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Parameter Estimation of Partial Differential
Equation Models

Xiaolei XUN, Jiguo CAO, Bani MALLICK, Arnab MAITY, and Raymond J. CARROLL

Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology
and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the
dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need
to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no
analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly
solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we
propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods,
the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading
method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model
for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to
make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both
outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE
model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online.

KEY WORDS: Asymptotic theory; Basis function expansion; Bayesian method; Differential equations; Measurement error; Parameter
cascading.

1. INTRODUCTION

Differential equations are important tools in modeling dy-
namic processes and are widely used in many areas. The for-
ward problem of solving equations or simulating state variables
for given parameters that define the differential equation models
has been studied extensively by mathematicians. However, the
inverse problem of estimating parameters based on observed
error-prone state variables has a relatively sparse statistical lit-
erature, and this is especially the case for partial differential
equation (PDE) models. There is growing interest in developing
efficient estimation methods for such problems.

Various statistical methods have been developed to estimate
parameters in ordinary differential equation (ODE) models.
There is a series of work in the study of HIV dynamics to
understand the pathogenesis of HIV infection. For example, Ho
et al. (1995) and Wei et al. (1995) used standard nonlinear least
squares regression methods, while Wu, Ding, and DeGruttola
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(1998) and Wu and Ding (1999) proposed a mixed-effects model
approach. Refer to Wu (2005) for a comprehensive review of
these methods. Furthermore, Putter et al. (2002); Huang and
Wu (2006); and Huang, Liu, and Wu (2006) proposed hierarchi-
cal Bayesian approaches for this problem. These methods re-
quire repeatedly solving ODE models numerically, which could
be time consuming. Ramsay (1996) proposed a data reduction
technique in functional data analysis, which involved solving
for coefficients of linear differential operators, see Poyton et al.
(2006) for an example of application. Li et al. (2002) stud-
ied a pharmacokinetic model and proposed a semiparametric
approach for estimating time-varying coefficients in an ODE
model. Ramsay et al. (2007) proposed a generalized smoothing
approach, based on profile likelihood ideas, which they named
parameter cascading, for estimating constant parameters in ODE
models. Cao, Wang, and Xu (2011) proposed robust estimation
for ODE models when data have outliers. Cao, Huang, and
Wu (2012) proposed a parameter cascading method to estimate
time-varying parameters in ODE models. These methods esti-
mate parameters by optimizing certain criteria. In the optimiza-
tion procedure, using gradient-based optimization techniques
may have the parameter estimates converge to a local minima,
otherwise global optimization is computationally intensive.

Another strategy to estimate parameters of ODE is the two-
stage method, which in the first stage estimates the function
and its derivatives from noisy observations using data smooth-
ing methods without considering differential equation models,
and then in the second stage estimates of ODE parameters are
obtained by least squares. Liang and Wu (2008) developed a
two-stage method for a general first-order ODE model, using
local polynomial regression in the first stage, and established
asymptotic properties of the estimator. Similarly, Chen and Wu
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(2008) developed local estimation for time-varying coefficients.
The two-stage methods are easy to implement; however, they
might not be statistically efficient because derivatives cannot be
estimated accurately from noisy data, especially higher-order
derivatives.

As for PDEs, there are two main approaches. The first is sim-
ilar to the two-stage method in Liang and Wu (2008). For ex-
ample, Bar, Hegger, and Kantz (1999) modeled unknown PDEs
using multivariate polynomials of sufficiently high order, and
the best fit was chosen by minimizing the least squares error
of the polynomial approximation. Based on the estimated func-
tions, the PDE parameters were estimated using least squares
(Muller and Timmer 2004). The issues of noise level and data
resolution were addressed extensively in this approach. See also
Parlitz and Merkwirth (2000) and Voss et al. (1999) for more ex-
amples. The second approach uses numerical solutions of PDEs,
thus circumventing derivative estimation. For example, Muller
and Timmer (2002) solved the target least-squares type mini-
mization problem using an extended multiple shooting method.
The main idea was to solve initial value problems in subin-
tervals and integrate the segments with additional continuity
constraints. Global minima can be reached in this algorithm,
but it requires careful parameterization of the initial condition,
and the computational cost is high.

In this article, we consider a multidimensional dynamic pro-
cess, g(x), where x = (x1, . . . , xp)T ∈ Rp is a multidimensional
argument. Suppose this dynamic process can be modeled with
a PDE model

F
(

x, g,
∂g

∂x1
, . . . ,

∂g

∂xp

,
∂2g

∂x1∂x1
, . . . ,

∂2g

∂x1∂xp

, . . . ; θ

)
= 0,

(1)

where θ = (θ1, . . . , θm)T is the parameter vector of primary in-
terest, and the left-hand side of (1) has a parametric form in g(x)
and its partial derivatives. In practice, we do not observe g(x)
but instead observe its surrogate Y (x). We assume that g(x) is
observed over a meshgrid with measurement errors so that for
i = 1, . . . , n, we observe data (Yi, xi) satisfying

Yi = g(xi) + εi,

where εi , i = 1, . . . , n, are independent and identically dis-
tributed measurement errors and are assumed here to follow
a Gaussian distribution with mean zero and variance σ 2

ε . Our
goal is to estimate the unknown θ in the PDE model (1) from
noisy data and to quantify the uncertainty of the estimates.

As mentioned before, a straightforward two-stage strategy,
though easy to implement, has difficulty in estimating deriva-
tives of the dynamic process accurately, leading to biased es-
timates of the PDE parameter. We propose two joint modeling
schemes: (a) a parameter cascading or penalized profile likeli-
hood approach and (b) a fully Bayesian treatment. We conjecture
that joint modeling approaches are more statistically efficient
than a two-stage method, a conjecture that is borne out in our
simulations. For the parameter cascading approach, we make
two crucial contributions besides the extension to multivariate
splines. First, we develop an asymptotic theory for the model fit,
along with a new approximate covariance matrix that includes
the smoothing parameters. Second, we propose a new criterion
for the smoothing parameter selection, which is shown to out-
perform available criteria used in ODE parameter estimation.

Because of the nature of the penalization in the parameter cas-
cading approach, there is no obvious direct “Bayesianization” of
it. Instead, we develop a new hierarchical model for the PDE. At
the first stage of the hierarchy, the unknown function is related
to the data. At the next stage, the PDE induces a prior on the
parameters, which is very different from the penalty used in the
parameter cascading algorithm. This PDE restricted prior is new
in the Bayesian literature. Further, we allow multiple smooth-
ing parameters and perform Bayesian model mixing to obtain
the whole uncertainty distribution of the smoothing parameters.
Our Markov chain Monte Carlo (MCMC)-based method is of
course also very different from the parameter cascading method
where we jointly draw parameters rather than using conditional
optimization.

The main idea of our two methods is to represent the unknown
dynamic process via a nonparametric function while using the
PDE model to regularize the fit. In both methods, the nonpara-
metric function is expressed as a linear combination of B-spline
basis functions. In the parameter cascading method, this non-
parametric function is estimated using penalized least squares,
where a penalty term is defined to incorporate the PDE model.
This penalizes the infidelity of the nonparametric function to
the PDE model so that the nonparametric function is forced to
better represent the dynamic process modeled by the PDE. In
the Bayesian method, the PDE model information is coded in
the prior distribution. We recognize that there is no exact so-
lution by substituting the nonparametric function into the PDE
model (1). This PDE modeling error is then modeled as a ran-
dom process, hence inducing a constraint on the basis function
coefficients. We also introduce in the prior an explicit penalty on
the smoothness of the nonparametric function. Our two meth-
ods avoid direct estimation of the derivative of the dynamic
process, which can be obtained easily as a linear combination of
the derivatives of the basis functions, and also avoid specifying
boundary conditions.

In principle, the proposed methods are applicable to all PDEs,
thus having potentially wide applications. As quick examples
of PDEs, the heat equation and wave equation are among the
most famous ones. The heat equation, also known as the diffu-
sion equation, describes the evolution in time of the heat dis-
tribution or chemical concentration in a given region and is
defined as ∂g(x, t)/∂t − θ

∑p
i=1 ∂2g(x, t)/∂x2

i = 0. The wave
equation is a simplified model for description of waves, such as
sound waves, light waves, and water waves, and is defined as
∂2g(x, t)/∂t2 = θ2 ∑p

i=1 ∂2g(x, t)/∂x2
i . More examples of fa-

mous PDEs are the Laplace equation, the transport equation,
and the beam equation. See Evans (1998) for a detailed intro-
duction to PDEs.

For illustration, we will do specific calculations based on our
empirical example of long-range infrared light detection and
ranging (LIDAR) data described in Section 5 and also used in
our simulations in Section 4. There we propose a PDE model
for received signal g(t, z) over time t and range z given as

∂g(t, z)/∂t−θD∂2g(t, z)/∂z2−θS∂g(t, z)/∂z − θAg(t, z)=0.

(2)

The PDE model (2) is a linear PDE of parabolic type in one space
dimension and is also called a (one-dimensional) linear reaction-
convection-diffusion equation. If g(t, z) were observable, (2)
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has a closed-form solution, obtained by separating variables, but
the solution is the sum of an infinite sequence. Such a solution
requires a high computational load to evaluate the solution over
a meshgrid of moderate size.

The rest of the article is organized as follows. The parameter
cascading method is introduced in Section 2, and the asymp-
totic properties of the proposed estimator are established. In
Section 3, we introduce the Bayesian framework and explain
how to make posterior inference using an MCMC technique.
Simulation studies are presented in Section 4 to evaluate the
finite sample performance of our two methods in comparison
with a two-stage method. In Section 5, we illustrate the methods
using LIDAR data. Finally, we conclude with some remarks in
Section 6.

2. PARAMETER CASCADING METHOD

2.1 Basis Function Approximation

When solving PDEs, it is possible to obtain a unique, ex-
plicit formula for certain specific examples, such as the wave
equation. However, most PDEs used in practice have no ex-
plicit solutions and can only be solved by numeric methods
such as finite difference method (Morton and Mayers 2005) and
finite element method (Brenner and Scott 2010). Instead of re-
peatedly solving PDEs numerically for thousands of candidate
parameters, which is computationally expensive, we represent
the dynamic process, g(x), modeled in (1), by a nonparametric
function, which can be expressed as a linear combination of
basis functions

g(x) =
K∑

k=1

bk(x)βk = bT(x)β, (3)

where b(x) = {b1(x), . . . , bK (x)}T is the vector of basis func-
tions and β = (β1, . . . , βK )T is the vector of basis coefficients.

We choose B-splines as basis functions in all simulations and
applications in this article, since B-splines are nonzero only in
short subintervals, a feature called the compact support property
(de Boor 2001), which is useful for efficient computation and
numerical stability, compared with other basis (e.g., truncated
power series basis). The B-spline basis functions are defined
with their order, the number, and locations of knots. Some work
has been aimed at automatic knot placement and selection. Many
of the feasible frequentist methods, for example, Friedman and
Silverman (1989) and Stone et al. (1997), are based on step-
wise regression. A Bayesian framework is also available, see
Denison, Mallick, and Smith (1997) for example. Despite good
performance, knot selection procedures are highly computation-
ally intensive. To avoid the complicated knot selection problem,
we use a large enough number of knots to make sure the basis
functions are sufficiently flexible to approximate the dynamic
process. To prevent the nonparametric function overfitting the
data, one penalty term will be defined with the PDE model in the
next subsection to penalize the roughness of the nonparametric
function.

The PDE model (1) can be expressed using the same set of
B-spline basis functions by substituting (3) into model (1) as
follows

F[x, bT(x)β, {∂b(x)/∂x1}Tβ, . . . ; θ] = 0.

In the special case of linear PDEs, the above expression is also
linear in β, which can be expressed as

F[x, bT(x)β, {∂b(x)/∂x1}Tβ, . . . ; θ ]

= fT{b(x), ∂b(x)/∂x1, . . . ; θ}β = 0, (4)

where f{b(x), ∂b(x)/∂x1, . . . ; θ} is a linear function of the ba-
sis functions and their derivatives. In the following, we denote
F{x, g(x), . . . ; θ} by the short-hand notation F{g(x); θ} and
f{b(x), ∂b(x)/∂x1, . . . ; θ} by f(x; θ ). For the PDE example (2),
the form of f(x; θ ) is given in Appendix A.1.

2.2 Estimating β and θ

Following Section 2.1, the dynamic process, g(x), is ex-
pressed as a linear combination of basis functions. It is natu-
ral to estimate the basis function coefficients, β, using penal-
ized splines (Ruppert, Wand, and Carroll 2003; Eilers and Marx
2010). If we were simply interested in estimating g(·) = bT(·)β,
then we would use the usual penalty λβTPTPβ, where λ is a
penalty parameter and P is a matrix performing differencing on
adjacent elements of β (Eilers and Marx 2010). Such a penalty
does penalize to achieve smoothness of the estimated function;
however, it is not in fidelity with (1). Instead, for fixed θ , we
define the roughness penalty as

∫
[F{g(x); θ}]2dx. This penalty

incorporates the PDE model, containing derivatives involved in
the model. As a result, the penalty is able to regularize the spline
fit. It also shows fidelity to the PDE model, that is, smaller value
indicates more fidelity of the spline approximation to the PDE.
Hence, we propose to estimate the coefficients, β, for fixed θ

by minimizing the penalized least squares

J (β|θ) =
n∑

i=1

{Yi − g(xi)}2 + λ

∫
[F{g(x); θ}]2dx. (5)

The integration in (5) can be approximated numerically by nu-
merical integration methods. Burden and Douglas (2010) sug-
gested that a composite Simpson’s rule provided an adequate
approximation, a suggestion that we use. See Appendix B.1 in
the online supplementary materials for details.

The PDE parameter θ is then estimated using a higher level of
optimization. Denote the estimate of the spline coefficients by
β̂(θ ), which is considered as a function of θ . Define ĝ(x, θ ) =
bT(x)β̂(θ ). Because the estimator β̂(θ ) is already regularized, we
propose to estimate θ by minimizing the least squares measure
of fit

H (θ ) =
n∑

i=1

{Yi − ĝ(xi , θ )}2 =
n∑

i=1

{Yi − bT(xi)β̂(θ )}2.

(6)

For a general nonlinear PDE model, the function β̂(θ ) might
have no closed form, and the estimate is thus obtained numeri-
cally. This lower level of optimization for fixed θ is embedded
inside the optimization of θ . The objective functions J (β|θ) and
H (θ ) are minimized iteratively until convergence to a solution.
In some cases, the optimization can be accelerated and made
more stable by providing the gradient, whose analytic form, by
the chain rule, is ∂H (θ)/∂θ = {∂β̂(θ )/∂θ}T × ∂H (θ)/∂β̂(θ ).
Although β̂(θ) does not have an explicit expression, the implicit
function theorem can be applied to find the analytic form of the
first-order derivative of β̂(θ) with respect to θ required in the
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above gradient. Because β̂ is the minimizer of J (β|θ ), we have
∂J (β|θ)/∂β|β̂ = 0. By taking the total derivative with respect
to θ on the left-hand side and assuming ∂2J (β|θ )/∂βT∂β|β̂ is
nonsingular, the analytic expression of the first-order derivative
of β̂ is

∂β̂

∂θ
= −

(
∂2J

∂βT∂β

∣∣∣∣
β̂

)−1 (
∂2J

∂θT∂β

∣∣∣∣
β̂

)
.

When the PDE model (1) is linear, β̂ has a close form and the
algorithm can be stated as follows. By substituting in (3) and
(4), the lower level criterion (5) becomes

J (β|θ) =
n∑

i=1

{Yi − bT(xi)β}2 + λ

∫
βTf(x; θ )fT(x; θ )βdx.

Let B be the n × K basis matrix with ith row bT(xi), and de-
fine Y = (Y1, . . . , Yn)T, and the K × K penalty matrix R(θ ) =∫

f(x; θ )fT(x; θ )dx. See Appendix B.1 in the online supplemen-
tary materials for calculation of R(θ ) for the PDE example (2).
Then the penalized least squares criterion (5) can be expressed
in the matrix notation

J (β|θ ) = (Y − Bβ)T(Y − Bβ) + λβTR(θ )β, (7)

which is a quadratic function of β. By minimizing the above
penalized least squares criterion, the estimate for β, for fixed θ ,
can be obtained in a close form as

β̂(θ) = {BTB + λR(θ)}−1BTY. (8)

Then by substituting in (8), (6) becomes

H (θ) = ‖Y − B{BTB + λR(θ)}−1BTY‖2. (9)

To summarize, when estimating parameters in linear PDE mod-
els, we minimize criterion (9) to obtain an estimate, θ̂ , for pa-
rameters in linear PDE models. The estimated basis coefficients,
β̂, are obtained by substituting θ̂ into (8).

2.3 Smoothing Parameter Selection

Our ultimate goal is to obtain an estimate for the PDE pa-
rameter θ such that the solution of the PDE is close to the
observed data. For any given value of the smoothing param-
eter, λ, we obtain the PDE parameter estimate, θ̂ , and the
basis coefficient estimate, β̂ (̂θ). Both can be treated as func-
tions of λ, which are denoted as θ̂(λ) and β̂ {̂θ (λ), λ}. Define
ei(λ) = Yi − ĝ{xi , θ̂ (λ), λ} and ηi(λ) = F{ĝ(xi); θ̂ (λ)}, the lat-
ter of which is f̂T{xi ; θ̂ (λ)}β̂ {̂θ (λ), λ} for linear PDE models.
Fidelity to the PDE can be measured by

∑n
i=1η

2
i (λ), while

fidelity to the data can be measured by
∑n

i=1e
2
i (λ). Clearly,

minimizing just
∑n

i=1e
2
i (λ) leads to λ = 0 and gives far too

undersmoothed data fits, while simultaneously not taking the
PDE into account. On the other hand, our experience shows that
minimizing

∑n
i=1η

2
i (λ) always results in the largest candidate

value for λ.
Hence, we propose the following criterion, which considers

data fitting and PDE model fitting simultaneously. To choose an
optimal λ, we minimize

G(λ) =
n∑

i=1

e2
i (λ) +

n∑
i=1

η2
i (λ).

The first summation term in G(λ), which measures the fit of the
estimated dynamic process to the data, tends to choose a small
value of the smoothing parameter. The second summation term
in G(λ), which measures the fidelity of the estimated dynamic
process to the PDE model, tends to choose a large value of the
smoothing parameter. Adding these two terms together allows
a choice of the value for the smoothing parameter that makes
the best trade-off between fitting to data and fidelity to the PDE
model. For the sake of completeness, we tried cross-validation
and generalized cross-validation to estimate the smoothing pa-
rameter. The result was to greatly undersmooth the function fit,
while leading to biased and quite variable estimates of the PDE
parameters.

2.4 Limit Distribution and Variance Estimation
of Parameters

We analyze the limiting distribution of θ̂ following the same
line of argument as in Yu and Ruppert (2002), under Assump-
tions 1–4 in Appendix A.2. As in their work, we assume that
the spline approximation is exact so that g(x) = bT(x)β0 for a
unique β0 = β0(θ0), our Assumption 2. Let θ0 be the true value
of θ , and define λ̃ = λ/n, Sn = n−1∑n

i=1b(xi)bT(xi), Gn(θ)
= Sn + λ̃R(θ ), Rjθ (θ) = ∂R(θ)/∂θj , V̂j = R(̂θ)G−1

n (̂θ )Rjθ (̂θ)
and Ŵj = V̂j + V̂T

j . Define �n(θ ) to have (j, k)th element

	n,jk(θ0) = βT
0 (θ0)RT

jθ (θ0)G−1
n (θ0)SnG−1

n (θ0)Rkθ (θ0)β0(θ0).

Define �n,prop = �−1
n (θ0)Cn(θ0){�−1

n (θ0)}T, where Cn(θ0)
has (j, k)th element Cn,jk(θ0) = σ 2

ε βT
n(θ0)Wj G−1

n (θ0)
SnG−1

n (θ0)Wkβn(θ0). Let �−1/2
n,prop be the inverse of the

symmetric square root of �n,prop.
Following the same basic outline of Yu and Ruppert (2002),

and essentially their assumptions, although the technical details
are considerably different, we show in Appendix A.2 that under
Assumptions 1–4 stated there, and assuming homoscedasticity,

n1/2�−1/2
n,prop(̂θ − θ0) → Normal(0, I). (10)

Estimating �n,prop is easy by replacing θ0 by θ̂ and β0 by
β̂ = β̂ (̂θ ), and estimating σ 2

ε by fitting a standard spline re-
gression and then forming the residual variance. In the case of
heteroscedastic errors, the term σ 2

ε Sn inCn,jk(θ0) can be replaced
by its consistent estimate (n − p)−1∑n

i=1b(xi)bT(xi){Yi −
bT(xi)β̂}2, where p is the number of parameters in the B-spline.
We use this sandwich-type method in our numerical work.

3. BAYESIAN ESTIMATION AND INFERENCE

3.1 Basic Methodology

In this section, we introduce a Bayesian approach for esti-
mating parameters in PDE models. In this Bayesian approach,
the dynamic process modeled by the PDE model is repre-
sented by a linear combination of B-spline basis functions,
which is estimated with Bayesian P-splines. The coefficients
of the basis functions are regularized through the prior, which
contains the PDE model information. Therefore, data fitting
and PDE fitting are incorporated into a joint model. As de-
scribed in the paragraph after Equation (1), our approach is
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not a direct “Bayesianization” of the methodology described in
Section 2.

We use the same notation as before. With the basis function
representation given in (3), the basis function model for data
fitting is Yi = bT(xi)β + εi , where the εi are independent and
identically distributed measurement errors and are assumed to
follow a Gaussian distribution with mean zero and variance σ 2

ε .
The basis functions are chosen with the same rule introduced in
the previous section.

In conventional Bayesian P-splines, which will be introduced
in Section 3.2, the penalty term penalizes the smoothness of the
estimated function. Rather than using a single optimal smooth-
ing parameter as in frequentist methods, the Bayesian approach
performs model mixing with respect to this quantity. In other
words, many different spline models provide plausible repre-
sentations of the data, and the Bayesian approach treats such
model uncertainty through the prior distribution of the smooth-
ing parameter.

In our problem, we know further that the underlying function
satisfies a given PDE model. Naturally, this information should
be coded into the prior distribution to regularize the fit. Because
we recognize that there may be no basis function representation
that exactly satisfies the PDE model (1), for the purposes of
Bayesian computation, we will treat the approximation error as
random, and the PDE modeling errors are

F{bT(xi)β; θ} = ζ (xi), (11)

where the random modeling errors, ζ (xi), are assumed to be
independent and identically distributed with a prior distribution
Normal(0, γ −1

0 ), where the precision parameter, γ0, should be
large enough so that the approximation error in solving (1) with a
basis function representation is small. Similarly, instead of using
a single optimal value for the precision parameter, γ0, a prior
distribution is assigned to γ0. The modeling error distribution
assumption (11) and a roughness penalty constraint together
induce a prior distribution on the basis function coefficients β.
The choice of roughness penalty depends on the dimension of x.
For simplicity, we state the Bayesian approach with the specific
penalty shown in Section 3.2. The prior distribution of β is

[β|θ, γ0, γ1, γ2] ∝ (γ0γ1γ2)K/2 exp{−γ0ζ
T(β, θ )ζ (β, θ )/2

− βT(γ1H1 + γ2H2 + γ1γ2H3)β/2}, (12)

where, as before, K denotes the number of ba-
sis functions, γ0 is the precision parameter, ζ (β, θ ) =
[F{bT(x1)β; θ}, . . . ,F{bT(xn)β; θ}]T, γ1 and γ2 control the
amount of penalty on smoothness, and the penalty matri-
ces H1, H2, H3 are the same as in the usual Bayesian P-
splines, given in (14). We assume conjugate priors for σ 2

ε

and γ� as σ 2
ε ∼ IG(aε, bε), γ� ∼ Gamma(a�, b�), for � = 0, 1, 2,

where IG(a, b) denotes the inverse-gamma distribution with
mean (a − 1)−1b. For the PDE parameter, θ , we assign a
Normal(0, σ 2

θ I) prior, with variance large enough to remain
noninformative.

Denote γ = (γ0, γ1, γ2)T and φ = (θ, γ ,β, σ 2
ε )T. Based on

the above model and prior specification, the joint posterior

distribution of all unknown parameters is

[φ|Y] ∝
2∏

�=0

γ
a�+K/2−1
�

(
σ 2

ε

)−(aε+n/2)−1

exp

{
− bε/σ

2
ε −

2∑
�=0

b�γ� − θTθ/
(
2σ 2

θ

) }
exp{−γ0ζ

T(β, θ )ζ (β, θ )/2 − βT(γ1H1 + γ2H2

+ γ1γ2H3)β/2 − (
2σ 2

ε

)−1
(Y − Bβ)T(Y − Bβ)}.

(13)

The posterior distribution (13) is not analytically tractable,
hence we use an MCMC-based computation method (Gilks,
Richardson, and Spiegelhalter 1996) or more precisely Gibbs
sampling (Gelfand and Smith 1990) to simulate the parame-
ters from the posterior distribution. To implement the Gibbs
sampler, we need the full conditional distributions of all un-
known parameters. Due to the choice of conjugate priors, the
full conditional distributions of σ 2

ε and γ�’s are easily obtained
as inverse-gamma and gamma distributions, respectively. The
full conditional distributions of β and θ are not of standard
form, and hence, we employ Metropolis–Hastings algorithm to
sample them.

In the special case of a linear PDE, simplifications arise. With
approximation (4), the PDE modeling errors are represented as
ζ (xi) = fT(xi ; θ )β, for i = 1, . . . , n. Define the matrix F(θ) =
{f(x1; θ ), . . . , f(xn; θ )}T. Then the prior distribution of β given
in (12) becomes

[β|θ, γ0, γ1, γ2] ∝ (γ0γ1γ2)K/2 exp[−βT{γ0FT(θ)F(θ)

+ γ1H1 + γ2H2 + γ1γ2H3}β/2],

where the exponent is quadratic in β. Then the joint posterior
distribution of all unknown parameters given in (13) becomes

[φ|Y] ∝
2∏

�=0

γ
a�+K/2−1
�

(
σ 2

ε

)−(aε+n/2)−1

exp

{
− bε/σ

2
ε −

2∑
�=0

b�γ� − θTθ/
(
2σ 2

θ

) }
exp[−βT{γ0FT(θ)F(θ ) + γ1H1 + γ2H2

+ γ1γ2H3}β/2 − (
2σ 2

ε

)−1
(Y − Bβ)T(Y − Bβ)].

Under linear PDE models, the full conditional of β is easily seen
to be a Normal distribution. This reduces the computational cost
significantly compared with sampling under nonlinear cases, be-
cause the length of the vector β increases quickly as dimension
increases. Computational details of both nonlinear and linear
PDEs are shown in Appendix A.3.

3.2 Bayesian P-Splines

Here we describe briefly the implementation of Bayesian
penalized splines, or P-splines. Eilers and Marx (2003) and Marx
and Eilers (2005) dealt specifically with bivariate penalized B-
splines. In the simulation studies and the application of this
article, we use the bivariate B-spline basis, which is formed by
the tensor product of one-dimensional B-spline basis.

Following Marx and Eilers (2005), we use the differ-
ence penalty to penalize the interaction of one-dimensional
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coefficients as well as each dimension individually. Denote the
number of basis functions in each dimension by k�, the one-
dimensional basis function matrices by B�, and the m�th order
difference matrix of size (k� − m�) × k� by D�, for � = 1, 2. The
prior density of the basis function coefficient β of length K =
k1k2 is assumed to be [β|γ1, γ2] ∝ (γ1γ2)K/2 exp{−βT(γ1H1 +
γ2H2 + γ1γ2H3)β/2}, where γ1 and γ2 are hyperparameters,
and the matrices are

H1 =BT
1 B1 ⊗ DT

2 D2; H2 =DT
1 D1 ⊗ BT

2 B2; H3 =DT
1 D1 ⊗ DT

2 D2.

(14)

When assuming conjugate prior distributions as [σ 2
ε ] =

IG(aε, bε), [γ1] = Gamma(a1, b1), and [γ2] = Gamma(a2, b2),
the posterior distribution can be derived easily and sampled us-
ing the Gibbs sampler. Although the prior distribution of β is
improper, the posterior distribution is proper (Berry, Carroll,
and Ruppert 2002).

4. SIMULATIONS

4.1 Background

In this section, the finite sample performances of our methods
are investigated via Monte Carlo simulations, which are also
compared with a two-stage method described below.

The two-stage method is constructed for PDE parameter esti-
mation as follows. In the first stage, g(x) and the partial deriva-
tives of g(x) are estimated by the multidimensional penalized
signal regression (MPSR) method (Marx and Eilers 2005). Marx
and Eilers (2005) showed that their MPSR method was com-
petitive with other popular methods and had several advantages
such as taking full advantage of the natural spatial information
of the signals and being intuitive to understand and use. Let β̂ de-
note the estimated coefficients of the basis functions in the first
stage. In the second stage, we plug the estimated function and
partial derivatives into the PDE model, F{g(x); θ} = 0, for each
observation, that is, we calculate F̂{ĝ(xi); θ} for i = 1, . . . , n.
Then, a least-squares type estimator for the PDE parameter, θ ,
is obtained by minimizing J (θ ) = ∑n

i=1 F̂2{ĝ(xi); θ}. For com-
parison purposes, the standard errors of two-stage estimates of
the PDE parameters are estimated using a parametric bootstrap,

which is implemented as follows. Let θ̂ denote the estimated
PDE parameter using the two-stage method and S(x|̂θ ) denote
the numerical solution of PDE (2) using θ̂ as the parameter value.
New simulated data are generated by adding independent and
identically distributed Gaussian noises with the same standard
deviation as the data to the PDE solutions at every 1 time unit and
every 1 range unit. The PDE parameter is then estimated from
the simulated data using the two-stage method, and the PDE

parameter estimate is denoted as θ̃
(j )

, where j = 1, . . . , 100,
is the index of replicates in the parametric bootstrap procedure.

The experimental standard deviation of θ̃
(j )

is set as the standard
error of two-stage estimates.

4.2 Data-Generating Mechanism

The PDE model (2) is used to simulate data. The PDE model
(2) is numerically solved by setting the true parameter values
as θD = 1, θS = 0.1, and θA = 0.1; the boundary condition as
g(t, 0) = 0; and the initial condition as g(0, z) = {1 + 0.1 ×
(20 − z)2}−1 over a meshgrid in the time domain t ∈ [1, 20]
and the range domain z ∈ [1, 40]. To obtain a precise numerical
solution, we take a grid of size 0.0005 in the time domain and of
size 0.001 in the range domain. The numerical solution is shown
in Figure 1, together with cross-sectional views along time and
range axes. Then the observed error-prone data are simulated by
adding independent and identically distributed Gaussian noises
with standard deviation σ = 0.02 to the PDE solutions at every
1 time unit and every 1 range unit. In other words, our data is
on a 20-by-40 meshgrid in the domain [1, 20] × [1, 40]. This
value of σ is close to that of our data example in Section 5. To
investigate the effect of data noise on the parameter estimation,
we do another simulation study in which the simulated data
are generated in the exact same setting except that the standard
deviation of noises is set as σ = 0.05.

4.3 Performance of the Proposed Methods

The parameter cascading method, the Bayesian method, and
the two-stage method were applied to estimate the three pa-
rameters in the PDE model (2) from the simulated data. The
simulation is implemented with 1000 replicates. This section
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Figure 1. Snapshots of the numerical solution, g(t, z), for the PDE model (2). Left: three-dimensional plot of the surface g(t, z). Middle: plot
of g(ti , z) for time values ti over range, with ti = 6, 11, 16, 20. Right: plot of g(t, zj ) for range values zj over time, with zj = 11, 21, 31.
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Table 1. The biases, standard deviations (SD), square roots of average squared errors (RASE) of the parameter estimates for the PDE model (2)
using the Bayesian method (BM), the parameter cascading method (PC), and the two-stage method (TS) in the 1000 simulated datasets when

the data noise has the standard deviation σ = 0.02, 0.05

Noise σ = 0.02 σ = 0.05

Parameters θD θS θA θD θS θA

True 1.0 0.1 0.1 1.0 0.1 0.1

Bias BM −16.5 −0.4 −0.2 −35.6 1.0 0.6
×103 PC −29.7 −0.1 −0.3 −55.9 −0.2 −0.5

TS −225.2 −0.7 −1.8 −337.8 0.5 0.6
SD BM 9.1 1.6 0.2 22.2 3.8 0.5
×103 PC 24.9 3.8 0.5 40.5 6.2 0.8

TS 91.0 5.9 1.1 140.7 10.2 2.1
RASE BM 18.81 1.66 0.27 42.0 3.9 0.8
×103 PC 38.96 3.75 0.54 69.1 6.2 1.0

TS 243.21 5.91 20.66 365.9 10.2 2.2
CP BM 93.9% 99.9% 98.8% 74.0% 97.8% 86.4%

PC 84.3% 96.7% 94.9% 78.1% 96.5% 93.5%
TS 41.8% 93.6% 72.1% 37.6% 94.0% 93.8%

NOTE: The actual coverage probabilities (CP) of nominal 95% credible/confidence intervals are also shown. The true parameter values are also given in the second row.

summarizes the performance of these three methods in this sim-
ulation study.

The PDE model (2) indicates that the second partial derivative
with respect to z is continuously differentiable, and thus we
choose quartic basis functions in the range domain. Therefore,
for representing the dynamic process, g(t, z), we use a tensor
product of one-dimensional quartic B-splines to form the basis
functions, with 5 and 17 equally spaced knots in time domain
and range domain, respectively, in all three methods.

In the two-stage method for estimating PDE parameters, the
Bayesian P-spline method is used to estimate the dynamic pro-
cess and its derivatives by setting the hyperparameters defined in
Section 3.1 as aε = bε = a1 = b1 = a2 = b2 = 0.01 and taking
the third-order difference matrix to penalize the roughness of the
second derivative in each dimension. In the Bayesian method
for estimating PDE parameters, we take the same smoothness
penalty as in the two-stage method, and the hyperparameters
defined in Section 3 are set to be aε = bε = a� = b� = 0.01 for
� = 0, 1, 2, and σ 2

θ = 9. In the MCMC sampling procedure, we
collect every 5th sample after a burn-in stage of length 5000,
until 3000 posterior samples are obtained.

We summarize the simulation results in Table 1, including
the biases, standard deviations, square root of average squared

errors, and coverage probabilities of 95% confidence intervals
for each method. We see that the Bayesian method and the
parameter cascading method are comparable, and both have
smaller biases, standard deviations, and square root of average
squared errors than the two-stage method. The improvement in
θD is substantial, which is associated with the second partial
derivative, ∂2g(t, z)/∂z2. This is consistent with our conjecture
that the two-stage strategy is not statistically efficient because of
the inaccurate estimation of derivatives, especially higher-order
derivatives.

To validate numerically the proposed sandwich estimator of
variance in the parameter cascading method, we applied a para-
metric bootstrap of size 200 to each of the same 1000 sim-
ulated datasets and obtained the bootstrap estimator for stan-
dard errors of parameter estimates in each of the 1000 datasets.
Table 2 displays the means of sandwich and bootstrap standard
error estimators, which are highly consistent to each other. Both
are also close to the sample standard deviations of parameter
estimates obtained from the same 1000 simulated datasets.

The modeling error for the PDE model (2) is es-
timated as F̂{ĝ(t, z); θ̂} = ∂ĝ(t, z)/∂t − θ̂D∂2ĝ(t, z)/∂z2 −
θ̂S∂ĝ(t, z)/∂z − θ̂Aĝ(t, z). To assess the accuracy of the es-
timated dynamic process, ĝ(t, z), and the estimated PDE

Table 2. Numerical validation of the proposed sandwich estimator in the parameter cascading method when the data noise has the standard
deviation σ = 0.02, 0.05

Parameters θD θS θA

σ = 0.02 ŜE Mean of Sandwich Estimators 0.0246 0.00375 0.000467
Mean of Bootstrap Estimators 0.0257 0.00374 0.000474

Sample Standard Deviation 0.0249 0.00375 0.000465
σ = 0.05 ŜE Mean of Sandwich Estimators 0.0392 0.00599 0.000783

Mean of Bootstrap Estimators 0.0404 0.00597 0.000791
Sample Standard Deviation 0.0405 0.00617 0.000795

NOTE: Under each scenario, the first two rows are means of 1000 sandwich and bootstrap standard error (ŜE) estimators obtained from the same 1000 simulated datasets, respectively;
the last row is the sample standard deviation of 1000 parameter estimates obtained from the same 1000 simulated datasets.
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Figure 2. Boxplots of the square roots of average squared errors (RASE) for the estimated dynamic process, ĝ(t, z), and the PDE modeling
errors, F̂{ĝ(t, z); θ̂}, using the Bayesian method (BM), the parameter cascading method (PC), and the two-stage method (TS) from 1000 datasets
in the simulation study. Left: boxplots of RASE(̂g), defined in (15), by all three methods. Right: boxplots of RASE(F̂), defined in (16), by all
three methods. The online version of this figure is in color.

modeling errors, F̂{ĝ(t, z); θ̂}, we use the square root of the
average squared errors (RASEs), which are defined as

RASE(̂g) =
⎡⎣m−1

tgridm
−1
zgrid

mtgrid∑
j=1

mzgrid∑
k=1

{ĝ(tj , zk) − g(tj , zk)}2

⎤⎦1/2

,

(15)

RASE(F̂) =
⎡⎣m−1

tgridm
−1
zgrid

mtgrid∑
j=1

mzgrid∑
k=1

F̂2{ĝ(tj , zk); θ̂}
⎤⎦1/2

, (16)

where mtgrid and mzgrid are the number of grid points in each
dimension; tj , zk are grid points for j = 1, . . . , mtgrid; and
k = 1, . . . , mzgrid. Figure 2 presents the boxplots of RASEs for
the estimated dynamic process, ĝ(t, z), and PDE modeling er-
rors, F̂{ĝ(t, z); θ̂}, from the simulated datasets. The Bayesian
method and the parameter cascading method have much smaller
RASEs for the estimated PDE modeling errors, F̂{ĝ(t, z); θ̂},
than the two-stage method because the two-stage method pro-
duces inaccurate estimation of derivatives, especially higher-
order derivatives.

5. APPLICATION

5.1 Background and Illustration

We have access to a small subset of LIDAR data described by
Warren et al. (2008; Warren, Vanderbeek, and Ahl 2009, 2010).
A comic describing the LIDAR data is given in Figure 3. Our
dataset consists of samples collected for 28 aerosol clouds, 14
of them being biological and the other 14 being nonbiological.
Briefly, for each sample, there is a transmitted signal that is
sent into the aerosol cloud at 19 laser wavelengths, and for
t = 1, . . . , T time points. For each wavelength and time point,
received LIDAR data were observed at equally spaced ranges
z = 1, . . . , Z. The experiment also included background data,

that is, before the aerosol cloud was released, and the received
data were then background corrected.

An example of the background-corrected received data for a
single sample and a single wavelength are given in Figure 4.
Data such as this are well described by the PDE model (2).
This equation is a linear PDE of parabolic type in one space
dimension and is also called a (one-dimensional) linear reaction-
convection-diffusion equation. If we describe this equation as
g(t, z), the parameters θD , θS, and θA describe the diffusion rate,
the drift rate/shift, and the reaction rate, respectively.

In fitting model (2) to the real data, we take T = 20 time
points and Z = 60 range values so that the sample size n is
20 × 60 = 1200. To illustrate what happens with the data in
Figure 4, the parameter cascading method, Bayesian method,

Figure 3. A comic describing the LIDAR data. A point source laser
is transmitted into an aerosol cloud at multiple wavelengths and over
multiple time points. There is scattering of the signal and reflected back
to a receiver over multiple range values. See Figure 4 for an example
of the received data over bursts and time for a single wavelength and a
single sample. The online version of this figure is in color.
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Figure 4. Snapshots of the empirical data. Left: three-dimensional plot of the received signal. Middle: the received signal at a few time values,
ti = 1, 6, 11, 16, over the range. Right: the received signal at a few range values, zj = 1, 10, 30, over the time.

and the two-stage method were applied to estimate the three
parameters in the PDE model (2) from the above LIDAR dataset.
All three methods use bivariate quartic B-spline basis functions
constructed with 5 inner knots in the time domain and 20 inner
knots in the range domain.

Table 3 displays the estimates for the three parameters in
the PDE model (2). While the three methods produce similar
estimates for parameters θS and θA, the parameter cascading
estimate and Bayesian estimate for θD are more consistent with
each other than with the two-stage estimate. This phenomenon
is consistent with what was seen in our simulations. Moreover,
in this application, the three methods produce almost identical
smooth curves, but not derivatives. This fact is also found in
our simulation studies, where all three methods lead to similar
estimates for the dynamic process, g(t, z), but the two-stage
method performs poorly for estimating its derivatives.

5.2 Differences Among the Types of Samples

To understand if there are differences between the received
signals for biological and nonbiological samples, we performed
the following simple analysis. For each sample, and for each
wavelength, we fit the PDE model (2) to obtain estimates of
(θD, θS, θA) and then performed t-tests to compare them across
aerosol types. Strikingly, there was no evidence that the diffusion
rate θD differed between the aerosol types at any wavelength,
with a minimum p-value being of 0.12 across all wavelengths
and both the parameter cascade and Bayesian methods. For the
drift rate/shift θS , all but 1 wavelength had a p-value < 0.05
for both methods and multiple wavelengths reached Bonferroni
significance. For the reaction rate θA, the results are somewhat
intermediate. While for both methods, all but 1 wavelength
had a p-value < 0.05, none reached Bonferroni significance.
In summary, the differences between the two types of aerosol
clouds are clearly expressed by the drift rate/shift, with some

Table 3. Estimated parameters for the PDE model (2) from the
LIDAR dataset using the Bayesian method (BM), the parameter

cascading method (PC), and the two-stage method (TS)

θD θS θA

Estimates BM −0.4470 0.2563 −0.0414
PC −0.3771 0.2492 −0.0407
TS −0.1165 0.2404 −0.0436

evidence of differences in the reaction rate, but no differences
in the diffusion rate. In almost all cases, the drift rate is larger
in the nonbiological samples, while the reaction rate is larger in
the biological samples.

6. CONCLUDING REMARKS

Differential equation models are widely used to model dy-
namic processes in many fields such as engineering and biomed-
ical sciences. The forward problem of solving equations or simu-
lating state variables for given parameters that define the models
has been extensively studied in the past. However, the inverse
problem of estimating parameters based on observed state vari-
ables is relatively sparse in the statistical literature, and this is
especially the case for PDE models.

We have proposed a parameter cascading method and a
fully Bayesian treatment for this problem, which are compared
with a two-stage method. The parameter cascading method and
Bayesian method are joint estimation procedures that consider
the data fitting and PDE fitting simultaneously. Our simulation
studies show that the proposed two methods are more statisti-
cally efficient than a two-stage method, especially for param-
eters associated with higher-order derivatives. Basis function
expansion plays an important role in our new methods, in the
sense that it makes joint modeling possible and links together
fidelity to the PDE model and fidelity to data through the co-
efficients of basis functions. A potential extension of this work
would be to estimate time-varying parameters in PDE models
from error-prone data.

APPENDIX

A.1 Calculation of f(x; θ) and F(θ)

Here we show the form of f(x; θ ) and F(θ ) for the PDE exam-
ple (2). The vector f(x; θ ) is a linear combination of basis functions
and their derivatives involved in model (2). We have that f(x; θ ) =
∂b(x)/∂t − θD∂2b(x)/∂z2 − θS∂b(x)/∂z − θAb(x). Similar to the ba-
sis function matrix B = {b(x1), . . . , b(xn)}T, we define the following
n × K matrices consisting of derivatives of the basis functions

Bt = {∂b(x1)/∂t, . . . , ∂b(xn)/∂t}T ,

Bz = {∂b(x1)/∂z, . . . , ∂b(xn)/∂z}T ,

Bzz = {∂2b(x1)/∂z2, . . . , ∂2b(xn)/∂z2}T.

Then the matrix F(θ) = {f(x1; θ ), . . . , f(xn; θ )}T = Bt − θDBzz −
θSBz − θAB.
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A.2 Sketch of the Asymptotic Theory

A.2.1 Assumptions and Notation. Asymptotic theory for our es-
timators follows in a fashion very similar to that of Yu and Ruppert
(2002). Let λ̃ = λ/n denote the true value of θ as θ0 and define

Sn = n−1
n∑

i=1

b(xi)bT(xi);

Gn(θ ) = Sn + λ̃R(θ );

β̂n(θ ) = G−1
n (θ )n−1

n∑
i=1

b(xi)Yi ;

βn(θ ) = G−1
n (θ )n−1

n∑
i=1

b(xi)g(xi);

Rjθ (θ ) = ∂R(θ )

∂θj

;

	1 = E(Sn);

	2(θ ) = 	1 + λ̃R(θ ).

The parameter θ is estimated by minimizing

Ln(θ ) = n−1
n∑

i=1

{Yi − bT(xi)β̂n(θ )}2. (A.1)

Assumption 1. The sequence λ̃ is fixed and satisfies λ̃ = o(n−1/2).

Assumption 2. The function g(x) = bT(x)β0 for a unique β0, that is,
the spline approximation is exact, and hence βn(θ0) = G−1

n (θ0)Snβ0.

Assumption 3. The parameter θ0 is in the interior of a com-
pact set and, for j = 1, . . . , n, is the unique solution to 0 =
βT

0 R(θ 0){E(Sn)}−1Rjθ (θ0)β0.

Assumption 4. Assumptions (1)–(4) of Yu and Ruppert (2002) hold
with their m(v, θ ) being our bT(x)βn(θ ).

A.2.2 Characterization of the Solution to (A.1). Remember the
matrix fact that for any nonsingular symmetric matrix A(z) for scalar
z, ∂A−1(z)/∂z = −A−1(z){∂A(z)/∂z}A−1(z). This means that for j =
1, . . . , m,

∂β̂n(θ )/∂θj = −̃λG−1
n (θ )Rjθ (θ)G−1

n (θ )n−1
n∑

i=1

b(xi)Yi

= −̃λG−1
n (θ )Rjθ (θ)β̂n(θ ). (A.2)

Minimizing Ln(θ ) is equivalent to solving for j = 1, . . . , m for the
system of equations

0 = n−1/2
n∑

i=1

{Yi −bT(xi)β̂n(θ )}bT(xi){∂β̂n(θ )/∂θj }=n−1/2
n∑

i=1

ij (θ ),

where we define ij (θ) = {Yi − bT(xi)β̂n(θ )}bT(xi){∂β̂n(θ )∂θj }. From
now on, we define the score for θj as Tnj (θ) = n−1/2

∑n
i=1ij (θ) and

define Tn(θ) = {Tn1(θ ), . . . , Tnm(θ )}T.
There are some further simplifications of Tn(θ). Because of (A.2),

Tnj (θ ) = −̃λn−1/2
n∑

i=1

{Yi − bT(xi)β̂n(θ )}bT(xi)G−1
n (θ )Rjθ (θ )β̂n(θ ).

However,

n−1/2
n∑

i=1

YibT(xi) = n1/2n−1
n∑

i=1

YibT(xi)G−1
n (θ )Gn(θ )

= n1/2β̂
T
(θ )Gn(θ );

n−1/2
n∑

i=1

bT(xi)β̂n(θ )bT(xi) = n−1/2
n∑

i=1

β̂
T
n(θ )b(xi)bT(xi)

= n1/2β̂
T
n(θ )Sn.

Thus for any θ ,

Tnj (θ) = −̃λn1/2
{
β̂

T
n(θ )Gn(θ ) − β̂

T
n(θ )Sn

}
G−1

n (θ)Rjθ (θ )β̂n(θ )

= −̃λ2n1/2β̂
T
n(θ )R(θ )G−1

n (θ )Rjθ (θ)β̂n(θ ). (A.3)

Hence, θ̂ is the solution to the system of equations 0 =
β̂

T
n(θ )R(θ )G−1

n (θ )Rjθ (θ)β̂n(θ ).

A.2.3 Further Calculations. Yu and Ruppert showed that if λ̃ → 0
as n → ∞, then uniformly in θ , β̂n(θ ) = β0 + op(1) and that if λ̃ =
o(n−1/2) as n → ∞, then n1/2{β̂n(θ0) − β0} → Normal(0, σ 2

ε 	−1
1 ).

Define the Hessian matrix as Mn(θ ) = ∂Tn(θ )/∂θT. Because of these
facts and Assumption 3, it follows that θ̂ = θ0 + op(1), that is, consis-
tency. It then follows that

0 = Tn (̂θ ) = Tn(θ0) + n−1/2Mn(θ∗)n1/2(̂θ − θ0),

where θ∗ = θ0 + op(1) is between θ̂ and θ0, and hence that

n1/2(̂θ − θ0) = −{n−1/2Mn(θ∗)}−1Tn(θ0). (A.4)

Define �n(θ ) to have (j, k)th element

	n,jk(θ0) = βT
n (θ0)RT

jθ (θ0)G−1
n (θ0)SnG−1

n (θ0)Rkθ (θ0)βn(θ0).

In what follows, as in Yu and Ruppert (2002), we continue to assume
that λ̃ = o(n−1/2). However, with a slight abuse of notation, we will
write Gn(θ0) → 	2(θ0) rather than Gn(θ0) → 	1, because we have
found that implementing the covariance matrix estimator for θ̂ is more
accurate if this is retained: a similar calculation is done in Yu and
Ruppert’s section 3.2. Now using Assumption 3, we see that

Tnj (θ0) = −̃λ2n1/2β̂
T
n(θ0)R(θ0)G−1

n (θ0)Rjθ (θ0)β̂n(θ0)

= −̃λ2n1/2{β̂n(θ0) − βn(θ0)}TR(θ0)G−1
n (θ0)Rjθ (θ0)β̂n(θ0)

−̃λ2n1/2βT
n(θ0)R(θ0)G−1

n (θ0)Rjθ (θ0){β̂n(θ0) − βn(θ0)}.
Define Vj = R(θ0)G−1

n (θ0)Rjθ (θ0) and Wj = Vj + VT
j . Then we have

that

Tnj (θ0) = −̃λ2βT
n(θ0)Wj n

1/2{β̂n(θ0) − βn(θ0)}. (A.5)

Now recall that Sn → 	1 and Gn(θ0) → 	2(θ0) in probability. Hence
we have that

n1/2{β̂n(θ0) − βn(θ0)} = G−1
n (θ0)n−1/2

n∑
i=1

b(xi)ε(xi)

→ Normal
{
0, σ 2

ε 	−1
2 (θ0)	1	

−1
2 (θ0)

}
,

in distribution. So using (A.5), the (j, k)th element of the covariance
matrix of Tn is given by

cov(Tnj , Tnk)

= λ̃4σ 2
ε βT

n(θ0)Wj	
−1
2 (θ0)	1	

−1
2 (θ0)Wkβn(θ0){1 + op(1)}.

We now analyze the term n−1/2Mn(θ∗). Because of consistency of
θ̂ ,

n−1/2Mn(θ∗) = n−1/2Mn(θ0){1 + op(1)}. (A.6)
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The (j, k)th element of Mn(θ) is

Mn,jk(θ ) = −n−1/2
n∑

i=1

∂β̂
T
n(θ)

∂θj

b(xi)bT(xi)
∂β̂n(θ)

∂θk

+ n−1/2
n∑

i=1

{Yi − bT(xi)β̂n(θ )}bT(xi)
∂2β̂n(θ)

∂θj ∂θk

= Mn1,jk(θ) + Mn2,jk(θ ).

We see that by (A.2),

n−1/2Mn1,jk(θ ) = −n−1
n∑

i=1

∂β̂
T
n(θ )

∂θj

b(xi)bT(xi)
∂β̂n(θ)

∂θk

= −n−1̃λ2
n∑

i=1

β̂
T
n(θ )RT

jθ (θ )G−1
n (θ )b(xi)bT(xi)G−1

n (θ )

× Rkθ (θ )β̂n(θ)

= −̃λ2β̂
T
n(θ )RT

jθ (θ)G−1
n (θ )ST

nG−1
n (θ )Rkθ (θ )β̂n(θ ).

Now using the fact that β̂n(θ ) = βn(θ ) + op(1) for any θ , and recalling
the definition of 	n(θ ), we have at θ0 that

n−1/2Mn1,jk(θ0) = −̃λ2	n,jk(θ0){1 + op(1)}.

Similarly for the remaining term of the Hessian matrix, we have

n−1/2Mn2,jk(θ0)

=
[
n−1

n∑
i=1

{Yi − bT(xi)βn(θ0)}bT(xi)

]
∂2βn(θ0)

∂θ 0j ∂θ 0k

{1 + op(1)}

= n−1
n∑

i=1

ε(xi)bT(xi)
∂2βn(θ0)

∂θ0j ∂θ 0k

{1 + op(1)}

+
[
n−1

n∑
i=1

{g(xi) − bT(xi)β(θ0)}bT(xi)

]
∂2βn(θ0)

∂θ 0j ∂θ 0k

{1 + op(1)}.

By Assumption 3, and since ε(x) has mean zero, we see that

n−1/2Mn,jk(θ0) = −̃λ2	n,jk(θ0){1 + op(1)}. (A.7)

Hence using (A.4) and (A.6), it follows that

n1/2(̂θ − θ0) = �−1
n (θ0){̃λ−2Tn(θ0)} + op(1). (A.8)

Hence using (A.8), we obtain (10), but with 	1 and 	2(θ ) replaced by
their consistent estimates Sn and Gn(θ).

A.3 Full Conditional Distributions

To sample from the posterior distribution (13) using Gibbs sam-
pler, we need full conditional distributions of all the unknowns. Due
to conjugacy, parameters σ 2

ε and the γ terms have closed-form full
conditionals. Define SSE = (Y − Bβ)T(Y − Bβ). If we define “rest”
to mean conditional on everything else, we have[

σ 2
ε |rest

] ∝ (
σ 2

ε

)−(aε+n/2)−1
exp

{−(bε + SSE/2)/σ 2
ε

}
= IG(aε + n/2, bε + SSE/2),

[γ0|rest] ∝ γ
a0+K/2−1
0 exp{−b0γ0 − γ0ζ

T(β, θ )ζ (β, θ )/2}
= Gamma(a0 + K/2, b0 + ζ T(β, θ )ζ (β, θ )/2),

[γ1|rest] ∝ γ
a1+K/2−1
1 exp{−b1γ1 − βT(γ1H1 + γ1γ2H3)β/2}

= Gamma(a1 + K/2, b1 + βT(H1 + γ2H3)β/2),

[γ2|rest] ∝ γ
a2+K/2−1
2 exp{−b2γ2 − βT(γ2H2 + γ1γ2H3)β/2}

= Gamma(a2 + K/2, b2 + βT(H2 + γ1H3)β/2).

The parameters β and θ do not have closed-form full conditionals,
which are instead

[β|rest] ∝ exp
{−βT (

σ−2
ε BTB + γ1H1 + γ2H2 + γ1γ2H3

)
β/2

− σ−2
ε βTBTY − γ0ζ

T(β, θ )ζ (β, θ )/2
}
,

[θ |rest] ∝ exp
{−θTθ/

(
2σ 2

θ

) − γ0ζ
T(β, θ )ζ (β, θ )/2

}
.

To draw samples from these full conditionals, a Metropolis–Hastings
update within the Gibbs sampler is applied for each component of θi .
The proposal distribution for the ith component is a normal distribution
Normal(θi,curr, σi,prop), where the mean θi,curr is the current value and the
standard deviation σi,prop is a constant.

In the special case of a linear PDE, the model error is also linear in
β, represented by ζ (β, θ ) = F(θ )β. Then the term ζ T(β, θ )ζ (β, θ )
is a quadratic function in β. Define H = H(θ ) = γ0FT(θ)F(θ ) +
γ1H1 + γ2H2 + γ1γ2H3, and D = {BTB + σ 2

ε H(θ )}−1. By completing
the square in [β|rest], the full conditional of β under linear PDE models
is in the explicit form

[β|rest] ∝ exp
[
− (

2σ 2
ε

)−1 {
βT (

BTB + σ 2
ε H

)
β − 2βTBTY

}]
= Normal

(
DBTY, σ 2

ε D
)
.

SUPPLEMENTARY MATERIALS

Supplementary materials provide the technical details of
calculating the penalty matrix R(θ ) used in Equation (7)
and the variance estimator for the PDE parameters given in
Equation (10).

[Received November 2012. Revised March 2013.]
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