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Abstract

Recent years have seen active developments of various penalized regression methods, such as
LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and
length of the regression cfieients are determined simultaneously. Due to the introduction of
penalties, the length of the estimates can be far from being optimal for accurate predictions. We
introduce a new framework, regression by projection, and its sparse version to analyze high di-
mensional data. The unique nature of this framework is that the directions of the regression co-
efficients are inferred first, and the lengths and the tuning parameters are determined by a cross
validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for
simultaneous model selection consistency and parameter estimation consistency of our method in
high dimension. This new framework is then generalized such that it can be applied to principal
components analysis, partial least squares and canonical correlation analysis. We also adapt this
framework for discriminant analysis. Compared to the existing methods, where there is relatively
little control of the dependency among the sparse components, our method can control the rela-
tionships among the components. We presdintient algorithms and related theory for solving

the sparse regression by projection problem. Based on extensive simulations and real data analy-
sis, we demonstrate that our method achieves good predictive performance and variable selection
in the regression setting, and the ability to control relationships between the sparse components
leads to more accurate classification. In supplemental materials available online, the details of the
algorithms and theoretical proofs, and R codes for all simulation studies are provided.

Some Key Words: Discriminant analysis; Sparse discriminant analysis; Sparse regression by pro-

jection; Zero within-class and between-class correlations.
Short title: Sparse Regression by Projection
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1 Introduction

It is well recognized that classical multivariate statistical methods hdtieudiy in dealing with
high-dimensional data. For example, ordinary least squares (OLS) has poor prediction accuracy as
well as problems of interpretation for high dimensional data. Various penalization techniques have
been proposed to improve OLS, such as ridge regression (Hoerl and Kennard, 1970), LASSO (Tib-
shirani, 1996), elastic net (Zou and Hastie, 2005), supervised principal componentst(Bgir
2006), sparse partial least squares regression (Chun and Keles, 2010), smoothly clipped abso-
lute deviation (SCAD) (Fan and Li, 2001), minimax concave penalty (MCP) (Zhang, 2010), and
many others. Similar to regression, many standard dimension reduction methods, such as princi-
pal components analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA),
and Fisher’s discriminant analysis for classification also perform poorly in prediction and feature
selection, and even fail, in high-dimensional settings. A common feature of these dimension re-
duction methods is that they all solve eigenvalue or generalized eigenvalue problems, where the
eigenvectors correspond toffdirent components and there is no correlation or within-class and
between-class correlation amongfeient components. Similar to regression, regularization tech-
niques have been proposed to augment these methods to analyze high-dimensional data. However,
one major limitation of these methods is that they are not able to control the relationships among
the components, due to inherent limitations in these algorithms. As a result, the components thus
constructed may be strongly correlated, which ciach both the interpretation of these compo-
nents and prediction accuracy.

In this paper, we introduce a new framewor&gression by projectignwhich is equivalent
to OLS in the classic regression problem. Based on this new framework, we introduce a sparse
version for high dimensional data. The unique feature of our new sparse regression approach
is that the direction of the estimated ¢deent vector is determined first and then its lengths
and the tuning parameters are determined by a cross validation procedure to achieve the largest
prediction accuracy. The LASSO and elastic net determine the direction and the length of the

estimate simultaneously. We consider the well-known elastic net regression method, which solves
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the penalized least squares problem

maxlly - XAl + [ {(1 - @)/ 2HIBI + allBll] (1.1)

whered > 0 and 0< « < 1 are tuning parameters. Here we use the parameterization adopted in
the R packagedimnet” for the elastic net and denote the estimatg?@@. Typically X,EEN is not

the projection ofy along the direction OKEEN. Whena # 0 andaA is large ord # 0 anda is
Iarge,X:BEN is far from the projection oy along the direction OXEEN, which may lead to large

bias in the estimate. We develop a regularized versparse regression by projectioander the

new framework, to address this limitation in LASSO and elastic net. It has been proposed (for
example, Cho and Fryzlewicz (2012)) that variable selection methods are used to identify the set
of relevant variables,the final model is constructed using only the selected variables and the OLS.
Hence, all the cd&cients of the selected variables are estimated in a separate step other than the
variable selection step. The performance of the final model will heavily rely on variable selection.
Our method is dterent from this approach, in that, the subset of variables and the direction of
the estimate are identified simultaneously, and only the length of the estimate (a scaling factor)
is determined in a separate step. Zhao and Yu (2006) proved the model consistency for Lasso.
Under the similar setting, we prove the simultaneous consistency of model selection and parameter
estimation of our method.

In addition to regression, sparse regression by projection is also generalized to develop sparse
versions of PCA, PLS, CCA, and discriminant analysis. In addition to achieving sparse compo-
nents, the relationships (i.e. dependency) among the components can be controlled in our method,
a distinct advantage over existing methods where the sparse components can be highly correlated.
For example, in sparse PCA, CCA and PLS, we can control the components to be either orthogonal
or uncorrelated; while in sparse discriminant analysis, we can achieve either zero within-class or
zero between-class correlations, or both. In this paper, we focus on sparse discriminant analysis.
We show that the control of within-class and between-class correlations among the sparse compo-
nents can improve prediction accuracy in some situations. We develdfi@erg algorithm and

related theory for solving the sparse regression by projection problems. For the regression setting,

ACCEPTED MANUSCRIPT
2



Downloaded by [Texas A&M University Libraries] at 11:24 09 July 2014

ACCEPTED MANUSCRIPT

numerical examples show that the new algorithm is faster than LARS and comparable to the Coor-

dinate Descent algorithm. When the new framework is compared with existing regression methods

for high-dimensional data through extensive simulations and application to empirical data sets, the

results show that our methods achieve good predictive performance and variable selection. In the
classification setting, our results suggest that the control of relationships between the components
leads to more accurate classification.

The rest of the paper is organized as follows. In Section 2, we introduce regression by pro-
jection and its connection to discriminant analysis. Section 3 contains the development of sparse
regression by projection. Section 4 discusses our discriminant analysis method. Simulation studies
and case studies are presented in Sections 5 and 6, respectively. Section 7 is a short discussion.
Algorithmic details, the related theorems and all proofs are provided in the online supplementary

materials.

2 Regression by projection

2.1 Regression by projection

Let us consider the classical regression. Suppose that the data seblbservations withp pre-
dictors. Lety = (y1,--- ,Yn)" be the response vector and Yebe then x p design matrix. In OLS,
the response is fitted by the linear functiot € yx)ﬁ, where the coicient vectorﬁ minimizes
Ity — py) — (X = ux)BlI5, uy andux are the means of and X, respectively, and - ||, is the L,
norm. Equivalently, the OLS estimafbcan be obtained by the following two-step method. We

first obtain the direction g8 by solving
max(y - ) (X = ux)e, subjectto @' (X — ux) (X — ux)e < 1, (2.1)

where we assume thaX (- ux)"(X — ux) is full rank for the moment. Le& be a solution to
(2.1). Theng = [(y - ) "(X — mx)a/a@’ (X — ux)"(X - ux)@| @, i.e., X - ux)B is the orthogonal
projection of § — u,) along the direction of X — ux)a. Because solving (2.1) is equivalent to
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finding the linear combination of the columns &f ¢ ux) which has the largest projection in the
direction of { — ,) among all the linear combinations satisfying the constraint in (2.1), we call
this methodregression by projectianWe will generalize this concept in the following. Without
loss of generality, we will assume that the response is centered and the column mxastual
zero, that isux = 0 anduy, = 0, except in Section 3.2 where the whole data set will be partitioned
into different subsets and the means of responses and predictorféoermt subsets will not be

the same and cannot be equal to zero simultaneously. Y¥her0 andyuy, = 0, (2.1) becomes

maxy'Xe, subjectto o'X'Xa <1, (2.2)

a@€RP

2.2 Connection between regression by projection and the discriminant anal-
ysis

Several important statistical methods, including PCA, PLS, and CCA for dimension reduction
and Fisher’s discriminant analysis for classification, have a common feature: they all solve eigen-
value or generalized eigenvalue problems and the eigenvectors correspdiremticomponents.

There are connections between these methods and the regression by projection discussed above. In
this paper, we will focus on discriminant analysis although it is straightforward to apply the idea

to other methods. As a classification method, Fisher’'s discriminant analysis projects the original
variables to a subspace with dimension less than the number of classes such that the between-class
variance is maximized relative to the within-class variance. Hence, this method finds the projection
subspace such thatftérent classes can be separated as much as possible. Suppose that the data
set has observations withp predictors and leX be then x p data matrix. LeK be the number

of classes an® be ann x K matrix with Y; equal to 1 if thei™ observation is in thé&" class

and equal to 0 otherwise. Then the between-class and the within-class covariance matrices can be
written asZy = nIXTY(YTY)YTX andX, = n"IXTX - X, respectively. Fisher's discriminant

analysis method sequentially finds linear combinati¥ns, - - - , Xak_1, that span the projection
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space or the score space, by solving

maxa'Ipa, subjectto @'y <l a'Zya; =0, 1<j<Kk (2.3)

a€RP

where 1< k < K — 1. Assume thak,, is full rank for the moment, since (2.3) may not have
a solution otherwise. Then each observation is assigned to the class whose class mean is clos-
est to the corresponding point in the projection space. With this appreach; , ax_; satisfy
botha Xy = 0 andajZwax = 0, for all j # k. Consequently, the within-class covariance matrix
(1, -+ ,ak-1)"Zu(as, - - ,ak_1) and between-class covariance mataix ¢ - - , ax_1) " Zp(as, - - - , ak_1)
among the component¥q;, - - - , Xak_1, are both diagonal matrices. In other words, there are no
within-class and between-class correlations among these components. If there dferaoadis
among the magnitudes of the diagonal elements in the between-class covariance matrix, then in the
projection space, the class means will not be concentrated along particular directions. On the other
hand, by (2.3), the within-class covariance mattix,{- - , ak_1)"Zw(as, - - - , ax_1) is equal to the
identity matrix, which implies that in the projection space, the data points are isotropically dis-
tributed about the class means. Hence, the conditio%, = 0 ande;Zyax = 0, for all j # kK,
make it easier to separate the classes, which is illustrated by Figures 2 and 3 in our simulation
studies. Hence, we want to keep these properties in our new method for sparse LDA.

Equation (2.3) is a generalized eigenvalue problem. Consider the well-known power method
for solving generalized eigenvalue problems. For any k < K — 1, an initial vectore© with

,a© £ 0 is selected and a sequene&), o, - - -, is iteratively calculated, wheke" solves

maxa' ™) Ly, subjectto ¢'T,a<l @'EL.,e;=0, 1<j<k (2.4)

acRP

Then the sequence convergesi@ where we assume that the eigenvalues involved have multi-
plicity one. It can be seen that both (2.2) (the key step of regression by projection) and (2.4) are

special cases of the problem
maxc'u, subjectto u'Cu<1, Du=0, (2.5)
u

wherec is a nonzero vectoC is a nonnegative definite symmetric matrix adds a matrix. In
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fact,u = @, c = y"™X,C = XX andD = 0in (2.2). For (2.4)u = a, ¢ = LpaY, C = X, and

D = (Zway, -, Zw_1)'. Without loss of generality, we assume teat O,u € RP, Cisapx p
matrix with rankn < pandD is ad; x p matrix. We call (2.5yegression by projection with linear
constraints Hence, solving discriminant analysis problems is equivalent to iteratively solving the

problem of regression by projection with linear constraints.

3 Sparse regression by projection

3.1 Sparse regression by projection

In this section, we develop a regularized regression method based on regression by projection. In
our approach, the direction of the estimator is determined by a regularized optimization problem
and its length will be estimated by projecting the response variable along the inferred direction.

Consider a sparse version of (2.2). The directwonf our estimate solves

mﬂ%gyTXa, subjectto a'X"Xa + 1le|? < 1, (3.1)

wherella|? = (1 - A)llel3 + Allel3, and bothr > 0 and 0< 1 < 1 are tuning parameters. The
introduction oﬂ|a/||§ in the constraint aims to overcome potential multicollinearity problems. When
XTX is not full rank, (for example, when < p), the solution to (2.2) does not exist. Théerm in

the constraint of (3.1) leads to sparse solutions. qu@instead of|a||; as in the elastic net so

that the solution to

m%g(yTXa/, subjectto a@'X"Xa + || < t,
ae

wheret is any positive number, ffers from the solution to (3.1) only by a multiplicative constant

and thus the two solution vectors have the same directions. Hence, the sparsity penalty is actually
imposed on the direction of the dfieient vector. Botll andr can control the sparsity @f. When

7> 0 and 0< A < 1, the feasible region is a strictly convex set, and hence the solution to (3.1) is

unique. Figure 1 provides some insight into (3.1) for a two-dimensional case. Waedr are
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large, the second coordinate@fs equal to zero. Hence, it can be anticipated that, in geneial,

sparse for large values ofandA.

A penalized version of(3.1). Although we formulate our method as a constrained optimization
problem (3.1), it has the following penalized version (3.2). The solutions to (3.1) and (8€2) di
only by a scaling factor. However, the essentidlletence is that in (3.1), we do not determine the

length, whereas both the direction and length are determined in (3.2).

Theorem 3.1. The optimization probler(8.1) has the following penalized version,

minlly - XBI5 + 7 |(1 - DIBIE + AIBIE] (32)

wherer and A are the same parameters as(i1). The solutions t¢3.1) and (3.2) differ only by
a scaling factor. Specifically, let* be the solution t@3.1), then the solution t¢3.2)is

yTXa*
IXa |13 + rlle|;

g = @ (3.3)

The major diference between (3.2) and the elastic-net problem is that the sgyamedn
is used in (3.2) instead of tHe norm itself. This diference makes (3.2) (and (3.1)) enjoy scale
invariant properties which are not possessed by the elastic-net. Specifically,

(a). If B* is the solution to (3.2), thegB” is the solution to (3.2) witly replaced byy, where
c is any positive scaling constant.

(b). If g is the solution to (3.2), the@*/c is the solution to

maxly - eXBIZ + cr | (1~ DIBIE + UBIE] (3.4)

wherec is any positive scaling constant.
Hence, scaling does not fect the direction of the estimate of the @bgents. When we scale
X, we just need to make scaled by the same amount, then the direction of the estimate of the
codficients is unchanged. However, the elastic-net does not have this property.yMésraled,
the direction of the estimate of the dbeients is changed.
We use (3.1) instead of the penalized version (3.2) for two reasons. First, we actually consider

a much more general optimization problem which is the sparse version of the (2.5). As we have
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seen in Section 2.2, many multivariate methods can be connected to (2.5). Hence, based on our
algorithms, we can propose sparse versions for various multivariate methods including the sparse
regression problems (3.1) and (3.2). Second, it can be seen from (3.3) that, when the tuning pa-
rameterr is large, the length of the solutigsi to (3.2) is quite small and can be far away from
the optimal one, which can lead to large prediction errors. Instead, in (3.2), we only determine the
direction of the estimate and then the length is chosen to minimize the prediction errors. In addi-
tion, the tuning parametersandA need to be chosen to minimize the prediction errors. Hence, we
design a cross-validation procedure to choose the tuning parameters and the length of the estimate
simultaneously. The details are described in Section 3.2.

By Theorem 3.1, in the special case. bt 0, given the tuning parameter the solution of
(3.1) has the same direction as ridge regression but the lengths are usftialigndi Moreover,
since we have dlierent cross-validation procedure from ridge regression, the seleatad be

quite diferent.

3.2 Choices of tuning parameters and determination of the length of the
estimate

We use cross-validation (CV) to choose the tuning parameters. In our method, the length of the
estimate is not determined by the optimization problem itself. Instead, it is viewed as a special
tuning parameter and will be chosen to maximize prediction accuracy. To measure the prediction
accuracy of the models corresponding tfietient values oft andr, we must consider thefect of

the length of the estimate. Given a pairidndr, we choose the length to minimize the prediction
mean squared error and hence to chobaadr. Our cross-validation procedure idldirent from

that of the Lasso and the elastic-net. Roughly speaking, to choose the tuning parameters

and 0< A < 1, we randomly split the entire data sgt X) into a “calculation set”, Ycai, Xcal),

and an “evaluation set”yfva, Xeva). FOr each pair+, 1), we first determine the directiam(r, 1)

of B using the calculation set. Then we project the centgggglonto the direction of the centered

Xeva(7, 1), and obtain the residual vector, which is th&elience between the centengdiq and
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the projection. Then we compute the mean squared error. Another impotftanexdce between

our CV procedure and the usual CV procedure is that we do not split the entire data set into 10
subsets as in standard 10-fold CV procedure where, in each repeat, one subset is selected as the
validation set and all the other observations as the training set. The main reason is that in our
approach, the length is not determined by the training set. Hence, in order to more accurately
estimate the prediction errors in the validation set, we decrease the size of the training set and
increase the size of the validation set.

Specifically, we repeat the following procedure 10 times. Initheepeat, 1< i < 10, we
randomly split the whole data set into a calculation set and an evaluation set, where the evaluation
set has one third of all the observations. Ji§#” denote the matrix with the same sizeXag and
the values in each column equal to the mean of the corresponding coluan.dfet u Ca') be the
vector with each value equal to the mearygf. For any pair £, 1), the dlrect|on,a(r, A), is the

solution to

Max  (Vear—fy ") (Xeal = Hiy ) (3.5)

subjectto @' (Xca— iy ) (Xea — Hy D + Tl < 1.

Once the direction is determined, we projegt— A(C‘a') along the direction ofXeya— px I))a'(T A).

The projection isXeva — 25" )B(z, 1), where

(yeval - A(CEU))T(XevaI A(Cd))a'(?' /l)

B(r,2) = = a(x, ). (3.6)
a (7, (Keval — /\(ca ))T(Xeval - A(wl))a'(T A)
Then we calculate the mean squared error,
MS E(r, 4,1) = [Yeva = 1y ™ = (Xevar = 1 IB(, D5 (3.7)

We choose the pairrg, 1o) which minimizes 10 Y% MS Hr, 4,i). Then the directiofa of the

final estimate solves

max (y - )" (X - ). subjectto e (X —)"(X — e + Tolled}, < 1.
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whereuy andy, are the mean matrix and the mean vector of the whole dat4 aetly, respec-

tively. The final estimatg is

— Y- X -pa _
B=—= 7 ——q.
@ (X — ) (X — )

It is easy to see thab((—ﬁx)ﬁ is the projection ofy —u, along the direction ofX — iy )a.

3.3 Simultaneous model selection consistency and parameter estimation
consistency in high dimension

Zhao and Yu (2006) proved that the Lasso is model consistent. We will prove that our method
is both model selection consistent and parameter estimation consistent simultaneously under the

similar setting. Assume that we have a sequence of linear regression models
y'=X"g"+&", (3.8)

wheres" = (£],---,&l)" is a vector of i.i.d. standard normal variablg8,is the n-dimensional
response vector and" is then x p data matrix. We will consider the situation where batand
p go to infinity. Suppose that the firgtcoordinates of8" are nonzero and the others are zero.
Let g" = (B™T,B™")T, whereB] andB) = 0 are the firstg and the lasp - q coordinates of",
respectively.

Suppose thaﬁ1 = @T,@T)T is the solution to (3.2) with the values of the tuning parameters
equal to1, andry, whereﬁ? andﬁAQ are the firsgy and the lasp — q coordinates of?‘, respectively.

Then our estimate is

MTyngn -
g WIXB g (3.9)
ﬁnTanxnﬁn

that is,X"y" is the projection of" along the direction of(”/?‘.
We say,é\n has the same sign # if each coordinate ofi\? has the same sign as the corre-

sponding coordinate ¢f; andﬁ’z‘ =0. We say,[fn is model selection consistent if with probability
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converging to 1, it has the same signgdslf ||B7‘ - B"l>, — 0in probability, we say?‘ is parameter
estimation consistent. We will prove the simultaneous model selection consistency and parameter
estimation consistency for boff’n‘ andy".

We consider a setting essentially the same as in Zhao and Yu (20064 ke€X', X7), where
X7 andX} are the submatrices correspondingfoandpg). LetC" = X""X"/n, C], = X™TX1/n
andC}), = X™TX!/n. Assume that there exist constants @, < ¢, <1,0<¢c; < % < 2,¢3> 0,

positive M;, M, and a positive integek such that the following conditions hold,
Condition 1. 1. The largest singular values Gf; are less than Q).

2. All the eigenvalues &&" are less than M and all the eigenvalues @, are greater than
Mo.
3. N2 MiNeicq B]] > M, 18511z ~ n%, E[6%] < o0, G = O(n), py < O(n").

Theorem 3.2. Under the Condition 1, if we choosg = n* and A, = n®, where—c < d; < o
and ¢ < 0 are two constants satisfying

1 1
_CO<d2< —C—21, §+C4<d1+maX(QC1+d2)+C3< —;Cz , (310)
then we have
P(B?‘ has the same sign # ) > 1- O(n™*¥), (3.11)

P({fn has the same sign & ) >1-— O(n—ék),

wheres is a positive constant only depending gn~<c4 and d ~ d,. Moreover, botrﬁ‘ andy"
are consistent estimates gf. That is,

1B =B, — 0, [y - Bl — O, (3.12)

in probability as n— co.
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4 Sparse discriminant analysis

4.1 Motivation

Although Fisher’s discriminant analysis performs well in low-dimensional settings, it faces major
problems for high-dimensional data. The within-class covariance maiixis singular in (2.3)

when the sample size is smaller than the dimension, and hence there is no solution to (2.3). Even
in the case wherg is close ton andX,, is not singular, the resulting classifier will have large vari-

ance and poor performance. To address these problems, regularized discriminant analysis methods
have been proposed, including those described in Friedman (1989), KrzamdwasKL995), Du-

doit et al. (2001), Bickel and Levina (2004), Gt al. (2007), Xuet al. (2009), Tibshiranet al.

(2002), Witten and Tibshirani (2011), Clemmenssral. (2011), Shacet al. (2011) and many

others. However, when sparseness penalties are imposed, existing methods cannot simultaneously
achieve sparsity and zero within-class and between-class correlations among the components. As
discussed in Section 2.2, the lack of correlation property controls the shapes of the distributions
of the class means and the observations about the mean in the projection space or the score space,
and makes the separation of classes easier. Although one can use orthogonalization to achieve this
property, the components thus obtained do not achieve the optimal between-class variances, i.e.,
the maximum between-class variances subject to the corresponding constraints. In this section,
we propose a new sparse discriminant analysis method based on the relationship between regres-
sion by projection and discriminant analysis. This method leads to both sparse and uncorrelated

components.
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4.2 Sparse discriminant analysis

We propose the following sequential method to find the linear combina¥anis: - -, Xax_1. For

any 1< k < K -1, the coéficientay solves

max o' Xpa, (4.1)
acRP

subjectto o'Z,a + Tllallﬁ <1, aTZbaj =0, a'TZWaj =0, j<k

Becauser Ty + llal? = a"{Zy, + 7(1 — )l}a + talel?, wherel is the p-dimensional identity

matrix, our method resolves the singularity problem and achieves sparse components. The con-
straintse'Xpe; = 0 ande'X,e; = 0 guarantee that there is no within-class and between-class
correlations, respectively.

We propose the following iterative algorithm to solve (4.1).
Algorithm 4.1. 1. Choose an initial vectar© with £,a© # 0.

2. lteratively compute a sequene&), a®,--- ,a®, ... until convergence as follows: for any

i > 1, computex™ by solving
(-1I\T
mgg():ba ) a,
subjectto o'X,a + Tllallﬁ <1, a'TZbaj =0, aTZWaj =0, j<k (4.2)

Both the key step (4.2) of Algorithm.Z1 and the sparse regression by projection problem (3.1)

are special cases of the optimization problem
ml?chu, subjectto u'Cu+7|uli<1, Du=0. (4.3)
In fact, lettingu = «, ¢ = Zye(~Y, C = X, and
D= (Zpay, -, Zp@y 1, Zwy, " -, 2‘twa’k—l)-r

in (4.3), we obtain (4.2). Since (4.3) is a sparse version of (2.5), we cgllitse regression by

projection with linear constraintsWe will propose éicient algorithms to solve (4.3) in Section 7.
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Two possible modifications of our method are worth investigating. First, remove the within-
class constrainta"£,a; = 0 in (4.1), so that only the between-class correlations are zeros. Sec-
ond, remove the constraintg'Epa; = 0, so that only the within-class correlations are zeros
among the components. Algorithm 4.1 can be applied to these two modifications with changes of
the matrixD in (4.3). We will compare the performance of our method with the two modifications

in simulation studies.

4.3 Choices of tuning parameters and the number of components

We next propose a cross-validation method to choose the tuning parametails. As for the
number of components, although it can also be chosen by cross-validation or other methods, we
will just fix it to be K — 1, the largest one of possible numbers, for two reasons: (a) in almost all
our studies, the best choicels— 1; (b) since the number of components is a discrete parameter,
its selection by cross-validation may lead to large variances of the test errors.

To chooser and A, we repeat the following procedure 10 times. In tHegepeat, where k
i <10, the data set is randomly split into a training set and a validation set. The validation set has
one third of all observations: the proportion of the observations assigned to the validation set has
to be reduced if the total sample size is small. Theffomentsa;, 1 < i < K -1, are calculated
based on the training data and the classification errors are calculated based on the validation data
for each pair £, 1) in a grid. Then the mean errors are calculated for the ten repeats. The pair of
the parameters minimizing the mean error are chosen. The final estimates of fil@esde are
determined by the whole data and the selected parameters. If there are ties in the minimum mean
errors between dierent ¢, 1), we choose the smallest If for the selected, there is more than

oneA corresponding to the minimum error, we choose the smallest

ACCEPTED MANUSCRIPT
14



Downloaded by [Texas A&M University Libraries] at 11:24 09 July 2014

ACCEPTED MANUSCRIPT

5 Simulation studies

5.1 Sparse regression by projection

In this subsection, we compare our regression method, denoted by SRP, with several sparse re-
gression methods using publicly available software: ridge regression (Ridge) (Hoerl and Kennard,
1970), LASSO (Tibshirani, 1996), elastic net (EN) (Zou and Hastie, 2005), and sparse partial
least squares regression (SPLS) (Chun and Keles, 2010), the smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001), penalty and the minimax concave penalty (MCP) (Zhang, 2010). The
first three methods are implemented in the R packagreriet”, the SPLS in pls”, the last two in
“conreg”. We will consider two sets of simulations. The first one has similar settings as those in
Zou and Hastie (2005) and the other one as those in Chun and Keles (2010) aateB##006).

To compare variable selection, we consider the sensitivity and specificity defined by

TN

SenS|t|V|ty: m,

l, specificity=
TP+ FN

where TP is the number of the variables with# 0 and its estimatg; # 0, i.e., the number of
the true features identified, Also, FN is the number of the variablesgyvith 0 and,’B\i =0,ie.,
the number of the true features not identified, TN is the number of the variableg;witl® and

B, = 0, and FP is the number of the variables with- 0 andg; # 0.

5.1.1 First set of simulation studies

Data are simulated from the true modgl:= X8 + o€, € ~ Normal(Q 1) with three examples
discussed below. In each example, we compare the performance of these methoftferimtdi
numbers of variables andftBrent values of~. For each setting in any example, we simulate 100
independent data sets. Each data set has 500 independent observations which is split into a training
set with 50 observations, a validation set with 50 observations and a test set with 400 observations.
Models are fitted to the training data, tuning parameters are selected based on the validation data

and the mean-squared error is calculated based on the test data. Here are the details of the three

ACCEPTED MANUSCRIPT
15



Downloaded by [Texas A&M University Libraries] at 11:24 09 July 2014

ACCEPTED MANUSCRIPT

examples.

Example 1.8 =(3,---,3,0,---,0) andX is generated as follows:

15 p-15
Xi=2Z1+07°€", € ~Normal(Ql), Z; ~Normal(Ql), i=1,---,5
Xi=Z,+07'€", € ~Normal(Ql), Z,~Normal(Ql), i=6,---,10,
Xi=Zz3+ 0", € ~Normal(Ql), Zz~Normal(Ql), i=11---,15

whereZ;, 1< j < 3,€*, 1 <i < 15, andx; ~ Normal(Q (cX)?), 16 < i < p, are independent. We

considerp = 100,300,500, ¢*)? = 1,2, ando? = 1,5, 10, respectively.

Example 2. =(3,2,15,0,0,3,2,15,0,0,3,2,15,0,0,3,2,15,0,0,3,2,15,0,0,0,--- ,0) and
25 p-25
X is generated from a multinormal distribution with cav;) = p'~Il. We consideip = 100, 300,

p =0.50,0.95 ando? = 1,5, 10, respectively.

Example 3.8 = (2,2,---,2,0,---,0) and X is generated from a multinormal distribution with

20 p-20
var(x)) = 1 andcoVx;,x;) = p, i # j. We considemp = 100,300,p = 0.50,0.90 ando? =

1,10, 20, respectively.

In our method, SRP, the parameters are selected from the grig¢-0f01, 0.05, 0.1, 0.5, 1, 5,
10, 50, 100, 500 and = 0.1,0.2,---,0.9. For elastic net, see (1.1), the parameters are selected
from the grid ofA =0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500 an& 0.1,0.2,---,0.9. For
LASSO, the special case of (1.1) with= 1, and Ridge regression, the special case of (1.1) with
a = 0, the parameters are selected from the grid e0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500.
We choose two parameters<On < 1 andK (the number of components) for SPLS from the grid
ofp =01,0.2,---,09andK =1,2,---,10. For SCAD and MCP, we use the default setting of
the R function where the tuning parameter is selected from one hundred values.

The averages and standard deviations of the test error, sensitivity and the specificity over the
100 independent data sets are listed in the following tables. Table 8 summarizes the averages

and standard deviations (in parentheses) of the test errors. The second column for each competing

ACCEPTED MANUSCRIPT
16



Downloaded by [Texas A&M University Libraries] at 11:24 09 July 2014

ACCEPTED MANUSCRIPT

method is the mean squared errfit@ency of the competing method (the ratio between the average
MSEs of our method and the competing method). Table 1 gives the sensitivities and the specificities
(in parenthesis) for Example 1. When both the number of variables and the noise are small, our
method and SPLS have comparable prediction performance and are better than the other methods.
In these scenarios, all the methods except SCAD and MCP identify almost all true features, but
SPLS has a better specificity. When the number of variables or the noise are large, our method has
the smallest prediction errors, which is statistically significant by the paired t-test. For example,
in the case ob = 300,0* = 1,0 = 1, for the alternative hypothesis: “our method has a smaller
expectation of MSE”, the p-values ar8% 10713 (EN), 6.5 x 10° (LASSO), 22 x 10718 (Ridge),
and 49 x 10°% (SPLS), respectively. In these scenarios, SPLS has the lower sensitivity and higher
specificity, that is, it tends to choose a model with both fewer true signals and fewer noisy features.
It seems that the prediction accuracy of both SCAD and MCP is very sensitive to feature selection.
For example, consider the scenario corresponding the first line of Table 8. The average MSE of
those simulation runs where all the 15 true features are selected was 1.9, but the average MSE of
those runs where 14 true features were identified is 53.5. For MCP, the two averages were 1.48
and 60.3, respectively.

The results for Example 2 are shown in Tables 9 and 2. Tables 10 and 3 give results for Example

3. Our method has good prediction performance in all the scenarios.

5.1.2 Second set of simulations

We use the same simulation settings as those in Chun and Keles (2010) ared &8a{2006).
In both simulated data setp, = 5000 andn = 100. We simulate data from the general model
y = XB + €, € ~ Normal(Q 1.5%), whereg is a p vector withB; = 1/25 for 1 < j < 50 and 0 for

51 < j < p. The underlying data generation f4ris different between the two simulated data sets.

Example 4. Two hidden componentd; andH, are defined as followd:,; equals 3 for 1< j < 50

and 4 for 51< j < 100 andH,; equals 3.5 for 1< j < 100. The columns oK are generated by
Xi =H;+ € forl <i<50andX; = Hy+ € for 51 < i < p, wheree* are independent and

identically distributed random vectors whose elements are independent standard normal random
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variables.

Example 5. Five hidden componentd, - - - , Hs defined as followsHq; = 3I(j < 50)+4I(j > 50),
Hyj = 3.5 + 1.5I(uy; < 0.4), Hgj = 3.5+ 0.51(up; < 0.7), Haj = 35— 1.51(u3j < 0.7), Hsj = 3.5,
whereu,j, Uyj andug; are independent random variables uniformly distributed ja)@ndl is the
indicator function. The columns of are generated b); = Hy + eix forn_, +1 <i < ng, where

k=1,---,5and fo,-- ,ns) = (0,50, 100 200 300, p).

We compare the prediction performance of our method with elastic net and SPLS. In our
method, we use cross-validation to select the tuning parameters as described in Section 3.2. For the
elastic net and SPLS, the ten-fold cross-validation methods provided in the corresponding pack-
ages are used to select the tuning parameters. The results are summarized in Table 4 showing the
mean errors and the standard deviations (in parentheses) of 100 simulations for each setting. The
p-values of the paired t-tests for the comparison of our method and each of the other two meth-
ods are also calculated. For Example 4, our method and SPLS have almost the same prediction

accuracy, whereas our method is better in Example 5.

5.2 Sparse discriminant analysis

The goal of this simulation study is to show that imposing the sparsity penalty and the constraints

of no within-class and between-class correlations among the components simultaneously can im-
prove classification. We compare the prediction performances of the following regularized dis-
criminant analysis methods: our method (denoted by sdaBP), the modification of our method
without the constraint on between-class correlations (sdaBP2), the modification of our method
without the constraint on within-class correlations (sdaBP3), RDA (€wal. (2007), R pack-

age ‘rda”), PDA (Witten and Tibshirani (2011),denalizedLDA”), and SDA (Clemmenseat al.

(2011), “sparseLDA”). Four simulation models are considered. In each simulation, 50 independent
data sets are simulated each of which has 1500 observations and three classes. Each observation is
randomly assigned to one class and then the values of the covariates are generated from the model.

Then the observations are randomly split into the training set with 150 observations and the test
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set with 1350 observations. Each simulation consists of measurements on 500 features. For the
first three methods, we use the cross-validation methods in Section 4.3 to select the parameters.
For RDA and PDA, the cross-validation methods in the corresponding packages are used. Since
there is no method of parameter selection availablepafseLDA” and only one parameter can be
tuned there, we use ten-fold cross-validation in the grid of 104,102, 1, 10?, 10, to choose

the parameter.

(a). Simulation 1: There is no overlap between the features fdfedent classes andftkrent
variables are independent. Specifically, xgtbe thei' observation on thg" variable. If
thei'™" observation belongs to claké= 1,2, 3), thenx;; ~ Normalg;, o). The mean vector
of classk, py = (uia, -+ pkp) With pgj = 1if 1 < j < 10,0 = 1if11 < j < 30,35 = 1
if 31 < j <60, anduy; = 0 otherwise. Finallyg; is a random number generated from the

uniform distribution in (05, 2).

(b). Simulation 2:There is no overlap between the features féliedent classes, but the variables
are correlated. If thé" observation is in clask(= 1,2, 3), thenxi; = uj + Zy + g if
1<)<20,% =mj+2Zii+2Za+6if21 <] <30,%j =uxj+2Zoi +6if31 <j <50
and x; = u + &; otherwise, whereZ;; ~ Normal(Q1), Zy ~ Normal(Q1) ande; ~
Normal(Q 0.8?) are independeni;; ~ Normal(1 0.8?) if 1 < j < 20, up; ~ Normal(4 0.8?)
if 21 < j < 30,u3; ~ Normal(1,0.8°) if 31 < j < 50 anduy; = 0 otherwise.

(c). Simulation 3: There are overlaps between the features félietent classes and the vari-
ables are correlated. The vector ~ Normal(,, X) if observationi is in classk, where
the covariance structure is block diagonal, with five blocks each of dimensiox 100.
The blocks havej( j’) element 06", Also, us; ~ Normal(1 1), up; ~ Normal(2 1) and
usj ~ Normal(31)if 1 < j <10 or 101< j < 110 anduy; = O otherwise.

(d). Simulation 4:In the first three simulations, observations in all the classes have the same
distributions about the class means. Aeient situation is considered here. If ifeobser-
vation is in clas, x; ~ Normal(y,, ). We takeu;j = 3if1 < j < 10,up5 = 2if1 < j < 20,

uzj = 1if 1 < j <30, anduy; = 0 otherwise. The covariance matdl is diagonal with the
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diagonal elements generated from the uniform distribution B, &). X, is block diagonal,
with five blocks each of dimension 160100. The blocks havei,(j’) element 1~ And
Y3 is block diagonal, with five blocks each of dimension 20000. The blocks havej,(j’)

element @G if j # j and 1 otherwise.

The mean misclassification rates (percentages) of 50 data sets for each simulation are shown in
Table 5, with standard deviations in parentheses. The p-value for the paired t-test between sdaBP
and each of the other methods is also calculated. Our method has good prediction accuracies in all
the simulations. The unusual large error rates of SDA may be due to our choices of the parameters.
The sdaBP and the sdaBP2 have similar performances and are better than the sdaBP1. Hence,
to remove the between-class correlation has a larffiecteon the prediction than the within-class
correlation. The benefit of controlling of the between-class and the within-class correlations can
be illustrated by Figures 2 and 3. In Figure 2, the class means of PDA lie approximately along a
straight line, i.e., large between-class correlation, which leads to large overlapieofmli classes.

In Figure 3, the observations in the plot of PDA distribute along a particular direction, i.e., large

within-class correlation, which leads to large overlaps of the red and the blue classes.

6 Case studies

6.1 Predictive modelling of anticancer drug sensitivity

In Barretina and et al. (2012), the elastic net was used to construct predictive models that explained
drug sensitivity profiles based on genetic features of the cell lines. In this study, we apply our
method (SRP), ridge regression (Ridge), LASSO (LASSO), elastic net (EN), and SPLS to this
data set. The numbers of variables and observations are 54,675 and 491, respectively. There are
24 drugs considered. For each drug, we construct a regression model to predict drug sensitivity.
We randomly split the observations into the training set with 100 observations, the validation set
with 100 observations and the test set with 291 observations. We repeat the procedure 20 times

and calculate the means and the standard deviations of the MSE and the number of the features
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selected for each drug. The results for the first fives drugs are shown in Table 6. The results for all

the drugs can be found in Table 3 of the Appendix. All methods except LASSO have almost the

same prediction performance. The prediction errors of LASSO are slightly larger than others. Our

method and LASSO included the smallest numbers of features in the models for all drugs.

6.2

Classification

We next apply our sdaBP method, RDA, SDA and PDA to four data sets which are randomly split

into training sets and test sets. For each data set, the procedure is repeated 50 times and the mean

and standard deviation of misclassification rates are calculated.

(a). UPP data Gene expression data from a breast cancer study published by Miller and et al.

(b).

(c).

(d).

(2005). There are 44,928 features and 249 samples classified into three grades with 67,
128, 54 observations, respectively. The data is randomly split into a training set with 150
observations and a test data set with 99 observations. The data is available in the package

“breastCancerUPP” of “ Bioconductor”.

NKI data Gene expression data from a breast cancer study published byemret al.

(2002). There are 24,481 features and 337 samples classified into three grades with 79,
109, 149 observations, respectively. The data is randomly split into a training set with 150
observations and a test data set with 187 observations. The data is available in the package

“breastCancerNKI” of “ Bioconductor”.

DLBCL-D data Microarray data from the Broad Institute “Cancer Program Data Sets”
which was produced by Yujiet al. (2007). There 3,741 features and 129 samples clas-
sified into four groups with 19, 37, 24 and 49 observations, respectively. The training set has

109 observations and the test set has 20 observations.

Handwriting data This data set consists of features of handwritten numerais; 0O , 9,
extracted from a collection of Dutch utility maps. For each numerals (that is, each class),

there are 200 observations. Hence, there are 10 classes, 649 features and 2,000 observations
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randomly splitinto a training set with 450 observations and a test set with 1,550 observations.

The data is available at the UCI Machine Learning Repository.

The results are summarized in Table 7. Our method has good performance both for high-

dimensional data and for the data with a relatively large number of classes.

7 Discussion

In this paper, we have proposed a the new framework, regression by projection, and its sparse
version for high dimensional data analysis. The unique feature of our new approach is that the
direction of the estimate of the cfiieient vector is determined first and then its length. Tuning
parameters are determined by cross-validation. Comparisons with other methods through simula-
tions and data examples show that our method achieves good predictive performantecine e
variable selection.

This framework can be generalized to PCA, PLS, CCA and discriminant analysis to develop
sparse versions of these methods. In addition to the achievement of sparse components, the rela-
tionship among the components can be controlled. In this paper, we focused on sparse discriminant
analysis. We showed that the control of within-class and between-class correlations among the
sparse components can improve prediction accuracy.fifgient algorithm and the related theory
for solving the sparse regression by projection were developed. Numerical examples show that the

new algorithm is faster than LARS and comparable to the Coordinate Descent algorithm.

Supplementary Materials

Web Appendix: the detailed description of all the algorithms and the proofs of theorems. (we-

bAppendix.pdf; pdf file)

R codes: code files to run the simulation studies. (simulation.R.codes.zip; zip file)
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Table 1: The averages of the sensitivities and specificities (in parentheses) for Example 1.

N
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(p. (™))

q

SRP

EN

LASSO

Ridge

SPLS

SCAD

MCP

(100 1)

1(0.89)

1(0.90)

1(0.90)

1(0)

1(0.96)

0.86(0.93)

0.72(0.96)

1(0.87)

1(0.82)

1(0.76)

1(0)

0.99(0.96)

0.83(0.91)

0.66(0.95)

o

0.99(0.86)

0.99(0.81)

0.99(0.71)

1(0)

0.99(0.95)

0.77(0.89)

0.60(0.95)

(100 2)

1(0.89)

1(0.89)

1(0.90)

1(0)

1(0.95)

0.94(0.95)

0.85(0.96)

1(0.85)

1(0.78)

1(0.75)

1(0)

1(0.94)

0.93(0.95)

0.85(0.96)

o

1(0.85)

1(0.78)

1(0.71)

1(0)

0.99(0.95)

0.91(0.94)

0.80(0.96)

(300 1)

0.99(0.95)

0.99(0.95)

0.99(0.95)

1(0)

0.98(0.98)

0.59(0.96)

0.40(0.99)

1(0.94)

1(0.92)

1(0.91)

1(0)

0.97(0.97)

0.61(0.96)

0.38(0.99)

o

0.99(0.93)

0.99(0.91)

0.99(0.89)

1(0)

0.95(0.97)

0.60(0.97)

0.37(0.99)

(300 2)

1(0.95)

1(0.94)

1(0.94)

1(0)

0.96(0.95)

0.65(0.97)

0.41(0.99)

0.99(0.93)

0.99(0.91)

0.99(0.90)

1(0)

0.94(0.95)

0.68(0.97)

0.44(0.99)

o

0.99(0.92)

0.99(0.90)

0.99(0.89)

1(0)

0.93(0.95)

0.66(0.97)

0.43(0.99)

(500 1)

0.99(0.96)

0.99(0.96)

0.99(0.96)

1(0)

0.93(0.98)

0.59(0.98)

0.31(0.99)

0.99(0.95)

0.99(0.94)

0.99(0.94)

1(0)

0.94(0.98)

0.58(0.98)

0.32(0.99)

o

0.99(0.96)

0.99(0.94)

0.98(0.93)

1(0)

0.93(0.98)

0.58(0.98)

0.32(0.99)

(500 2)

g R RlorBEar B o R0 B o

0.97(0.96)

0.97(0.95)

0.97(0.95)

1(0)

0.88(0.96)

0.58(0.98)

0.29(0.99)

0.97(0.95)

0.97(0.94)

0.97(0.94)

1(0)

0.86(0.96)

0.57(0.98)

0.31(0.99)

=
o

0.96(0.94)

0.97(0.93)

0.96(0.93)

1(0)

0.86(0.97)

0.61(0.98)

0.31(0.99)

Table 2: The averages of the sensitivities and specificities (in parentheses) for Example 2.

(P, p)

S
N

SRP

EN

LASSO

Ridge

SPLS

SCAD

MCP

(100,0.5)

0.99(0.82)

0.99(0.76)

0.99(0.74)

1(0)

0.99(0.90)

0.60(0.89)

0.51(0.90)

0.98(0.80)

0.98(0.73)

0.97(0.65)

1(0)

0.90(0.84)

0.48(0.84)

0.41(0.89)

o

0.95(0.86)

0.96(0.80)

0.93(0.62)

1(0)

0.86(0.87)

0.44(0.85)

0.36(0.91)

(100,0.95)

0.99(0.89)

0.99(0.90)

0.98(0.93)

1(0)

0.94(0.73)

0.38(0.96)

0.36(0.96)

0.96(0.87)

0.96(0.87)

0.85(0.90)

1(0)

0.95(0.73)

0.35(0.94)

0.32(0.96)

o

0.95(0.87)

0.92(0.85)

0.75(0.88)

1(0)

0.96(0.77)

0.33(0.95)

0.30(0.96)

(300,0.5)

0.96(0.92)

0.97(0.89)

0.97(0.89)

1(0)

0.82(0.94)

0.63(0.97)

0.45(0.99)

0.91(0.91)

0.90(0.89)

0.89(0.87)

1(0)

0.75(0.94)

0.58(0.96)

0.42(0.99)

o

0.83(0.91)

0.85(0.88)

0.82(0.86)

1(0)

0.70(0.94)

0.53(0.96)

0.36(0.98)

(300,0.95)

0.99(0.96)

0.99(0.96)

0.97(0.97)

1(0)

0.94(0.93)

0.31(0.98)

0.27(0.99)

gl RlorEBEar B o

0.95(0.96)

0.94(0.95)

0.84(0.94)

1(0)

0.93(0.93)

0.30(0.98)

0.26(0.99)

[EEN
o

0.96(0.96)

0.92(0.94)

0.74(0.93)

1(0)

0.95(0.94)

0.27(0.97)

0.23(0.99)
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Table 3: The averages of the sensitivities and specificities (in parentheses) for Example 3.

(P, p)

o2

SRP

EN

LASSO

Ridge

SPLS

SCAD

MCP

(100,0.5)

1

0.99(0.70)

0.99(0.65)

0.96(0.75)

1(0)

0.97(0.22)

0.71(0.87)

0.57(0.88)

10

0.93(0.80)

0.93(0.73)

0.85(0.65)

1(0)

0.97(0.12)

0.62(0.87)

0.50(0.89)

20

0.89(0.57)

0.89(0.57)

0.74(0.70)

1(0)

0.94(0.15)

0.59(0.86)

0.43(0.90)

(100,0.9)

1

0.99(0.89)

0.99(0.90)

0.98(0.93)

1(0)

0.94(0.73)

0.47(0.90)

0.17(0.97)

10

0.96(0.87)

0.96(0.87)

0.85(0.90)

1(0)

0.95(0.73)

0.24(0.93)

0.15(0.97)

20

0.95(0.87)

0.92(0.85)

0.75(0.88)

1(0)

0.96(0.77)

0.13(0.95)

0.15(0.97)

(300,0.5)

1

0.86(0.75)

0.88(0.68)

0.62(0.87)

1(0)

0.93(0.18)

0.42(0.93)

0.22(0.96)

10

0.75(0.75)

0.79(0.73)

0.58(0.87)

1(0)

0.9(0.21)

0.37(0.93)

0.19(0.96)

20

0.68(0.74)

0.71(0.74)

0.51(0.87)

1(0)

0.91(0.19)

0.35(0.92)

0.16(0.97)

(300,0.9)

1

0.87(0.66)

0.95(0.46)

0.57(0.86)

1(0)

1(0)

0.32(0.94)

0.10(0.99)

10

0.78(0.51)

0.75(0.65)

0.41(0.89)

1(0)

1(0)

0.17(0.96)

0.08(0.98)

20

0.74(0.45)

0.61(0.71)

0.27(0.90)

1(0)

1(0)

0.11(0.97)

0.08(0.98)

Table 4: The averages and standard deviations (in parentheses) of the MSE for the simulations in
Section5.1.2.

Table 5: The averages and standard deviations of misclassification rates (%) for the simulation in

SRP

EN

SPLS

Exampled

meanrerrors(sd)

2.65(0.44)

3.23(0.54)

2.71(0.44)

p-value

< 0.001

0.023

Exampleb

mearerrors(sd)

2.64(0.42)

3.16(0.42)

2.73(0.44)

p-value

< 0.001

0.002

Section 5.2. Here “Sim” is the simulation setting number

Sim sdaBP sdaBP2 | sdaBP3 RB SDA PDA
1 | rateq(sd)| 1.15(0.67) 3.40(4.76) 1.06(0.75) 6.02(1.98) 52(2.9) | 0.71(0.49)
p-value < 0.001 0.91 <0.001 | <0.001 1.00
2 |rategsd)| 1.31(1.06) 6.39(3.48) 1.44(1.14) 1.40(0.97) 14.6(3.7)| 17.5(2.8)
p-value < 0.001 0.04 0.25 <0.001 | <0.001
3 | rateg(sd)| 0.38(0.70) 2.0(2.4) | 0.35(0.67) 0.71(0.82) 35(12) | 11.3(6.9)
p-value < 0.001 0.82 <0.001 | <0001 | <0.001
4 | rateg(sd)| 1.28(1.17) 2.63(2.66) 1.20(1.09) 1.24(0.77) 42(4.3) | 14.5(4.6)
p-value < 0.001 0.83 0.62 <0.001 | <0.001
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Table 6: The MSE and number of selected features of the first five drugs for the drug data

Downloaded by [Texas A&M University Libraries] at 11:24 09 July 2014

Drug name SRP EN LASSO Ridge SPLS
17-AAG MSE(sd) | 1.01(0.08)| 1.00(0.09) | 1.14(0.10)| 1.00(0.10)| 0.98(0.07)
featureqsd) | 117.6(56.3)| 193.6(128.7)] 110(4.95)| 54675(0) | 26321(21705)
AEW541 MSE(sd) | 0.33(0.03) | 0.34(0.03) | 0.39(0.03)| 0.34(0.03)| 0.34(0.03)
featureqsd) 86(46) 125(88) 103(5) 54675(0) | 12908(19988)
AZD0530 | MSE(sd) | 0.60(0.06) | 0.59(0.04) | 0.71(0.07)| 0.58(0.04)| 0.63(0.07)
featureqsd) | 103(52) 117(84) 106(4) 54675(0) | 23033(20418)
AZD6244 | MSE(sd) | 1.05(0.08) | 1.04(0.07) | 1.18(0.11)| 1.01(0.05)] 0.99(0.04)
featureqsd) | 101(60) 184(100) 110(4) 54675(0) | 16725(20690)
Erlotinib MSE(sd) | 0.35(0.03) | 0.36(0.03) | 0.43(0.04)| 0.36(0.02)| 0.37(0.03)
featureqsd) 92(37) 90(78) 100(3) 54675(0) | 13717(22489)

Table 7: The averages and standard deviations of misclassification rates for the examples in Section
6.2.

DataSet sdaBP RIA SDA PDA
UPP 39.7(3.8) | 42.6(5.1) | 67(10.6) | 48.8(3.9)
NKI 41.5(3.3) | 43.0(3.3)| 45.3(2.4)| 70.8(12.9)

DLBCL-D | 18.5(8.6) | 30.1(9.5) | 54.8(10.8), 71.4(9.1)

Handwriting| 1.74(0.30)| 2.06(0.38)| 86(5) 19.5(4.0)
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Table 8: The averages and standard deviations (in parentheses) of MSE for Example 1. The second

column for each competing method is the mean squared effioireacy (the ratio between the

average MSEs of our method and the competmeghod.

(p. (™))

2

S

SRP

EN

LASSO

Ridge

SPLS

SCAD

MCP

(100 1)

2.
&%

(1. 18)

0.76

2.66
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0.77

(48]

0

(1 98)

0.85

@h

0.04

)

0.02

gyl

)

)

0.80
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0.77
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0.02
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1.09

)
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0.09
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05

0.72

45
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0.23
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)
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0

333
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e
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0.75
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5
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0.47

339
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0.08

61.7
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)

0.79

t7s)

0.75

(5

0.08

&

0.63

388

0.2

447
(139)

0.15

(500 1)

10.9
(22 8)

16.9
(34.2)

0.64

17. 6
(38.1)

0.61

(5

0.01

39.0
(46 5)

0.27

GO

0.05

298
(100)

0.04

(22.6)

33.1
(33.5)

0.67

34.5
(37.9)

0.64

&)

0.03

(41.1)

0.58

@)

0.1

)
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o)
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ti§
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0.07

)
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)
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{72y

e
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(55

0.84

5

0.05
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(124)
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(110)

0.09

465
(142)

0.07

825

0.76
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0.76

Eh

0.08

(117)

0.38

4
383

0.2

( 14%)

0.15

534
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0.79
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0.78
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164
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386
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0.24

485
(131)
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Table 9: The averages and standard deviations (in parentheses) of MSE for Example 2. The second

column for each competing method is the mean squared dficeacy

(0.p) | 2] SRP EN LASSO Ridge SPLS SCAD MCP
L] 28| 318 088] 3.47,[088| #3 [003] 358 10.78] 9,05 [031] 151 70.18
(100,05) [ 5 B8 | 49 | 088] a7y [0.77] 93,1 0-14] 17,0 [0.74] 26871 05 | 34.010.38
10[ 24.0 264 093] 33.5[0.73] 9810.25] 26,3 093] 485 0.56] £0.41 05
L1893 &3] 089] 293 080 foa|0.02] 319 T051] 167022] 921018
(100,0.95) [ 5 &% 180,096 §.94,[ 088 109 0.08] 8.9 1079 (% § | 05| i8g 043
10 313?'7% 128 1095 (125.2% 086 1110111 152'10.87] 23,3 [057] 25810.52
1 11.6 [0.84 0.85] 109 | 0.08] 20.6 | 0.47 0.25| 50 | 0.2
&8 | 185 (10 4 ) (15.3) 5 (28)
(300,05) | 5 349|394,/ 088] 339 084|141 024] 323 0-76] 49,0 [055] 58 10.46
10| 41.6 | 45.9 [0.90| 49.3 | 0.84| 119]0.34| 485 [0.85] 647 | 0.64| 76.2 | 0.54
(16 2) (17.7) (17.7) © (18.2) 0] 229§
1 1.95 [0.88] 2.14 | 0.80| 135]0.01| 4.38.10.39] 11,7 | 0.15 0.1
658 &%) (0:50) 45 (1.04) (66} &%
(300,0.95) [ 5 635 | 393 091] 885082 133005 9.89 [0.76] 18,7 [0.39 (335) 0.32
10 8139% ('Lz%(g 0.9 (133535 0.74 (124()% 0.09 ('1257% 0.89 ég 0.5 (12) 0.4

Table 10: The averages and standard deviations (in parentheses) of MSE for Example 3. The

second column for each competing method is the mean squared fici@ney

(P, p)

o2
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Figure 1: In each plot, for the samie the black curves are the contours"X™Xa + T||a’||§ =1,
for r = 0,1, 10,100, whereX™X has diagonal elements 1 and 3 arftidhagonal element.8. The

blue line is the direction of "X and the red lines are the solutiamso (3.1) for the corresponding
T andaA.
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Figure 2: The projection (or the scores) of one test data set for sdaBP, sdaBP2, sdaBP3, PDA in
Simulation 3 in Section 5.2.
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Figure 3: The projection (or the scores) of one test data set for sdaBP, sdaBP2, sdaBP3, PDA in
Simulation 1 in Section 5.2.
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