

4.2.3 Corrected Score method. The Corrected Score estimator is the least biased of all ones presented
in this paper. For the error-level GSDF � 2, the maximal absolute bias for EAR and for λ0 does not exceed
5%. Of course, the Corrected Score estimator has the widest deviance intervals, reflecting the well-known
phenomenon that bias correction typically leads to increased variability of estimates.

Using this estimator, only classical error in the factor Qmes (see (2.3)) was taken into account. This
leads to bias for large Berkson errors.

4.2.4 Influence of Berkson error. For moderate levels GSDF � 2, the effect of Berkson error on ultimate
estimates is insignificant. But if GSDF increases to 3 and more, then the influence of Berkson error is
indeed significant and should be taken into account. Simulation showed that in the naı̈ve estimates the
Berkson error, as well as the classical error but to a smaller extent, leads to underestimation of EAR and
overestimation of λ0.

5. CONCLUSIONS

There are classical additive errors and Berkson multiplicative errors in exposure doses in the linear model
for rare events. That is a fact that requires a new statistical methodology. To solve this problem, we have
developed new methods of regression calibration, corrected scores, and efficient SIMEX that are appro-
priate for the actual dose uncertainties. We performed simulations based on real data from epidemiological
studies. The thyroid absorbed doses were taken from the results of Ukrainian–American project involving
the Chornobyl accident, and cases were modeled based on the underlying risk model. The true absolute
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risk parameters were chosen to be typical for the epidemiological studies in this important context. Esti-
mators of the parameters were constructed by the naı̈ve method (that is without taking into account dose
measurement errors) with the package EPICURE and also by the methods mentioned above.

We showed that the naı̈ve estimator has significant bias. The bias increases as the classical or Berkson
error variance increases. The efficient SIMEX and new regression calibration approaches improve the
estimators, but mainly for moderate classical uncertainty levels such as δQ � 0.4. They give quite good
result for significant Berkson error. The new Corrected Score estimator has little bias for small Berkson
errors. However, this estimator has the largest deviance intervals, and it does not take Berkson error into
account.

In general, methods of radiation risk estimation in cases of the classical additive dose error work more
poorly than in case of the classical multiplicative error (Kukush and other, 2011). At first glance the reason
is as follows: the size N of underlying cohort in the latter paper is larger, namely N around 70 000 persons
vs. N around 13 000 persons in the present paper. However, additional simulations showed that in this case
artificial enlargement of the sample size does not significantly improve the risk estimates. Therefore, we
believe that this phenomenon has to do with the combination of normal dose errors σiγi and lognormally
distributed random variables D̄tr

i . This assertion is confirmed by other investigations we have done but that
are not reported in the present paper.

Choosing among the methods, other than the naı̈ve estimate which is clearly unacceptable, is
difficult. However, for a concrete radiation risk estimation problem, it is reasonable to perform a
preliminary simulation study. Such a simulation will make it possible, for a given dose distribu-
tion and prevalence level, to analyze the behavior of estimates obtained by various methods and
also the influence of nuisance parameters on the model, such as effect modifiers and confounders,
see Health Risks from Exposure to Low Levels of Ionizing Radiation (2006).
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