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Abstract
Recent years have seen active developments of various penalized regression methods, such as
LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and
length of the regression coefficients are determined simultaneously. Due to the introduction of
penalties, the length of the estimates can be far from being optimal for accurate predictions. We
introduce a new framework, regression by projection, and its sparse version to analyze high di-
mensional data. The unique nature of this framework is that the directions of the regression co-
efficients are inferred first, and the lengths and the tuning parameters are determined by a cross
validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for
simultaneous model selection consistency and parameter estimation consistency of our method in
high dimension. This new framework is then generalized such that it can be applied to principal
components analysis, partial least squares and canonical correlation analysis. We also adapt this
framework for discriminant analysis. Compared to the existing methods, where there is relatively
little control of the dependency among the sparse components, our method can control the rela-
tionships among the components. We present efficient algorithms and related theory for solving
the sparse regression by projection problem. Based on extensive simulations and real data analy-
sis, we demonstrate that our method achieves good predictive performance and variable selection
in the regression setting, and the ability to control relationships between the sparse components
leads to more accurate classification. In supplemental materials available online, the details of the
algorithms and theoretical proofs, and R codes for all simulation studies are provided.
Some Key Words: Discriminant analysis; Sparse discriminant analysis; Sparse regression by pro-
jection; Zero within-class and between-class correlations.

Short title : Sparse Regression by Projection
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1 Introduction

It is well recognized that classical multivariate statistical methods have difficulty in dealing with

high-dimensional data. For example, ordinary least squares (OLS) has poor prediction accuracy as

well as problems of interpretation for high dimensional data. Various penalization techniques have

been proposed to improve OLS, such as ridge regression (Hoerl and Kennard, 1970), LASSO (Tib-

shirani, 1996), elastic net (Zou and Hastie, 2005), supervised principal components (Bairet al.,

2006), sparse partial least squares regression (Chun and Keles, 2010), smoothly clipped abso-

lute deviation (SCAD) (Fan and Li, 2001), minimax concave penalty (MCP) (Zhang, 2010), and

many others. Similar to regression, many standard dimension reduction methods, such as princi-

pal components analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA),

and Fisher’s discriminant analysis for classification also perform poorly in prediction and feature

selection, and even fail, in high-dimensional settings. A common feature of these dimension re-

duction methods is that they all solve eigenvalue or generalized eigenvalue problems, where the

eigenvectors correspond to different components and there is no correlation or within-class and

between-class correlation among different components. Similar to regression, regularization tech-

niques have been proposed to augment these methods to analyze high-dimensional data. However,

one major limitation of these methods is that they are not able to control the relationships among

the components, due to inherent limitations in these algorithms. As a result, the components thus

constructed may be strongly correlated, which can affect both the interpretation of these compo-

nents and prediction accuracy.

In this paper, we introduce a new framework,regression by projection, which is equivalent

to OLS in the classic regression problem. Based on this new framework, we introduce a sparse

version for high dimensional data. The unique feature of our new sparse regression approach

is that the direction of the estimated coefficient vector is determined first and then its lengths

and the tuning parameters are determined by a cross validation procedure to achieve the largest

prediction accuracy. The LASSO and elastic net determine the direction and the length of the

estimate simultaneously. We consider the well-known elastic net regression method, which solves
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ACCEPTED MANUSCRIPT

the penalized least squares problem

max
β
‖y − Xβ‖22 + λ

[
{(1− α)/2}‖β‖22 + α‖β‖1

]
, (1.1)

whereλ ≥ 0 and 0≤ α ≤ 1 are tuning parameters. Here we use the parameterization adopted in

the R package “glmnet” for the elastic net and denote the estimate asβ̂EN. Typically Xβ̂EN is not

the projection ofy along the direction ofXβ̂EN. Whenα , 0 andλ is large orλ , 0 andα is

large,Xβ̂EN is far from the projection ofy along the direction ofXβ̂EN, which may lead to large

bias in the estimate. We develop a regularized version,sparse regression by projection, under the

new framework, to address this limitation in LASSO and elastic net. It has been proposed (for

example, Cho and Fryzlewicz (2012)) that variable selection methods are used to identify the set

of relevant variables,the final model is constructed using only the selected variables and the OLS.

Hence, all the coefficients of the selected variables are estimated in a separate step other than the

variable selection step. The performance of the final model will heavily rely on variable selection.

Our method is different from this approach, in that, the subset of variables and the direction of

the estimate are identified simultaneously, and only the length of the estimate (a scaling factor)

is determined in a separate step. Zhao and Yu (2006) proved the model consistency for Lasso.

Under the similar setting, we prove the simultaneous consistency of model selection and parameter

estimation of our method.

In addition to regression, sparse regression by projection is also generalized to develop sparse

versions of PCA, PLS, CCA, and discriminant analysis. In addition to achieving sparse compo-

nents, the relationships (i.e. dependency) among the components can be controlled in our method,

a distinct advantage over existing methods where the sparse components can be highly correlated.

For example, in sparse PCA, CCA and PLS, we can control the components to be either orthogonal

or uncorrelated; while in sparse discriminant analysis, we can achieve either zero within-class or

zero between-class correlations, or both. In this paper, we focus on sparse discriminant analysis.

We show that the control of within-class and between-class correlations among the sparse compo-

nents can improve prediction accuracy in some situations. We develop an efficient algorithm and

related theory for solving the sparse regression by projection problems. For the regression setting,
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ACCEPTED MANUSCRIPT

numerical examples show that the new algorithm is faster than LARS and comparable to the Coor-

dinate Descent algorithm. When the new framework is compared with existing regression methods

for high-dimensional data through extensive simulations and application to empirical data sets, the

results show that our methods achieve good predictive performance and variable selection. In the

classification setting, our results suggest that the control of relationships between the components

leads to more accurate classification.

The rest of the paper is organized as follows. In Section 2, we introduce regression by pro-

jection and its connection to discriminant analysis. Section 3 contains the development of sparse

regression by projection. Section 4 discusses our discriminant analysis method. Simulation studies

and case studies are presented in Sections 5 and 6, respectively. Section 7 is a short discussion.

Algorithmic details, the related theorems and all proofs are provided in the online supplementary

materials.

2 Regression by projection

2.1 Regression by projection

Let us consider the classical regression. Suppose that the data set hasn observations withp pre-

dictors. Lety = (y1, ∙ ∙ ∙ , yn)T be the response vector and letX be then× p design matrix. In OLS,

the response is fitted by the linear function (X − μX)̂β, where the coefficient vector̂β minimizes

‖(y − μy) − (X − μX)β‖22, μy andμX are the means ofy andX, respectively, and‖ ∙ ‖2 is the L2

norm. Equivalently, the OLS estimatêβ can be obtained by the following two-step method. We

first obtain the direction of̂β by solving

max
α∈Rp

(y − μy)
T(X − μX)α, subject to αT(X − μX)T(X − μX)α ≤ 1, (2.1)

where we assume that (X − μX)T(X − μX) is full rank for the moment. Let̃α be a solution to

(2.1). Then̂β =
[
(y − μy)T(X − μX)α̃/α̃T(X − μX)T(X − μX)α̃

]
α̃, i.e., (X − μX)̂β is the orthogonal

projection of (y − μy) along the direction of (X − μX)α̃. Because solving (2.1) is equivalent to
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ACCEPTED MANUSCRIPT

finding the linear combination of the columns of (X − μX) which has the largest projection in the

direction of (y − μy) among all the linear combinations satisfying the constraint in (2.1), we call

this methodregression by projection. We will generalize this concept in the following. Without

loss of generality, we will assume that the response is centered and the column means ofX equal

zero, that is,μX = 0 andμy = 0, except in Section 3.2 where the whole data set will be partitioned

into different subsets and the means of responses and predictors for different subsets will not be

the same and cannot be equal to zero simultaneously. WhenμX = 0 andμy = 0, (2.1) becomes

max
α∈Rp

yTXα, subject to αTXTXα ≤ 1, (2.2)

2.2 Connection between regression by projection and the discriminant anal-

ysis

Several important statistical methods, including PCA, PLS, and CCA for dimension reduction

and Fisher’s discriminant analysis for classification, have a common feature: they all solve eigen-

value or generalized eigenvalue problems and the eigenvectors correspond to different components.

There are connections between these methods and the regression by projection discussed above. In

this paper, we will focus on discriminant analysis although it is straightforward to apply the idea

to other methods. As a classification method, Fisher’s discriminant analysis projects the original

variables to a subspace with dimension less than the number of classes such that the between-class

variance is maximized relative to the within-class variance. Hence, this method finds the projection

subspace such that different classes can be separated as much as possible. Suppose that the data

set hasn observations withp predictors and letX be then× p data matrix. LetK be the number

of classes andY be ann × K matrix with Y ik equal to 1 if theith observation is in thekth class

and equal to 0 otherwise. Then the between-class and the within-class covariance matrices can be

written asΣb = n−1XTY(YTY)−1YTX andΣw = n−1XTX − Σb, respectively. Fisher’s discriminant

analysis method sequentially finds linear combinationsXα1, ∙ ∙ ∙ ,XαK−1, that span the projection
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space or the score space, by solving

max
α∈Rp
αTΣbα, subject to αTΣwα ≤ 1, αTΣwα j = 0, 1 ≤ j < k, (2.3)

where 1≤ k ≤ K − 1. Assume thatΣw is full rank for the moment, since (2.3) may not have

a solution otherwise. Then each observation is assigned to the class whose class mean is clos-

est to the corresponding point in the projection space. With this approach,α1, ∙ ∙ ∙ , αK−1 satisfy

bothα jΣbαk = 0 andα jΣwαk = 0, for all j , k. Consequently, the within-class covariance matrix

(α1, ∙ ∙ ∙ , αK−1)TΣw(α1, ∙ ∙ ∙ , αK−1) and between-class covariance matrix (α1, ∙ ∙ ∙ , αK−1)TΣb(α1, ∙ ∙ ∙ , αK−1)

among the components,Xα1, ∙ ∙ ∙ ,XαK−1, are both diagonal matrices. In other words, there are no

within-class and between-class correlations among these components. If there are no differences

among the magnitudes of the diagonal elements in the between-class covariance matrix, then in the

projection space, the class means will not be concentrated along particular directions. On the other

hand, by (2.3), the within-class covariance matrix (α1, ∙ ∙ ∙ , αK−1)TΣw(α1, ∙ ∙ ∙ , αK−1) is equal to the

identity matrix, which implies that in the projection space, the data points are isotropically dis-

tributed about the class means. Hence, the conditions,α jΣbαk = 0 andα jΣwαk = 0, for all j , k,

make it easier to separate the classes, which is illustrated by Figures 2 and 3 in our simulation

studies. Hence, we want to keep these properties in our new method for sparse LDA.

Equation (2.3) is a generalized eigenvalue problem. Consider the well-known power method

for solving generalized eigenvalue problems. For any 1≤ k ≤ K − 1, an initial vectorα(0) with

Σbα
(0) , 0 is selected and a sequence,α(1),α(2), ∙ ∙ ∙ , is iteratively calculated, whereα(i) solves

max
α∈Rp

(α(i−1))TΣbα, subject to αTΣwα ≤ 1, αTΣwα j = 0, 1 ≤ j < k. (2.4)

Then the sequence converges toαk, where we assume that the eigenvalues involved have multi-

plicity one. It can be seen that both (2.2) (the key step of regression by projection) and (2.4) are

special cases of the problem

max
u

cTu, subject to uTCu ≤ 1, Du = 0, (2.5)

wherec is a nonzero vector,C is a nonnegative definite symmetric matrix andD is a matrix. In
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fact, u = α, c = yTX, C = XTX andD = 0 in (2.2). For (2.4),u = α, c = Σbα
(i−1), C = Σw and

D = (Σwα1, ∙ ∙ ∙ ,Σwαk−1)T. Without loss of generality, we assume thatc , 0,u ∈ Rp, C is a p× p

matrix with rankn ≤ p andD is ad1 × p matrix. We call (2.5)regression by projection with linear

constraints. Hence, solving discriminant analysis problems is equivalent to iteratively solving the

problem of regression by projection with linear constraints.

3 Sparse regression by projection

3.1 Sparse regression by projection

In this section, we develop a regularized regression method based on regression by projection. In

our approach, the direction of the estimator is determined by a regularized optimization problem

and its length will be estimated by projecting the response variable along the inferred direction.

Consider a sparse version of (2.2). The directionα̃ of our estimate solves

max
α∈Rp

yTXα, subject to αTXTXα + τ‖α‖2λ ≤ 1, (3.1)

where‖α‖2λ = (1 − λ)‖α‖22 + λ‖α‖
2
1, and bothτ ≥ 0 and 0≤ λ ≤ 1 are tuning parameters. The

introduction of‖α‖22 in the constraint aims to overcome potential multicollinearity problems. When

XTX is not full rank, (for example, whenn < p), the solution to (2.2) does not exist. Thel1 term in

the constraint of (3.1) leads to sparse solutions. We use‖α‖21 instead of‖α‖1 as in the elastic net so

that the solution to

max
α∈Rp

yTXα, subject to αTXTXα + τ‖α‖2λ ≤ t,

wheret is any positive number, differs from the solution to (3.1) only by a multiplicative constant

and thus the two solution vectors have the same directions. Hence, the sparsity penalty is actually

imposed on the direction of the coefficient vector. Bothλ andτ can control the sparsity of̃α. When

τ > 0 and 0≤ λ < 1, the feasible region is a strictly convex set, and hence the solution to (3.1) is

unique. Figure 1 provides some insight into (3.1) for a two-dimensional case. Whenλ andτ are
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large, the second coordinate ofα̃ is equal to zero. Hence, it can be anticipated that, in general,α̃ is

sparse for large values ofτ andλ.

A penalized version of(3.1). Although we formulate our method as a constrained optimization

problem (3.1), it has the following penalized version (3.2). The solutions to (3.1) and (3.2) differ

only by a scaling factor. However, the essential difference is that in (3.1), we do not determine the

length, whereas both the direction and length are determined in (3.2).

Theorem 3.1.The optimization problem(3.1)has the following penalized version,

min
β
‖y − Xβ‖22 + τ

[
(1− λ)‖β‖22 + λ‖β‖

2
1

]
, (3.2)

whereτ andλ are the same parameters as in(3.1). The solutions to(3.1)and (3.2)differ only by
a scaling factor. Specifically, letα∗ be the solution to(3.1), then the solution to(3.2) is

β∗ =
yTXα∗

‖Xα∗‖22 + τ‖α
∗‖2λ
α∗. (3.3)

The major difference between (3.2) and the elastic-net problem is that the squaredl1 norm

is used in (3.2) instead of thel1 norm itself. This difference makes (3.2) (and (3.1)) enjoy scale

invariant properties which are not possessed by the elastic-net. Specifically,

(a). If β∗ is the solution to (3.2), thencβ∗ is the solution to (3.2) withy replaced bycy, where

c is any positive scaling constant.

(b). If β∗ is the solution to (3.2), thenβ∗/c is the solution to

max
β
‖y − cXβ‖22 + cτ

[
(1− λ)‖β‖22 + λ‖β‖

2
1

]
, (3.4)

wherec is any positive scaling constant.

Hence, scalingy does not affect the direction of the estimate of the coefficients. When we scale

X, we just need to makeτ scaled by the same amount, then the direction of the estimate of the

coefficients is unchanged. However, the elastic-net does not have this property. Wheny is scaled,

the direction of the estimate of the coefficients is changed.

We use (3.1) instead of the penalized version (3.2) for two reasons. First, we actually consider

a much more general optimization problem which is the sparse version of the (2.5). As we have
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seen in Section 2.2, many multivariate methods can be connected to (2.5). Hence, based on our

algorithms, we can propose sparse versions for various multivariate methods including the sparse

regression problems (3.1) and (3.2). Second, it can be seen from (3.3) that, when the tuning pa-

rameterτ is large, the length of the solutionβ∗ to (3.2) is quite small and can be far away from

the optimal one, which can lead to large prediction errors. Instead, in (3.2), we only determine the

direction of the estimate and then the length is chosen to minimize the prediction errors. In addi-

tion, the tuning parametersτ andλ need to be chosen to minimize the prediction errors. Hence, we

design a cross-validation procedure to choose the tuning parameters and the length of the estimate

simultaneously. The details are described in Section 3.2.

By Theorem 3.1, in the special case ofλ = 0, given the tuning parameterτ, the solution of

(3.1) has the same direction as ridge regression but the lengths are usually different. Moreover,

since we have different cross-validation procedure from ridge regression, the selectedτ can be

quite different.

3.2 Choices of tuning parameters and determination of the length of the

estimate

We use cross-validation (CV) to choose the tuning parameters. In our method, the length of the

estimate is not determined by the optimization problem itself. Instead, it is viewed as a special

tuning parameter and will be chosen to maximize prediction accuracy. To measure the prediction

accuracy of the models corresponding to different values ofλ andτ, we must consider the effect of

the length of the estimate. Given a pair ofλ andτ, we choose the length to minimize the prediction

mean squared error and hence to chooseλ andτ. Our cross-validation procedure is different from

that of the Lasso and the elastic-net. Roughly speaking, to choose the tuning parametersτ ≥ 0

and 0≤ λ < 1, we randomly split the entire data set (y,X) into a “calculation set”, (ycal,Xcal),

and an “evaluation set”, (yeval,Xeval). For each pair (τ, λ), we first determine the directioñα(τ, λ)

of β using the calculation set. Then we project the centeredyeval onto the direction of the centered

Xeval̃α(τ, λ), and obtain the residual vector, which is the difference between the centeredyvalid and

8
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

24
 0

9 
Ju

ly
 2

01
4 



ACCEPTED MANUSCRIPT

the projection. Then we compute the mean squared error. Another important difference between

our CV procedure and the usual CV procedure is that we do not split the entire data set into 10

subsets as in standard 10-fold CV procedure where, in each repeat, one subset is selected as the

validation set and all the other observations as the training set. The main reason is that in our

approach, the length is not determined by the training set. Hence, in order to more accurately

estimate the prediction errors in the validation set, we decrease the size of the training set and

increase the size of the validation set.

Specifically, we repeat the following procedure 10 times. In theith repeat, 1≤ i ≤ 10, we

randomly split the whole data set into a calculation set and an evaluation set, where the evaluation

set has one third of all the observations. Letμ̂(cal)
X denote the matrix with the same size asXcal and

the values in each column equal to the mean of the corresponding column ofXcal. Let μ̂(cal)
y be the

vector with each value equal to the mean ofycal. For any pair (τ, λ), the direction,̃α(τ, λ), is the

solution to

max
α∈Rp

(ycal− μ̂
(cal)
y )T(Xcal− μ̂

(cal)
X )α, (3.5)

subject to αT(Xcal− μ̂
(cal)
X )T(Xcal− μ̂

(cal)
X )α + τ‖α‖2λ ≤ 1.

Once the direction is determined, we projectyeval− μ̂
(cal)
y along the direction of (Xeval− μ̂

(cal)
X )α̃(τ, λ).

The projection is (Xeval− μ̂
(cal)
X )̂β(τ, λ), where

β̂(τ, λ) =
(yeval− μ̂

(cal)
y )T(Xeval− μ̂

(cal)
X )α̃(τ, λ)

α̃T(τ, λ)(Xeval− μ̂
(cal)
X )T(Xeval− μ̂

(cal)
X )α̃(τ, λ)

α̃(τ, λ). (3.6)

Then we calculate the mean squared error,

MS E(τ, λ, i) = ‖yeval− μ̂
(cal)
y − (Xeval− μ̂

(cal)
X )̂β(τ, λ)‖22. (3.7)

We choose the pair (τ0, λ0) which minimizes 10−1 ∑10
i=1 MS E(τ, λ, i). Then the directioñα of the

final estimate solves

max
α∈Rp

(y − μ̂y)
T(X − μ̂X)α, subject to αT(X − μ̂X)T(X − μ̂X)α + τ0‖α‖

2
λ0
≤ 1,
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whereμ̂X andμ̂y are the mean matrix and the mean vector of the whole data setX andy, respec-

tively. The final estimatêβ is

β̂ =
(y − μ̂y)

T(X − μ̂X)α̃

α̃T(X − μ̂X)T(X − μ̂X)α̃
α̃.

It is easy to see that (X − μ̂X)̂β is the projection ofy − μ̂y along the direction of (X − μ̂X)α̃.

3.3 Simultaneous model selection consistency and parameter estimation

consistency in high dimension

Zhao and Yu (2006) proved that the Lasso is model consistent. We will prove that our method

is both model selection consistent and parameter estimation consistent simultaneously under the

similar setting. Assume that we have a sequence of linear regression models

yn = Xnβn + εn, (3.8)

whereεn = (εn1, ∙ ∙ ∙ , ε
n
n)

T is a vector of i.i.d. standard normal variables,yn is then-dimensional

response vector andXn is then× p data matrix. We will consider the situation where bothn and

p go to infinity. Suppose that the firstq coordinates ofβn are nonzero and the others are zero.

Let βn = (βn1T,βn2T)T, whereβn
1 andβn

2 = 0 are the firstq and the lastp − q coordinates ofβn,

respectively.

Suppose that̂βn = (β̂n
1

T
, β̂n

2

T
)T is the solution to (3.2) with the values of the tuning parameters

equal toλn andτn, whereβ̂n
1 andβ̂n

2 are the firstq and the lastp− q coordinates of̂βn, respectively.

Then our estimate is

γ̂n =
(yn)TXnβ̂n

β̂nTXnTXnβ̂n
β̂n, (3.9)

that is,Xnγ̂n is the projection ofyn along the direction ofXnβ̂n.

We sayβ̂n has the same sign asβn if each coordinate of̂βn
1 has the same sign as the corre-

sponding coordinate ofβn
1 andβ̂n

2 = 0. We sayβ̂n is model selection consistent if with probability

10
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converging to 1, it has the same sign asβn. If ‖β̂n−βn‖2→ 0 in probability, we saŷβn is parameter

estimation consistent. We will prove the simultaneous model selection consistency and parameter

estimation consistency for botĥβn andγ̂n.

We consider a setting essentially the same as in Zhao and Yu (2006). LetXn = (Xn
1,X

n
2), where

Xn
1 andXn

2 are the submatrices corresponding toβn
1 andβn

2. Let Cn = XnTXn/n, Cn
11 = Xn1TXn

1/n

andCn
21 = Xn2TXn

1/n. Assume that there exist constants 0≤ c1 < c2 ≤ 1, 0< c4 <
c1
2 <

c0
2 , c3 > 0,

positiveM1,M2 and a positive integerk such that the following conditions hold,

Condition 1. 1. The largest singular values ofC21 are less than O(n−c0).

2. All the eigenvalues ofCn are less than M1, and all the eigenvalues ofCn
11 are greater than

M2.

3. n
1−c2

2 min1≤i≤q |β
n
j | ≥ M3, ‖β

n
1‖2 ∼ nc3, E[ε2k

i ] < ∞, qn = O(nc1), pn ≤ O(nc4k).

Theorem 3.2. Under the Condition 1, if we chooseτn = nd1 andλn = nd2, where−∞ < d1 < ∞
and d2 ≤ 0 are two constants satisfying

−c0 < d2 < −
c1

2
,

1
2
+ c4 < d1 + max(0, c1 + d2) + c3 <

1+ c2

2
, (3.10)

then we have

P
(
β̂n has the same sign asβn

)
≥ 1−O

(
n−δk

)
, (3.11)

P
(
γ̂n has the same sign asβn

)
≥ 1−O

(
n−δk

)
,

whereδ is a positive constant only depending on c0 ∼ c4 and d1 ∼ d2. Moreover, botĥβn and γ̂n

are consistent estimates ofβn. That is,

‖β̂n − βn‖2→ 0, ‖γ̂n − βn‖2→ 0, (3.12)

in probability as n→ ∞.
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4 Sparse discriminant analysis

4.1 Motivation

Although Fisher’s discriminant analysis performs well in low-dimensional settings, it faces major

problems for high-dimensional data. The within-class covariance matrix,Σw, is singular in (2.3)

when the sample size is smaller than the dimension, and hence there is no solution to (2.3). Even

in the case wherep is close ton andΣw is not singular, the resulting classifier will have large vari-

ance and poor performance. To address these problems, regularized discriminant analysis methods

have been proposed, including those described in Friedman (1989), Krzanowskiet al. (1995), Du-

doit et al. (2001), Bickel and Levina (2004), Guoet al. (2007), Xuet al. (2009), Tibshiraniet al.

(2002), Witten and Tibshirani (2011), Clemmensenet al. (2011), Shaoet al. (2011) and many

others. However, when sparseness penalties are imposed, existing methods cannot simultaneously

achieve sparsity and zero within-class and between-class correlations among the components. As

discussed in Section 2.2, the lack of correlation property controls the shapes of the distributions

of the class means and the observations about the mean in the projection space or the score space,

and makes the separation of classes easier. Although one can use orthogonalization to achieve this

property, the components thus obtained do not achieve the optimal between-class variances, i.e.,

the maximum between-class variances subject to the corresponding constraints. In this section,

we propose a new sparse discriminant analysis method based on the relationship between regres-

sion by projection and discriminant analysis. This method leads to both sparse and uncorrelated

components.
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4.2 Sparse discriminant analysis

We propose the following sequential method to find the linear combinationsXα1, ∙ ∙ ∙ , XαK−1. For

any 1≤ k ≤ K − 1, the coefficientαk solves

max
α∈Rp

αTΣbα, (4.1)

subject to αTΣwα + τ‖α‖
2
λ ≤ 1, αTΣbα j = 0, αTΣwα j = 0, j < k.

BecauseαTΣwα + τ‖α‖2λ = α
T{Σw + τ(1 − λ)I }α + τλ‖α‖21, whereI is the p-dimensional identity

matrix, our method resolves the singularity problem and achieves sparse components. The con-

straintsαTΣbα j = 0 andαTΣwα j = 0 guarantee that there is no within-class and between-class

correlations, respectively.

We propose the following iterative algorithm to solve (4.1).

Algorithm 4.1. 1. Choose an initial vectorα(0) with Σbα
(0) , 0.

2. Iteratively compute a sequenceα(1),α(2), ∙ ∙ ∙ ,α(i), ∙ ∙ ∙ until convergence as follows: for any

i ≥ 1, computeα(i) by solving

max
α∈Rp

(Σbα
(i−1))Tα,

subject to αTΣwα + τ‖α‖
2
λ ≤ 1, αTΣbα j = 0, αTΣwα j = 0, j < k. (4.2)

Both the key step (4.2) of Algorithm 4.1 and the sparse regression by projection problem (3.1)

are special cases of the optimization problem

max
u

cTu, subject to uTCu + τ‖u‖2λ ≤ 1, Du = 0. (4.3)

In fact, lettingu = α, c = Σbα
(i−1), C = Σw and

D = (Σbα1, ∙ ∙ ∙ ,Σbαk−1,Σwα1, ∙ ∙ ∙ ,Σwαk−1)
T

in (4.3), we obtain (4.2). Since (4.3) is a sparse version of (2.5), we call itsparse regression by

projection with linear constraints. We will propose efficient algorithms to solve (4.3) in Section 7.
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Two possible modifications of our method are worth investigating. First, remove the within-

class constraintsαTΣwα j = 0 in (4.1), so that only the between-class correlations are zeros. Sec-

ond, remove the constraints:αTΣbα j = 0, so that only the within-class correlations are zeros

among the components. Algorithm 4.1 can be applied to these two modifications with changes of

the matrixD in (4.3). We will compare the performance of our method with the two modifications

in simulation studies.

4.3 Choices of tuning parameters and the number of components

We next propose a cross-validation method to choose the tuning parametersτ andλ. As for the

number of components, although it can also be chosen by cross-validation or other methods, we

will just fix it to be K − 1, the largest one of possible numbers, for two reasons: (a) in almost all

our studies, the best choice isK − 1; (b) since the number of components is a discrete parameter,

its selection by cross-validation may lead to large variances of the test errors.

To chooseτ andλ, we repeat the following procedure 10 times. In theith repeat, where 1≤

i ≤ 10, the data set is randomly split into a training set and a validation set. The validation set has

one third of all observations: the proportion of the observations assigned to the validation set has

to be reduced if the total sample size is small. The coefficientsαi, 1 ≤ i ≤ K − 1, are calculated

based on the training data and the classification errors are calculated based on the validation data

for each pair (τ, λ) in a grid. Then the mean errors are calculated for the ten repeats. The pair of

the parameters minimizing the mean error are chosen. The final estimates of the coefficients are

determined by the whole data and the selected parameters. If there are ties in the minimum mean

errors between different (τ, λ), we choose the smallestτ. If for the selectedτ, there is more than

oneλ corresponding to the minimum error, we choose the smallestλ.
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5 Simulation studies

5.1 Sparse regression by projection

In this subsection, we compare our regression method, denoted by SRP, with several sparse re-

gression methods using publicly available software: ridge regression (Ridge) (Hoerl and Kennard,

1970), LASSO (Tibshirani, 1996), elastic net (EN) (Zou and Hastie, 2005), and sparse partial

least squares regression (SPLS) (Chun and Keles, 2010), the smoothly clipped absolute deviation

(SCAD) (Fan and Li, 2001), penalty and the minimax concave penalty (MCP) (Zhang, 2010). The

first three methods are implemented in the R package “glmnet”, the SPLS in “spls”, the last two in

“conreg”. We will consider two sets of simulations. The first one has similar settings as those in

Zou and Hastie (2005) and the other one as those in Chun and Keles (2010) and Bairet al. (2006).

To compare variable selection, we consider the sensitivity and specificity defined by

sensitivity=
TP

T P+ FN
, specificity=

TN
T N+ FP

,

where TP is the number of the variables withβi , 0 and its estimatêβi , 0, i.e., the number of

the true features identified, Also, FN is the number of the variables withβi , 0 andβ̂i = 0, i.e.,

the number of the true features not identified, TN is the number of the variables withβi = 0 and

β̂i = 0, and FP is the number of the variables withβi = 0 and̂βi , 0.

5.1.1 First set of simulation studies

Data are simulated from the true model:y = Xβ + σε, ε ∼ Normal(0,1) with three examples

discussed below. In each example, we compare the performance of these methods for different

numbers of variables and different values ofσ. For each setting in any example, we simulate 100

independent data sets. Each data set has 500 independent observations which is split into a training

set with 50 observations, a validation set with 50 observations and a test set with 400 observations.

Models are fitted to the training data, tuning parameters are selected based on the validation data

and the mean-squared error is calculated based on the test data. Here are the details of the three
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examples.

Example 1. β = (3, ∙ ∙ ∙ ,3︸   ︷︷   ︸
15

,0, ∙ ∙ ∙ ,0︸   ︷︷   ︸
p−15

) andX is generated as follows:

xi = Z1 + σ
XεXi , ε

X
i ∼ Normal(0,1), Z1 ∼ Normal(0,1), i = 1, ∙ ∙ ∙ ,5,

xi = Z2 + σ
XεXi , ε

X
i ∼ Normal(0,1), Z2 ∼ Normal(0,1), i = 6, ∙ ∙ ∙ ,10,

xi = Z3 + σ
XεXi , ε

X
i ∼ Normal(0,1), Z3 ∼ Normal(0,1), i = 11, ∙ ∙ ∙ ,15,

whereZj, 1 ≤ j ≤ 3, εXi , 1 ≤ i ≤ 15, andxi ∼ Normal(0, (σX)2), 16≤ i ≤ p, are independent. We

considerp = 100,300,500, (σX)2 = 1,2, andσ2 = 1,5,10, respectively.

Example 2. β = (3,2,1.5,0,0,3,2,1.5,0,0,3,2,1.5,0,0,3,2,1.5,0,0,3,2,1.5,0,0︸                                                                                   ︷︷                                                                                   ︸
25

,0, ∙ ∙ ∙ ,0︸   ︷︷   ︸
p−25

) and

X is generated from a multinormal distribution with cov(xi , x j) = ρ|i− j|. We considerp = 100,300,

ρ = 0.50,0.95 andσ2 = 1,5,10, respectively.

Example 3. β = (2,2, ∙ ∙ ∙ ,2︸      ︷︷      ︸
20

,0, ∙ ∙ ∙ ,0︸   ︷︷   ︸
p−20

) andX is generated from a multinormal distribution with

var(xi) = 1 andcov(xi , x j) = ρ, i , j. We considerp = 100,300, ρ = 0.50,0.90 andσ2 =

1,10,20, respectively.

In our method, SRP, the parameters are selected from the grid ofτ =0.01, 0.05, 0.1, 0.5, 1, 5,

10, 50, 100, 500 andλ = 0.1,0.2, ∙ ∙ ∙ ,0.9. For elastic net, see (1.1), the parameters are selected

from the grid ofλ =0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500 andα = 0.1,0.2, ∙ ∙ ∙ ,0.9. For

LASSO, the special case of (1.1) withα = 1, and Ridge regression, the special case of (1.1) with

α = 0, the parameters are selected from the grid ofλ =0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500.

We choose two parameters 0< η < 1 andK (the number of components) for SPLS from the grid

of η = 0.1,0.2, ∙ ∙ ∙ ,0.9 andK = 1,2, ∙ ∙ ∙ ,10. For SCAD and MCP, we use the default setting of

the R function where the tuning parameter is selected from one hundred values.

The averages and standard deviations of the test error, sensitivity and the specificity over the

100 independent data sets are listed in the following tables. Table 8 summarizes the averages

and standard deviations (in parentheses) of the test errors. The second column for each competing
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method is the mean squared error efficiency of the competing method (the ratio between the average

MSEs of our method and the competing method). Table 1 gives the sensitivities and the specificities

(in parenthesis) for Example 1. When both the number of variables and the noise are small, our

method and SPLS have comparable prediction performance and are better than the other methods.

In these scenarios, all the methods except SCAD and MCP identify almost all true features, but

SPLS has a better specificity. When the number of variables or the noise are large, our method has

the smallest prediction errors, which is statistically significant by the paired t-test. For example,

in the case ofp = 300, σX = 1, σ = 1, for the alternative hypothesis: “our method has a smaller

expectation of MSE”, the p-values are 7.3× 10−13 (EN), 6.5× 10−9 (LASSO), 2.2× 10−16 (Ridge),

and 4.9× 10−6 (SPLS), respectively. In these scenarios, SPLS has the lower sensitivity and higher

specificity, that is, it tends to choose a model with both fewer true signals and fewer noisy features.

It seems that the prediction accuracy of both SCAD and MCP is very sensitive to feature selection.

For example, consider the scenario corresponding the first line of Table 8. The average MSE of

those simulation runs where all the 15 true features are selected was 1.9, but the average MSE of

those runs where 14 true features were identified is 53.5. For MCP, the two averages were 1.48

and 60.3, respectively.

The results for Example 2 are shown in Tables 9 and 2. Tables 10 and 3 give results for Example

3. Our method has good prediction performance in all the scenarios.

5.1.2 Second set of simulations

We use the same simulation settings as those in Chun and Keles (2010) and Bairet al. (2006).

In both simulated data sets,p = 5000 andn = 100. We simulate data from the general model

y = Xβ + ε, ε ∼ Normal(0,1.52), whereβ is a p vector withβ j = 1/25 for 1≤ j ≤ 50 and 0 for

51≤ j ≤ p. The underlying data generation forX is different between the two simulated data sets.

Example 4. Two hidden componentsH1 andH2 are defined as follows:H1 j equals 3 for 1≤ j ≤ 50

and 4 for 51≤ j ≤ 100 andH2 j equals 3.5 for 1≤ j ≤ 100. The columns ofX are generated by

X i = H1 + ε
X
i for 1 ≤ i ≤ 50 andX i = H2 + ε

X
i for 51 ≤ i ≤ p, whereεX

i are independent and

identically distributed random vectors whose elements are independent standard normal random
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variables.

Example 5. Five hidden componentsH1, ∙ ∙ ∙ ,H5 defined as follows:H1 j = 3I ( j ≤ 50)+4I ( j > 50),

H2 j = 3.5+ 1.5I (u1 j ≤ 0.4), H3 j = 3.5+ 0.5I (u2 j ≤ 0.7), H4 j = 3.5− 1.5I (u3 j ≤ 0.7), H5 j = 3.5,

whereu1 j, u2 j andu3 j are independent random variables uniformly distributed in (0,1) andI is the

indicator function. The columns ofX are generated byX i = Hk + ε
X
i for nk−1 + 1 ≤ i ≤ nk, where

k = 1, ∙ ∙ ∙ ,5 and (n0, ∙ ∙ ∙ ,n5) = (0,50,100,200,300, p).

We compare the prediction performance of our method with elastic net and SPLS. In our

method, we use cross-validation to select the tuning parameters as described in Section 3.2. For the

elastic net and SPLS, the ten-fold cross-validation methods provided in the corresponding pack-

ages are used to select the tuning parameters. The results are summarized in Table 4 showing the

mean errors and the standard deviations (in parentheses) of 100 simulations for each setting. The

p-values of the paired t-tests for the comparison of our method and each of the other two meth-

ods are also calculated. For Example 4, our method and SPLS have almost the same prediction

accuracy, whereas our method is better in Example 5.

5.2 Sparse discriminant analysis

The goal of this simulation study is to show that imposing the sparsity penalty and the constraints

of no within-class and between-class correlations among the components simultaneously can im-

prove classification. We compare the prediction performances of the following regularized dis-

criminant analysis methods: our method (denoted by sdaBP), the modification of our method

without the constraint on between-class correlations (sdaBP2), the modification of our method

without the constraint on within-class correlations (sdaBP3), RDA (Guoet al. (2007), R pack-

age “rda”), PDA (Witten and Tibshirani (2011), “penalizedLDA”), and SDA (Clemmensenet al.

(2011), “sparseLDA”). Four simulation models are considered. In each simulation, 50 independent

data sets are simulated each of which has 1500 observations and three classes. Each observation is

randomly assigned to one class and then the values of the covariates are generated from the model.

Then the observations are randomly split into the training set with 150 observations and the test
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set with 1350 observations. Each simulation consists of measurements on 500 features. For the

first three methods, we use the cross-validation methods in Section 4.3 to select the parameters.

For RDA and PDA, the cross-validation methods in the corresponding packages are used. Since

there is no method of parameter selection available in “sparseLDA” and only one parameter can be

tuned there, we use ten-fold cross-validation in the grid of 10−6,10−4,10−2,1,102,104, to choose

the parameter.

(a). Simulation 1: There is no overlap between the features for different classes and different

variables are independent. Specifically, letxi j be theith observation on thejth variable. If

the ith observation belongs to classk(= 1,2,3), thenxi j ∼ Normal(μk j, σ j). The mean vector

of classk, μk = (μk1, ∙ ∙ ∙ , μkp) with μ1 j = 1 if 1 ≤ j ≤ 10, μ2 j = 1 if 11 ≤ j ≤ 30, μ3 j = 1

if 31 ≤ j ≤ 60, andμk j = 0 otherwise. Finally,σ j is a random number generated from the

uniform distribution in (0.5,2).

(b). Simulation 2:There is no overlap between the features for different classes, but the variables

are correlated. If theith observation is in classk(= 1,2,3), thenxi j = μk j + Z1i + εi j if

1 ≤ j ≤ 20, xi j = μk j + Z1i + Z2i + εi j if 21 ≤ j ≤ 30, xi j = μk j + Z2i + εi j if 31 ≤ j ≤ 50

and xi j = μk j + εi j otherwise, whereZ1i ∼ Normal(0,1), Z2i ∼ Normal(0,1) andεi j ∼

Normal(0,0.82) are independent.μ1 j ∼ Normal(1,0.82) if 1 ≤ j ≤ 20,μ2 j ∼ Normal(4,0.82)

if 21 ≤ j ≤ 30,μ3 j ∼ Normal(1,0.82) if 31 ≤ j ≤ 50 andμk j = 0 otherwise.

(c). Simulation 3: There are overlaps between the features for different classes and the vari-

ables are correlated. The vectorxi ∼ Normal(μk,Σ) if observationi is in classk, where

the covariance structure is block diagonal, with five blocks each of dimension 100× 100.

The blocks have (j, j′) element 0.6| j− j′|. Also, μ1 j ∼ Normal(1,1), μ2 j ∼ Normal(2,1) and

μ3 j ∼ Normal(3,1) if 1 ≤ j ≤ 10 or 101≤ j ≤ 110 andμk j = 0 otherwise.

(d). Simulation 4: In the first three simulations, observations in all the classes have the same

distributions about the class means. A different situation is considered here. If theith obser-

vation is in classk, xi ∼ Normal(μk,Σk). We takeμ1 j = 3 if 1 ≤ j ≤ 10,μ2 j = 2 if 1 ≤ j ≤ 20,

μ3 j = 1 if 1 ≤ j ≤ 30, andμk j = 0 otherwise. The covariance matrixΣ1 is diagonal with the
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diagonal elements generated from the uniform distribution in (0.5,2). Σ2 is block diagonal,

with five blocks each of dimension 100× 100. The blocks have (j, j′) element 0.9| j− j′|. And

Σ3 is block diagonal, with five blocks each of dimension 100× 100. The blocks have (j, j′)

element 0.6 if j , j′ and 1 otherwise.

The mean misclassification rates (percentages) of 50 data sets for each simulation are shown in

Table 5, with standard deviations in parentheses. The p-value for the paired t-test between sdaBP

and each of the other methods is also calculated. Our method has good prediction accuracies in all

the simulations. The unusual large error rates of SDA may be due to our choices of the parameters.

The sdaBP and the sdaBP2 have similar performances and are better than the sdaBP1. Hence,

to remove the between-class correlation has a larger effect on the prediction than the within-class

correlation. The benefit of controlling of the between-class and the within-class correlations can

be illustrated by Figures 2 and 3. In Figure 2, the class means of PDA lie approximately along a

straight line, i.e., large between-class correlation, which leads to large overlaps of different classes.

In Figure 3, the observations in the plot of PDA distribute along a particular direction, i.e., large

within-class correlation, which leads to large overlaps of the red and the blue classes.

6 Case studies

6.1 Predictive modelling of anticancer drug sensitivity

In Barretina and et al. (2012), the elastic net was used to construct predictive models that explained

drug sensitivity profiles based on genetic features of the cell lines. In this study, we apply our

method (SRP), ridge regression (Ridge), LASSO (LASSO), elastic net (EN), and SPLS to this

data set. The numbers of variables and observations are 54,675 and 491, respectively. There are

24 drugs considered. For each drug, we construct a regression model to predict drug sensitivity.

We randomly split the observations into the training set with 100 observations, the validation set

with 100 observations and the test set with 291 observations. We repeat the procedure 20 times

and calculate the means and the standard deviations of the MSE and the number of the features
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selected for each drug. The results for the first fives drugs are shown in Table 6. The results for all

the drugs can be found in Table 3 of the Appendix. All methods except LASSO have almost the

same prediction performance. The prediction errors of LASSO are slightly larger than others. Our

method and LASSO included the smallest numbers of features in the models for all drugs.

6.2 Classification

We next apply our sdaBP method, RDA, SDA and PDA to four data sets which are randomly split

into training sets and test sets. For each data set, the procedure is repeated 50 times and the mean

and standard deviation of misclassification rates are calculated.

(a). UPP data: Gene expression data from a breast cancer study published by Miller and et al.

(2005). There are 44,928 features and 249 samples classified into three grades with 67,

128, 54 observations, respectively. The data is randomly split into a training set with 150

observations and a test data set with 99 observations. The data is available in the package

“breastCancerUPP” of “ Bioconductor”.

(b). NKI data: Gene expression data from a breast cancer study published by vant́ Veer et al.

(2002). There are 24,481 features and 337 samples classified into three grades with 79,

109, 149 observations, respectively. The data is randomly split into a training set with 150

observations and a test data set with 187 observations. The data is available in the package

“breastCancerNKI” of “ Bioconductor”.

(c). DLBCL-D data: Microarray data from the Broad Institute “Cancer Program Data Sets”

which was produced by Yujinet al. (2007). There 3,741 features and 129 samples clas-

sified into four groups with 19, 37, 24 and 49 observations, respectively. The training set has

109 observations and the test set has 20 observations.

(d). Handwriting data: This data set consists of features of handwritten numerals, 0,1, ∙ ∙ ∙ ,9,

extracted from a collection of Dutch utility maps. For each numerals (that is, each class),

there are 200 observations. Hence, there are 10 classes, 649 features and 2,000 observations
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randomly split into a training set with 450 observations and a test set with 1,550 observations.

The data is available at the UCI Machine Learning Repository.

The results are summarized in Table 7. Our method has good performance both for high-

dimensional data and for the data with a relatively large number of classes.

7 Discussion

In this paper, we have proposed a the new framework, regression by projection, and its sparse

version for high dimensional data analysis. The unique feature of our new approach is that the

direction of the estimate of the coefficient vector is determined first and then its length. Tuning

parameters are determined by cross-validation. Comparisons with other methods through simula-

tions and data examples show that our method achieves good predictive performance and effective

variable selection.

This framework can be generalized to PCA, PLS, CCA and discriminant analysis to develop

sparse versions of these methods. In addition to the achievement of sparse components, the rela-

tionship among the components can be controlled. In this paper, we focused on sparse discriminant

analysis. We showed that the control of within-class and between-class correlations among the

sparse components can improve prediction accuracy. An efficient algorithm and the related theory

for solving the sparse regression by projection were developed. Numerical examples show that the

new algorithm is faster than LARS and comparable to the Coordinate Descent algorithm.

Supplementary Materials

Web Appendix: the detailed description of all the algorithms and the proofs of theorems. (we-

bAppendix.pdf; pdf file)

R codes: code files to run the simulation studies. (simulation.R.codes.zip; zip file)
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Table 1: The averages of the sensitivities and specificities (in parentheses) for Example 1.

(p, (σX)2) σ2 SRP EN LASSO Ridge SPLS SCAD MCP
1 1(0.89) 1(0.90) 1(0.90) 1(0) 1(0.96) 0.86(0.93) 0.72(0.96)

(100,1) 5 1(0.87) 1(0.82) 1(0.76) 1(0) 0.99(0.96) 0.83(0.91) 0.66(0.95)
10 0.99(0.86) 0.99(0.81) 0.99(0.71) 1(0) 0.99(0.95) 0.77(0.89) 0.60(0.95)
1 1(0.89) 1(0.89) 1(0.90) 1(0) 1(0.95) 0.94(0.95) 0.85(0.96)

(100,2) 5 1(0.85) 1(0.78) 1(0.75) 1(0) 1(0.94) 0.93(0.95) 0.85(0.96)
10 1(0.85) 1(0.78) 1(0.71) 1(0) 0.99(0.95) 0.91(0.94) 0.80(0.96)
1 0.99(0.95) 0.99(0.95) 0.99(0.95) 1(0) 0.98(0.98) 0.59(0.96) 0.40(0.99)

(300,1) 5 1(0.94) 1(0.92) 1(0.91) 1(0) 0.97(0.97) 0.61(0.96) 0.38(0.99)
10 0.99(0.93) 0.99(0.91) 0.99(0.89) 1(0) 0.95(0.97) 0.60(0.97) 0.37(0.99)
1 1(0.95) 1(0.94) 1(0.94) 1(0) 0.96(0.95) 0.65(0.97) 0.41(0.99)

(300,2) 5 0.99(0.93) 0.99(0.91) 0.99(0.90) 1(0) 0.94(0.95) 0.68(0.97) 0.44(0.99)
10 0.99(0.92) 0.99(0.90) 0.99(0.89) 1(0) 0.93(0.95) 0.66(0.97) 0.43(0.99)
1 0.99(0.96) 0.99(0.96) 0.99(0.96) 1(0) 0.93(0.98) 0.59(0.98) 0.31(0.99)

(500,1) 5 0.99(0.95) 0.99(0.94) 0.99(0.94) 1(0) 0.94(0.98) 0.58(0.98) 0.32(0.99)
10 0.99(0.96) 0.99(0.94) 0.98(0.93) 1(0) 0.93(0.98) 0.58(0.98) 0.32(0.99)
1 0.97(0.96) 0.97(0.95) 0.97(0.95) 1(0) 0.88(0.96) 0.58(0.98) 0.29(0.99)

(500,2) 5 0.97(0.95) 0.97(0.94) 0.97(0.94) 1(0) 0.86(0.96) 0.57(0.98) 0.31(0.99)
10 0.96(0.94) 0.97(0.93) 0.96(0.93) 1(0) 0.86(0.97) 0.61(0.98) 0.31(0.99)

Table 2: The averages of the sensitivities and specificities (in parentheses) for Example 2.

(p, ρ) σ2 SRP EN LASSO Ridge SPLS SCAD MCP
1 0.99(0.82) 0.99(0.76) 0.99(0.74) 1(0) 0.99(0.90) 0.60(0.89) 0.51(0.90)

(100,0.5) 5 0.98(0.80) 0.98(0.73) 0.97(0.65) 1(0) 0.90(0.84) 0.48(0.84) 0.41(0.89)
10 0.95(0.86) 0.96(0.80) 0.93(0.62) 1(0) 0.86(0.87) 0.44(0.85) 0.36(0.91)
1 0.99(0.89) 0.99(0.90) 0.98(0.93) 1(0) 0.94(0.73) 0.38(0.96) 0.36(0.96)

(100,0.95) 5 0.96(0.87) 0.96(0.87) 0.85(0.90) 1(0) 0.95(0.73) 0.35(0.94) 0.32(0.96)
10 0.95(0.87) 0.92(0.85) 0.75(0.88) 1(0) 0.96(0.77) 0.33(0.95) 0.30(0.96)
1 0.96(0.92) 0.97(0.89) 0.97(0.89) 1(0) 0.82(0.94) 0.63(0.97) 0.45(0.99)

(300,0.5) 5 0.91(0.91) 0.90(0.89) 0.89(0.87) 1(0) 0.75(0.94) 0.58(0.96) 0.42(0.99)
10 0.83(0.91) 0.85(0.88) 0.82(0.86) 1(0) 0.70(0.94) 0.53(0.96) 0.36(0.98)
1 0.99(0.96) 0.99(0.96) 0.97(0.97) 1(0) 0.94(0.93) 0.31(0.98) 0.27(0.99)

(300,0.95) 5 0.95(0.96) 0.94(0.95) 0.84(0.94) 1(0) 0.93(0.93) 0.30(0.98) 0.26(0.99)
10 0.96(0.96) 0.92(0.94) 0.74(0.93) 1(0) 0.95(0.94) 0.27(0.97) 0.23(0.99)
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Table 3: The averages of the sensitivities and specificities (in parentheses) for Example 3.

(p, ρ) σ2 SRP EN LASSO Ridge SPLS SCAD MCP
1 0.99(0.70) 0.99(0.65) 0.96(0.75) 1(0) 0.97(0.22) 0.71(0.87) 0.57(0.88)

(100,0.5) 10 0.93(0.80) 0.93(0.73) 0.85(0.65) 1(0) 0.97(0.12) 0.62(0.87) 0.50(0.89)
20 0.89(0.57) 0.89(0.57) 0.74(0.70) 1(0) 0.94(0.15) 0.59(0.86) 0.43(0.90)
1 0.99(0.89) 0.99(0.90) 0.98(0.93) 1(0) 0.94(0.73) 0.47(0.90) 0.17(0.97)

(100,0.9) 10 0.96(0.87) 0.96(0.87) 0.85(0.90) 1(0) 0.95(0.73) 0.24(0.93) 0.15(0.97)
20 0.95(0.87) 0.92(0.85) 0.75(0.88) 1(0) 0.96(0.77) 0.13(0.95) 0.15(0.97)
1 0.86(0.75) 0.88(0.68) 0.62(0.87) 1(0) 0.93(0.18) 0.42(0.93) 0.22(0.96)

(300,0.5) 10 0.75(0.75) 0.79(0.73) 0.58(0.87) 1(0) 0.9(0.21) 0.37(0.93) 0.19(0.96)
20 0.68(0.74) 0.71(0.74) 0.51(0.87) 1(0) 0.91(0.19) 0.35(0.92) 0.16(0.97)
1 0.87(0.66) 0.95(0.46) 0.57(0.86) 1(0) 1(0) 0.32(0.94) 0.10(0.99)

(300,0.9) 10 0.78(0.51) 0.75(0.65) 0.41(0.89) 1(0) 1(0) 0.17(0.96) 0.08(0.98)
20 0.74(0.45) 0.61(0.71) 0.27(0.90) 1(0) 1(0) 0.11(0.97) 0.08(0.98)

Table 4: The averages and standard deviations (in parentheses) of the MSE for the simulations in
Section5.1.2.

SRP EN SPLS
Example4 meanerrors(sd) 2.65(0.44) 3.23(0.54) 2.71(0.44)

p-value < 0.001 0.023
Example5 meanerrors(sd) 2.64(0.42) 3.16(0.42) 2.73(0.44)

p-value < 0.001 0.002

Table 5: The averages and standard deviations of misclassification rates (%) for the simulation in
Section 5.2. Here “Sim” is the simulation setting number.

Sim sdaBP sdaBP2 sdaBP3 RDA SDA PDA
1 rates(sd) 1.15(0.67) 3.40(4.76) 1.06(0.75) 6.02(1.98) 52(2.9) 0.71(0.49)

p-value < 0.001 0.91 < 0.001 < 0.001 1.00
2 rates(sd) 1.31(1.06) 6.39(3.48) 1.44(1.14) 1.40(0.97) 14.6(3.7) 17.5(2.8)

p-value < 0.001 0.04 0.25 < 0.001 < 0.001
3 rates(sd) 0.38(0.70) 2.0(2.4) 0.35(0.67) 0.71(0.82) 35(12) 11.3(6.9)

p-value < 0.001 0.82 < 0.001 < 0.001 < 0.001
4 rates(sd) 1.28(1.17) 2.63(2.66) 1.20(1.09) 1.24(0.77) 42(4.3) 14.5(4.6)

p-value < 0.001 0.83 0.62 < 0.001 < 0.001
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Table 6: The MSE and number of selected features of the first five drugs for the drug data

Drugname SRP EN LASSO Ridge SPLS
17-AAG MSE(sd) 1.01(0.08) 1.00(0.09) 1.14(0.10) 1.00(0.10) 0.98(0.07)

features(sd) 117.6(56.3) 193.6(128.7) 110(4.95) 54675(0) 26321(21705)
AEW541 MSE(sd) 0.33(0.03) 0.34(0.03) 0.39(0.03) 0.34(0.03) 0.34(0.03)

features(sd) 86(46) 125(88) 103(5) 54675(0) 12908(19988)
AZD0530 MSE(sd) 0.60(0.06) 0.59(0.04) 0.71(0.07) 0.58(0.04) 0.63(0.07)

features(sd) 103(52) 117(84) 106(4) 54675(0) 23033(20418)
AZD6244 MSE(sd) 1.05(0.08) 1.04(0.07) 1.18(0.11) 1.01(0.05) 0.99(0.04)

features(sd) 101(60) 184(100) 110(4) 54675(0) 16725(20690)
Erlotinib MSE(sd) 0.35(0.03) 0.36(0.03) 0.43(0.04) 0.36(0.02) 0.37(0.03)

features(sd) 92(37) 90(78) 100(3) 54675(0) 13717(22489)

Table 7: The averages and standard deviations of misclassification rates for the examples in Section
6.2.

DataSet sdaBP RDA SDA PDA
UPP 39.7(3.8) 42.6(5.1) 67(10.6) 48.8(3.9)
NKI 41.5(3.3) 43.0(3.3) 45.3(2.4) 70.8(12.9)

DLBCL-D 18.5(8.6) 30.1(9.5) 54.8(10.8) 71.4(9.1)
Handwriting 1.74(0.30) 2.06(0.38) 86(5) 19.5(4.0)
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Table 8: The averages and standard deviations (in parentheses) of MSE for Example 1. The second
column for each competing method is the mean squared error efficiency (the ratio between the
average MSEs of our method and the competingmethod.

(p, (σX)2) σ2 SRP EN LASSO Ridge SPLS SCAD MCP
1 2.05 2.69 0.76 2.66 0.77 446 0 2.40 0.85 51 0.04 94 0.02

(0.75) (1.19) (1.15) (44) (1.99) (67) (79)
(100,1) 5 10.4 12.9 0.80 13.4 0.77 449 0.02 9.5 1.09 79 0.14 121 0.09

(4.5) (5.7) (5.4) (47) (6.2) (74) (77)
10 20 24.3 0.82 27.5 0.72 450 0.04 18.2 1.09 109 0.23 146 0.17

(6.3) (7.8) (9.9) (47) (7.1) (65) (63)
1 2.74 3.49 0.78 3.41 0.80 571 0 5.39 0.51 70 0.04 103 0.03

(1.49) (1.65) (1.56) (63) (9.33) (132) (165)
(100,2) 5 12.4 15.1 0.82 15.3 0.81 581 0.02 12.5 0.99 78 0.16 152 0.08

(5.9) (7.0) (7.5) (59) (9.1) (107) (154)
10 24.2 29.8 0.81 31.8 0.76 588 0.04 23.2 1.04 77 0.3 198 0.12

(10.2) (13.7) (15.9) (61) (16.2) (103) (160)
1 6.51 9.85 0.66 9.17 0.71 561 0.01 22.8 0.28 219 0.03 258 0.03

(16.3) (25.4) (23.0) (69) (45) (69) (82)
(300,1) 5 19.6 26.3 0.74 25.7 0.76 546 0.03 24.7 0.79 197 0.09 250 0.08

(28.4) (38.7) (34.5) (51) (28.9) (58) (71)
10 28.2 38.0 0.74 40.5 0.69 558 0.05 40 0.70 221 0.14 261 0.11

(12.8) (29.6) (22.3) (60) (32.9) (72) (86)
1 10.8 14.0 0.77 12.79 0.84 681 0.02 62.4 0.17 297 0.04 390 0.03

(19.4) (25.2) (22.7) (56.2) (81.3) (127) (163)
(300,2) 5 31.1 41.4 0.75 40.2 0.77 705 0.04 65.2 0.47 339 0.1 409 0.08

(39.8) (47.3) (49) (65) (84.7) (105) (118)
10 61.7 78.0 0.79 81.4 0.75 702 0.08 97.0 0.63 328 0.2 447 0.15

(55.4) (65.3) (75) (62) (82) (106) (139)
1 10.9 16.9 0.64 17.6 0.61 603 0.01 39.0 0.27 233 0.05 298 0.04

(22.8) (34.2) (38.1) (56) (46.5) (69) (100)
(500,1) 5 22.4 33.1 0.67 34.5 0.64 602 0.03 38.1 0.58 241 0.1 282 0.09

(22.6) (33.5) (37.9) (52) (41.1) (69) (94)
10 45.6 65.3 0.69 66.6 0.68 623 0.07 63.4 0.71 251 0.18 302 0.15

(42) (59) (61) (55) (47) (92) (80)
1 34.0 41.8 0.81 40.2 0.84 759 0.05 117 0.28 349 0.09 465 0.07

(72) (84) (85) (58) (124) (110) (142)
(500,2) 5 63.2 82.8 0.76 82.4 0.76 762 0.08 164 0.38 384 0.2 478 0.15

(72.4) (87.3) (90.5) (67) (117) (113) (142)
10 90.6 114 0.79 115 0.78 767 0.11 164 0.55 386 0.24 485 0.19

(77.7) (90) (93) (68) (114) (121) (131)
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Table 9: The averages and standard deviations (in parentheses) of MSE for Example 2. The second
column for each competing method is the mean squared error efficiency.

(p, ρ) σ2 SRP EN LASSO Ridge SPLS SCAD MCP
1 2.81 3.18 0.88 3.17 0.88 89 0.03 3.58 0.78 9.05 0.31 15.1 0.18

(1.21) (1.31) (1.30) (9) (3.56) (14) (17)
(100,0.5) 5 13.2 14.9 0.88 17.1 0.77 93 0.14 17.7 0.74 26.8 0.5 34.7 0.38

(4.0) (4.3) (5.1) (10) (6.4) (13) (19)
10 24.6 26.4 0.93 33.5 0.73 98 0.25 26.3 0.93 45.5 0.56 50.4 0.5

(6.7) (6.6) (9.7) (10) (7.2) (14.7) (17.8)
1 1.65 1.85 0.89 2.04 0.80 104 0.02 3.19 0.51 7.67 0.22 9.2 0.18

(0.32) (0.38) (0.49) (14) (0.79) (2.3) (3.5)
(100,0.95) 5 7.11 7.37 0.96 8.01 0.88 109 0.06 8.91 0.79 14.8 0.5 16.8 0.43

(0.97) (1.07) (1.37) (15) (1.26) (3.9) (5.1)
10 13.3 13.9 0.95 15.4 0.86 111 0.11 15.2 0.87 23.3 0.57 25.5 0.52

(1.7) (1.8) (2.2) (14) (2.4) (6.28) (7.5)
1 9.8 11.6 0.84 11.4 0.85 109 0.08 20.6 0.47 38.3 0.25 50 0.2

(8.8) (10.2) (10.4) (9) (15.3) (22) (28)
(300,0.5) 5 27.0 30.4 0.88 31.9 0.84 111 0.24 35.3 0.76 49.7 0.55 58 0.46

(13.1) (13.9) (13.8) (9) (16.1) (17) (22)
10 41.6 45.9 0.90 49.3 0.84 119 0.34 48.5 0.85 64.7 0.64 76.2 0.54

(16.2) (17.7) (17.7) (9) (18.4) (20) (29)
1 1.72 1.95 0.88 2.14 0.80 135 0.01 4.38 0.39 11.7 0.15 16 0.1

(0.28) (0.39) (0.50) (18) (1.04) (6.6) (8.1)
(300,0.95) 5 7.37 8.03 0.91 8.88 0.82 138 0.05 9.69 0.76 18.7 0.39 23 0.32

(0.92) (1.17) (1.34) (18) (1.86) (7) (9.5)
10 13.5 15.0 0.9 18.1 0.74 145 0.09 15.2 0.89 27 0.5 33 0.4

(1.9) (2.6) (3.5) (20) (2.7) (8) (12)

Table 10: The averages and standard deviations (in parentheses) of MSE for Example 3. The
second column for each competing method is the mean squared error efficiency.

(p, ρ) σ2 SRP EN LASSO Ridge SPLS SCAD MCP
1 7.55 12.0 0.62 14.75 0.51 47 0.16 17.9 0.42 56 0.13 60 0.12

(3.91) (4.81) (8.4) (5) (3.5) (19) (18)
(100,0.5) 10 29.8 29.6 1.01 35.0 0.85 57 0.52 33.6 0.88 79 0.37 84 0.35

(5.5) (5.4) (8.0) (7) (4.4) (19) (21)
20 46.3 45.7 1.01 56.2 0.82 68 0.68 48.7 0.95 104 0.44 108 0.42

(5.8) (5.5) (8.9) (8) (5.7) (22) (23)
1 4.16 5.48 0.75 8.17 0.51 21 0.20 5.39 0.77 22 0.19 20 0.20

(0.92) (1) (2.2) (2) (0.75) (5) (4)
(100,0.9) 10 16.3 16.5 0.98 19.9 0.82 30 0.54 17.0 0.96 33 0.5 29 0.56

(1.3) (1.4) (2.23) (4) (1.4) (6) (4)
20 27.5 27.5 1 32.8 0.83 39.8 0.69 28.0 0.98 45 0.61 41 0.67

(2.6) (2.6) (3.4) (6) (2.5) (6) (5)
1 28.2 31.7 0.89 46 0.61 39.8 0.71 34.9 0.81 95 0.3 108 0.26

(6.7) (5.9) (11.3) (4.2) (4.1) (20) (23)
(300,0.5) 10 42.8 42.8 1 54.1 0.79 48.8 0.88 45.7 0.93 115 0.37 123 0.35

(6.1) (6.0) (10.9) (4.1) (4.6) (25) (23)
20 57.9 57.2 1.01 69.8 0.83 58.7 0.99 57.5 1.01 126 0.50 147 0.39

(7.4) (6.5) (9.3) (5.4) (4.5) (26) (26)
1 7.12 8.22 0.87 13.8 0.52 10.4 0.68 7.91 0.90 22.4 0.32 22.6 0.32

(1.06) (1.05) (3.0) (1.2) (0.81) (5.2) (4.3)
(300,0.9) 10 18.1 18.1 1 22.4 0.81 19.6 0.92 18.2 0.99 33 0.54 31 0.58

(1.4) (1.5) (2.5) (1.8) (1.27) (5.6) (4.2)
20 29.0 29.4 0.99 35.0 0.83 29.7 0.98 28.9 1 47.3 0.61 45.1 0.64

(2.5) (2.4) (3.1) (2.7) (2.2) (7.2) (7.4)
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Figure 1: In each plot, for the sameλ, the black curves are the contours:αTXTXα + τ‖α‖2λ = 1,
for τ = 0,1,10,100, whereXTX has diagonal elements 1 and 3 and off diagonal element 0.5. The
blue line is the direction ofyTX and the red lines are the solutionsα̃ to (3.1) for the corresponding
τ andλ.
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Figure 2: The projection (or the scores) of one test data set for sdaBP, sdaBP2, sdaBP3, PDA in
Simulation 3 in Section 5.2.
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Figure 3: The projection (or the scores) of one test data set for sdaBP, sdaBP2, sdaBP3, PDA in
Simulation 1 in Section 5.2.
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