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Summary. In a relative risk analysis of colorectal caner on nutrition intake scores across genders, we show that, surprisingly,
when comparing the relative risks for men and women based on the index of a weighted sum of various nutrition scores, the
problem reduces to forming a confidence interval for the ratio of two (asymptotically) normal random variables. The latter is
an old problem, with a substantial literature. However, our simulation results suggest that existing methods often either give
inaccurate coverage probabilities or have a positive probability to produce confidence intervals with infinite length. Motivated
by such a problem, we develop a new methodology which we call the Direct Integral Method for Ratios (DIMER), which,
unlike the other methods, is based directly on the distribution of the ratio. In simulations, we compare this method to many
others. These simulations show that, generally, DIMER more closely achieves the nominal confidence level, and in those cases
that the other methods achieve the nominal levels, DIMER has comparable confidence interval lengths. The methodology is
then applied to a real data set, and with follow up simulations.
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1. Introduction
We use data on the relationship between diet and colorec-
tal cancer from a subset of the NIH-AARP Study of Diet and
Health (Reedy et al., 2008), which itself is a large cohort study
with approximately 250,000 men and 200,000 women. The
data subset that we have access to includes 1075 males that
developed colorectal cancer during the course of the study,
along with 479 females who also developed colorectal cancer.
In addition, the data set includes 3225 randomly selected men
and 1437 randomly selected women who did not develop col-
orectal cancer. Hence, there are 4300 males and 1916 females
in the data set.

It is traditional in nutritional epidemiology to examine the
risk of cancer from single foods or nutrients normalized by
energy (caloric) intake, for example, the percentage of calories
coming from fat, the amount of whole grants per 1000 calories,
etc. However, nutritionists have increasingly turned to dietary
indices, which account for the patterns of energy-adjusted
intake for multiple foods and nutrients. There are many
such indices, for example, the Healthy Eating Index-2005
(HEI-2005, see Guenther, Reedy, and Krebs-Smith, 2008), the
Alternative Healthy Eating Index, the Mediterranean Index,
etc., and they have been shown to be related to many chronic
diseases and cancers. We use here the HEI-2005, which is
based on the intakes of 12 interrelated dietary components,
adjusted for energy intake. These intakes are then scored indi-
vidually, and their sum is the HEI-2005, which is then used
to predict disease. The Supplementary Material Table S.3
describes the components and how they are scored.

In our analysis of colorectal cancer, we fit a model where the
scores are weighted and summed, but the weights are common
for men and women, as in any dietary index. We show in
Section 4.1 that, surprisingly, when comparing the relative
risks for men and women based on this common index, the
problem reduces to forming a confidence interval for the ratio
of two (asymptotically) normal random variables. The latter
is an old problem, with a substantial literature, one that we
revisit based on our example.

One popular method for computing a confidence interval for
the ratio of two location parameters is due to Fieller (1932,
1954). Details of this method are described in the Supple-
mentary Material Appendix S.1.

Consequently, other methods have been developed, most of
which are based on the distribution of the ratio of the esti-
mates of two location parameters (see, e.g., recent articles
by Beyene and Moineddin, 2005; Pham-Gia, Turkkan, and
Marchand, 2006; Sherman, Maity, and Wang, 2011). Most
often, a normal approximation to the distribution is used,
with subsequent intervals formed by Wald’s method. Hayya,
Armstrong, and Gressis (1975) showed that, under certain
conditions, the distribution for the ratio of two estimators can
be treated as a normal distribution with a second order Taylor
expansion. This method is also defined in the Supplemen-
tary Material Appendix S.3. In addition, parametric and
nonparametric bootstrap methods are also used. However, our
empirical investigations suggest that confidence intervals con-
structed by these existing methods for the ratio often give
inaccurate and sub-nominal coverage probabilities.
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Motivated by such a problem, in this work we construct a
new methodology, which we call the Direct Integral Method
for Ratios (DIMER). This methodology is also based on the
distribution of the ratio of the estimates of the two loca-
tion parameters, a distribution that is Cauchy-like and has
heavy tails. We show that DIMER can be computed easily
by numerical integration. In our simulation studies, we show
that DIMER closely achieves nominal coverage, unlike the
Wald method and the method of Hayya et al. (1975). DIMER
is also much faster computationally than bootstrap methods,
which is important in large cohort studies, where the model
is a nonlinear logistic regression based on samples of sizes in
the tens of thousands or more.

In Section 2, we describe the methodology, while Section
3 compares various methods via simulation studies. Section
4 describes the analysis of the NIH-AARP Study. Simula-
tions based on the actual data reinforce the conclusions of
the simulations in Section 3 and shed more light on the data
analysis. Technical details, proofs, definitions and additional
simulations are given in the Supplementary Material.

2. Methodology

2.1. Basic Definitions

Consider two random variables T1 and T2 which have density
functions f1{(t1 − μ1)/v1} and f2{(t2 − μ2)/v2}, respectively,
with means μ1 and μ2 and standard deviations v1 and v2. In
other words, f1(x) and f2(x) are the density functions of the
standardized versions of T1 and T2, respectively. Let F1(·) and
F2(·) denote the corresponding distribution functions. We are
interested in making inference for the ratio μ1/μ2. We will
outline a series of cases where it is possible to compute easily
the cumulative distribution function of r̂ = T1/T2. All proofs
are given in the Supplementary Material Section S.2.

2.2. Independent Case

Suppose that T1 and T2 are independent.

Lemma 1. Define

g(z|x, μ1, μ2, v1, v2)

=
{

(1 − F1[{x(μ2 + v2z) − μ1}/v1])f2(z) exp(z2) if z ≤ −μ2/v2,

F1[{x(μ2 + v2z) − μ1}/v1]f2(z) exp(z2) if z > −μ2/v2.

Then the cumulative distribution function of r̂ = T1/T2 is
given by

pr(r̂ ≤ x) =
∫ ∞

−∞
g(z|x, μ1, μ2, v1, v2) exp(−z2)dz,

a quantity that is easily computed by Gauss–Hermite quadra-
ture.

In Lemma 1 x denotes a value of r̂ and z denotes a value of
T2, and similarly in Sections 2.3–2.4.

If the parameters v1 and v2 are unknown, we can apply
Lemma 1 using their estimated values. However, we have
found that a more numerically efficient approximation can
be developed in the case of normally distributed T1 and T2.

We present this result in the following setting. Suppose the
estimated variances are v̂2

1 and v̂2
2 which are independent of

each other, and independent of T1 and T2, and have degrees
of freedom d1 and d2, respectively. Thus, both (T1 − μ1)/v̂1

and (T2 − μ2)/v̂2 follow the t-distribution with d1 and d2

degrees of freedom, respectively. In addition, assume that
d = min(d1, d2) increases to infinity, which is implied when
the sample sizes increase to infinity. Suppose that v̂2

1 = v2
1 +

Op(d
−1/2
1 ) and v̂2

2 = v2
2 + Op(d

−1/2
2 ). Then we have the follow-

ing lemma.

Lemma 2. With an error of order Op(d
−1/2),

g(z|x, μ1, μ2, v̂
2
1, v̂

2
2) defined in Lemma 1 can be approximated

by

h(z|x, μ1, μ2, v̂21, v̂22)

=

{
(1 − Ft,d1 [{x(μ2 + v̂2z) − μ1}/v̂1])ft,d2 (z) exp(z2) if z ≤ −μ2/v̂2,

Ft,d1 [{x(μ2 + v̂2z) − μ1}/v̂1]ft,d2 (z) exp(z2) if z > −μ2/v̂2,

where ft,d(·) and Ft,d(·) are the t-density with d degrees of free-
dom and the corresponding cumulative distribution function,
respectively.

2.3. Dependent Case of Two Normally Distributed
Variables with Known Covariance Matrix

Suppose now that (T1, T2) are jointly normally distributed
with means (μ1, μ2), variances (v2

1, v
2
2), covariance v12 and

suppose that (v2
1, v

2
2, v12) are known. Let φ(·) and �(·) denote

the standard normal density and distribution function.

Lemma 3. Define g(z|x, μ1, μ2, v
2
1, v

2
2, v12) as follows. If

z ≤ −μ2/v2, then

g(z|x, μ1, μ2, v
2
1, v

2
2, v12)

= (2π)−1/2(1 − �[{x(μ2 + v2z)

− (μ1 + zv12/v2)}v2/
√

v2
1v

2
2 − v2

12]) exp(z2/2).

If z > −μ2/v2, then

g(z|x, μ1, μ2, v
2
1, v

2
2, v12)

= (2π)−1/2
�[{x(μ2 + v2z)

− (μ1 + zv12/v2)}v2/
√

v2
1v

2
2 − v2

12] exp(z2/2).

Then the distribution function of r̂ is

pr(r̂ ≤ x) =
∫ ∞

−∞
g(z|x, μ1, μ2, v

2
1, v

2
2, v12) exp(−z2)dz,

which again can be computed by Gauss–Hermite quadrature.

Of course, when v12 = 0, Lemma 3 is a special case of
Lemma 1.
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2.4. Dependent Case of Two Normally Distributed
Variables with Estimated Covariance Matrix

Here, we discuss the cumulative distribution of the ratio
r̂ = T1/T2 when T1 and T2 are jointly normally distributed
with jointly estimated variance and covariance which have the
same number of degrees of freedom d, and these estimates are
independent of T1 and T2. These are the same assumptions
noted in Fieller (1954). Define the estimates of the variances
and covariance of T1 and T2 as v̂2

1, v̂
2
2, and v̂12. Let η = v12/v

2
2.

For fixed η, write W = T1 − ηT2, Then W and T2 are inde-
pendent. In addition, if v̂2

1, v̂
2
2 and v̂12 are computed from the

sample covariance matrix of normal random variables from a
sample of size d + 1, then we also have that T1 − ηT2 and T2

are independent of their estimated variances v̂2
1 − 2ηv̂12 + η2v̂2

2

and v̂2, which are independent of each other and also have d

degrees of freedom.
We use the following algorithm, based on the approx-

imation used in Section 2.2. Under our assumptions, the

variables Z1 = {(T1 − ηT2) − (μ1 − ημ2)}/
√

v̂2
1 − 2ηv̂12 + η2v̂2

2

and Z2 = (T2 − μ2)/v̂2 are independent and both have t-
distributions with d degrees of freedom. As in Lemma 2, we
then make the approximation that the density of (T1, T2), hav-
ing fixed the estimated covariance matrix, is approximately

v̂−1
2 (v̂2

1−2ηv̂12+ η2v̂2
2)

−1/2ft,d [{(t1− ηt2)

−(μ1 − ημ2)}/
√

v̂2
1− 2ηv̂12 + η2v̂2

2]ft,d{(t2− μ2)/v̂2}.

If z ≤ −μ2/v̂2, define

g(z|x, μ1, μ2, v̂
2
1, v̂

2
2, v̂12, η)

= (1 − Ft,d [{(x − η)(μ2 + v2z)

−(μ1 − ημ2)}/
√

v̂2
1 − 2ηv̂12 + η2v̂2

2

])
ft,d(z) exp(z2),

while if z > −μ2/v̂2, define

g(z|x, μ1, μ2, v̂
2
1, v̂

2
2, v̂12, η)

= Ft,d [{(x − η)(μ2 + v2z)

− (μ1 − ημ2)}/
√

v̂2
1 − 2ηv̂12 + η2v̂2

2

]
ft,d(z) exp(z2).

Then, using the same device as in Lemma 2, we have that

pr(r̂ ≤ x) =
∫ ∞

−∞
g(z|x, μ1, μ2, v̂

2
1, v̂

2
2, v̂12, η) exp(−z2)dz

+ Op(d
−1/2). (1)

In practice, η is unknown, so we use η̂ = v̂12/v̂
2
2 to estimate it.

2.5. Algorithm for Computing the Confidence Interval of
Ratios

In Sections 2.2–2.4, we express the distribution function of
r̂ as F(x; r) = pr(r̂ ≤ x; r = μ1/μ2) when μ2 �= 0. The ratio
μ̂1/μ̂2 is an estimate of r = μ1/μ2, so that we can view
F(x; μ̂1/μ̂2) as an estimate of the population distribution

function F(x; r). Efron (1981) and Benton and Krishnamoor-
thy (2002) pointed out that if we generate values r̂i, i =
1, . . ., m, from F(x; μ̂1/μ̂2), we can make inference about r

using the distribution of the generated r̂i’s.
The main difference between our approach and that of Ben-

ton and Krishnamoorthy is that instead of generating a larger
number of r̂i’s and then obtaining its percentiles, we com-
pute the percentile of r̂i directly. Consequently, our method
is much faster computationally. Specifically, our simulation
results indicate that DIMER usually needs less than 30 iter-
ation steps to obtain the quantile of a distribution, but in
Benton and Krishnamoorthy (2002), they used m = 100,000
r̂i’s to get the quantiles.

Define the α/2 quantile for F(x; μ̂1/μ̂2) as r̂α/2|μ̂1/μ̂2 . Then
an approximate 100(1 − α)% confidence interval for r is
(r̂α/2|μ̂1/μ̂2 , r̂1−α/2|μ̂1/μ̂2). Here, we give the steps of our iterative,
bisection-based algorithm to obtain the quantiles.

� Step 1. Give two initial values of r̂α/2|μ̂1/μ̂2 as r̂α1 < 0 < r̂α2

and both have sufficiently large absolute values to make
sure that r̂α/2|μ̂1/μ̂2 is inside the interval (r̂α1 , r̂α2). How we
did this is described in the Supplementary Material
Appendix S.4. Our method, being based on bisection, is
not sensitive to these starting values.

� Step 2. Apply the Gauss–Hermit quadrature to the cumula-
tive distribution function of r̂ to obtain cα/2 = pr{r̂ ≤ (r̂α1 +
r̂α2)/2}. If cα/2 < α/2, let r̂α1 = (r̂α1 + r̂α2)/2; if cα/2 > α/2,
let r̂α2 = (r̂α1 + r̂α2)/2; if cα/2 = α/2, stop the iteration and
let r̂α/2|μ̂1/μ̂2 = (r̂α1 + r̂α2)/2.

� Step 3. Repeat Step 2 until cα/2 is close to α/2 and/or the
difference |̂rα2 − r̂α1 | is negligible. Then we have r̂α/2|μ̂1/μ̂2 =
(r̂α1 + r̂α2)/2, the lower limit of interval.

� Step 4. Repeat Steps 1–3 to obtain r̂1−α/2|μ̂1/μ̂2 , the upper
limit of the interval.

3. Simulations

3.1. Overview

We performed simulations on two simple linear regression
models. The first (Section 3.4) is to illustrate an applica-
tion of the formulas in Section 2.2 where the two variables
are independent. The second (in Supplementary Material
Appendix Section S.6) is an example to demonstrate the per-
formance of our method developed in Section 2.4 when the two
variables are dependent. In both simulations, some other pos-
sible methods are outlined and compared with DIMER. Since
the dependent case is developed with the normality assump-
tion, it is important to evaluate how sensitive DIMER is to
the violation of this assumption. Therefore, we also considered
such a case in the second part of our simulations.

3.2. Comments Upon and Applications of Fieller’s
Intervals

Fieller’s interval, defined in Supplementary Material Sec-
tion S.1, is sometimes of infinite length, being either the entire
real line or the union of two disconnected infinite length inter-
vals, for example, when the denominator of the ratio is not
significantly different from zero.
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Fieller’s intervals have been used in a variety of contexts.
Here are three cases, the first two of which are illustrated in
our simulations. The simulation of the first case appears here,
while the second in the Supplementary Material, Section
S.6.

� In a slope ratio assay (Finney, 1978; Hubert, 1984; Red-
mond, 2005c), data are fit to a standard and treatment,
observing YS = αS + XSβS + εS for the standard, while the
treatment is fit to the model YT = αT + XT βT + εT . The rel-
ative potency ρ is a function of βT /βS , where the estimates
of βT and βS are independent. In a common setting, it
is assumed that αS = αT but the doses XS = XT = X, and
by centering X the described model holds with different
intercepts. This is an example of two independent slope
estimates.

� In a radioimmunoassay (Finney, 1978; Redmond,
2005b) with dose denoted by X and response Y , if
one is in the linear part of the calibration cure a reasonable
model is Y = α + Xβ + ε. The logarithm of ID50, the
dose required for 50% of binding inhibition, is given
by log(ID50) = α/β. The parameter estimates (α̂, β̂) are
generally correlated, and this is an example of estimating
the ratio of the intercept to the slope when the parameter
estimates are correlated.

� In a parallel line assay (Finney, 1978; Redmond, 2005a), a
standard is fit to the linear model YS = αS + XSβ + εS while
the treatment is fit to the model YT = αT + XT β + εT : the
slope is the same in both, hence parallel line. The log-
relative potency in this assay is log(ρ) = (αT − αS)/β. In
the homoscedastic case, unless XS = XT , the estimates of
the numerator and denominator are not independent.

In radioimmunoassays, it is often the case that the variance
of the responses is proportional to a power θ of the mean, but
with 1 < θ < 2. Generalized least squares can then be used
to estimate θ (Davidian, Carroll, and Smith, 1988), but once
the estimates in these examples are obtained, we still have
a problem of forming a confidence interval for a ratio of two
parameters.

3.3. Comments on Sample Sizes and Parameter Choices

Fieller intervals for a ratio θ1/θ2 are of infinite length if the
null hypothesis H0 : θ2 = 0 cannot be rejected. If the power for
rejecting this hypothesis is low, Fieller intervals will have terri-
ble properties. In simulations not reported here, the behavior
of the alternative methods is also very poor. If the power
for rejecting the hypothesis is essentially 100%, then all the
methods will be essentially the same, with minor fluctua-
tions depending on the sample size. The interesting cases lie
on the boundary between low and perfect power, for exam-
ple, 80−90% power with Type I error 0.05. Our simulations
include settings with low power, perfect power and in between.

In our simulations, which are based on linear regression
with error standard deviation vε, we have set the covariates
to be Normal(0, 1), and we set vε = 1, so that the standard
error of the slope is roughly n−1/2vε/sx, where sx is the sample
standard deviation of the covariates. On average , s−1

x ≈ 1.0,
so the standard error of the slope estimate ≈ n−1/2. Conse-
quently, the sample sizes we have chosen, n = 18, 25, and 50,

result in reasonable standard errors that illustrate a range
of powers for the test that the slope = 0.0. In Table 2, had
we changed vε = 2, 3, and 4, the sample sizes needed to get
roughly the same percentage of infinite length Fieller intervals
are roughly 60, 130, and 225, respectively. In the Supple-
mentary Material, Table S.4, we show what happens to
Table 1 when we set (n, vε) = (55, 2) and (115, 3), showing
that roughly the same results apply in this setting.

3.4. Linear Model When the Two Estimates are
Independent

3.4.1. Setup. Consider the 2-group linear regression
model

Y1i = β10 + X1iβ11 + ε1i, i = 1, . . ., n1;

Y2j = β20 + X2jβ21 + ε2j, j = 1, . . ., n2,

where (Y1i, X1i) and (Y2j, X2j) are the same outcomes and
predictors from different populations. See Section 3.2 for
an example. Also ε1i and ε2j are independently normally
distributed with mean zero and variances v2

ε1
and v2

ε2
, respec-

tively. Our interest is in the ratio of the two slopes β21/β11.
The model can be rewritten as follows in order to use a

simple expression for the ratio:

Y1i = β10 + X1iω + ε1i, i = 1, . . ., n1;

Y2j = β20 + β21X2jω + ε2j, j = 1, . . ., n2. (2)

Then the ratio of the slopes now is β21 and ω is the slope for
the first group..

Our interest is to construct a confidence interval for β21.
Let (β̂21, ω̂) denote the maximum likelihood estimate (mle) of
(β21, ω), and define λ = β21ω and its estimate λ̂ = β̂21ω̂. Both
(λ̂ − λ)/v̂λ and (ω̂ − ω)/v̂ω follow independent t-distributions
with degrees of freedom n2 − 2 and n1 − 2, respectively, where
v̂λ and v̂ω are corresponding estimated standard deviations.

The estimated cumulative distribution function of β̂21 is
obtained as in Section 2.2. We can then apply the DIMER
algorithm in Section 2.5 to obtain confidence intervals. To
compare with other methods, in Section 3.4.2 we outline an
application of Fieller’s interval. In addition, we apply the
Wald interval by inverting the Fisher score matrix, Hayya’s
method, the nonparametric bootstrap, the parametric boot-
strap, and the likelihood ratio test; see the details in the
Supplementary Material, Appendices S.1, S.3, and S.5.

3.4.2. Comparison with the Fieller’s Interval. To form a
confidence interval for β21, one common method in practice
is Fieller’s interval. However, in this linear regression setting,
it cannot be applied directly since v̂2

ω̂ and v̂2
λ̂

are obtained
independently. In this case, by the Welch–Satterthwaite equa-
tion (Satterthwaite, 1946; Welch, 1947), the degrees of free-
dom of (v̂2

λ̂
+ β2

21v̂
2
ω̂) are approximately given by dF = (v̂2

λ̂
+

β2
21v̂

2
ω̂)2/{(v̂2

λ̂
)2/(n2 − 2) + (β2

21v̂
2
ω̂)2/(n1 − 2)}. We use β̂21

instead of β21 in the expression to obtain the esti-
mated degrees of freedom d∗

F = (v̂2
λ̂

+ β̂2
21v̂

2
ω̂)2/{(v̂2

λ̂
)2/(n2 −

2) + (β̂2
21v̂

2
ω̂)2/(n1 − 2)}. Then we have a = ω̂2 − t2

d∗
F

,α/2v̂
2
ω̂, b =
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Table 1
Confidence intervals for β21 in a simulation study with 2000 replications and true parameter values

(β10, β20, β21, ω) = (0.00, 0.00, 1.00, 1.00) for the linear regression model
Y1i = β10 + X1iω + ε1i; Y2j = β20 + β21X2jω + ε2j.“INL–LR” depicts the % of times that the interval by the likelihood ratio
test was of infinite length, and “INL–FI” depicts the % of times that Fieller’s interval was infinite length, either the entire
real line or two infinite length disconnected intervals. Here the acronyms are IF, Inverse Fisher score method; HM, Hayya’s
method; NB, nonparametric bootstrap; PB, parametric bootstrap; FI, Fieller’s interval; DIMER, Direct Integral Method for

Ratios and LR Test—Likelihood ratio test.

Mean of Mean of Median of 90% Quantile of
coverage length length length

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
Method CI CI CI CI CI CI CI CI CI CI CI CI

n1 = n2 = 18, cv(ω̂) = 0.26, cv(λ̂) = 0.26

mean(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 1.10, 1.00),median(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 1.00, 1.00)

IF 84.05 89.40 94.60 1.63 1.95 2.56 1.09 1.30 1.71 2.83 3.38 4.44
HM 88.50 92.90 96.70 1.74 2.08 2.73 1.15 1.37 1.80 2.31 2.75 3.61
NB 92.15 94.50 97.75 20.66 24.62 32.35 1.67 1.98 2.61 31.39 37.40 49.15
PB 92.00 94.20 97.35 38.84 46.28 60.83 1.49 1.78 2.34 22.75 27.10 35.62
FI 89.85 95.05 99.35 ∞ ∞ ∞ 1.39 1.80 3.08 4.28 8.25 ∞
DIMER 91.45 95.90 99.50 2.69 4.92 63.53 1.43 1.88 3.35 3.74 6.12 37.32
LR Test 86.50 92.00 97.85 ∞ ∞ ∞ 1.27 1.65 2.78 3.72 6.50 ∞
INL–LR 3.2% 6.6% 17.3%
INL–FI 2.9% 5.7% 14.8%

n1 = n2 = 25, cv(ω̂) = 0.21, cv(λ̂) = 0.21

mean(β̂10, β̂20, β̂21, ω̂) = (−0.00, 0.00, 1.05, 1.00),median(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.00, 1.00)

IF 86.15 92.15 96.50 1.35 1.60 2.11 0.95 1.13 1.49 2.17 2.59 3.41
HM 90.15 94.75 98.20 1.12 1.33 1.75 0.97 1.16 1.52 1.65 1.97 2.59
NB 92.55 95.30 98.45 10.25 12.21 16.05 1.17 1.40 1.83 7.55 8.99 11.82
PB 92.55 95.45 98.40 7.23 8.61 11.31 1.13 1.35 1.77 3.84 4.57 6.01
FI 90.15 95.90 99.60 ∞ ∞ ∞ 1.10 1.38 2.12 2.17 3.02 6.92
DIMER 91.15 96.30 99.70 1.78 2.75 10.96 1.12 1.42 2.23 2.20 3.06 6.74
LR Test 88.25 93.85 98.70 ∞ ∞ ∞ 1.04 1.31 1.99 2.02 2.79 6.15
INL–LR 0.6% 1.2% 5.9%
INL–FI 0.5% 1.0% 4.5%

n1 = n2 = 50, cv(ω̂) = 0.14, cv(λ̂) = 0.15

mean(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.02, 1.00),median(β̂10, β̂20, β̂21, ω̂) = (−0.00, 0.01, 1.00, 1.00)

IF 90.00 93.10 97.25 0.94 1.12 1.47 0.67 0.79 1.04 1.38 1.64 2.15
HM 90.65 95.50 98.65 0.71 0.84 1.11 0.67 0.79 1.04 0.95 1.13 1.48
NB 92.15 95.40 98.55 0.84 1.00 1.32 0.70 0.84 1.10 1.10 1.31 1.72
PB 92.15 96.10 98.65 0.80 0.95 1.25 0.71 0.84 1.11 1.09 1.29 1.70
FI 91.20 95.75 99.00 0.76 0.93 1.35 0.70 0.86 1.19 1.04 1.29 1.90
DIMER 91.50 95.80 99.10 0.77 0.94 1.36 0.71 0.87 1.21 1.05 1.31 1.94
LR Test 90.20 95.00 98.95 0.74 0.91 ∞ 0.69 0.83 1.16 1.01 1.26 1.85
INL–LR 0.0% 0.0% 0.1%
INL–FI 0.0% 0.0% 0.0%

−2ω̂λ̂, and c = λ̂2 − t2
d∗
F

,α/2v̂
2
λ̂

used in the Supplementary

Material. Here, ρ = 0 since ω̂ and λ̂ are independent.

3.4.3. Simulation results. Our simulations for model (2)
compare the seven methods mentioned in Section 3.4.1. For
simplicity, in all settings, we first fixed v2

ε1
= v2

ε2
= 1, and

without loss of generality, let the intercepts β10 and β20 be 0.
Supplementary Material Table S.4 gives some additional

results when v2
ε1

= v2
ε2

= 2 and 3. We generated X1i and X2j

independently from the standard normal distribution.
We considered two parameter configurations: (β10, β20,

β21, ω) = (0, 0, 1, 1), (0, 0, 1, 0.75). For each parameter set-
ting, we report simulation results for (n1, n2) = (18, 18),
(25, 25), (50, 50) with 2000 runs. In our experience in
linear regression cases, and with these effect sizes, sample
sizes higher than that typically lead to good numerical
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Table 2
Confidence intervals for β21 in a simulation study with 2000 replications and true parameter values

(β10, β20, β21, ω) = (0.00, 0.00, 1.00, 0.75) for the linear regression model Y1i = β10 + X1iω + ε1i; Y2j = β20 + β21X2jω + ε2j.
“INL–LR” depicts the % of times that the interval by the likelihood ratio test was of infinite length, and “INL–FI” depicts

the % of times that Fieller’s interval was infinite length, either the entire real line or two infinite length disconnected
intervals. Here the acronyms are IF, inverse Fisher score method; HM, Hayya’s method; NB, nonparametric bootstrap; PB,
parametric bootstrap; FI, Fieller’s interval; DIMER, Direct Integral Method for Ratios; and LR Test, likelihood ratio test.

Mean of Mean of Median of 90% Quantile of
coverage length length length

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
Method CI CI CI CI CI CI CI CI CI CI CI CI

n1 = n2 = 18, cv(ω̂) = 0.35, cv(λ̂) = 0.35

mean(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 2.85, 0.75),median(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 1.00, 0.75)

IF 83.60 88.60 94.15 4.51 5.38 7.07 1.46 1.74 2.29 4.59 5.47 7.19
HM 86.45 91.65 95.55 2975 3544 4658 1.54 1.83 2.41 4.06 4.84 6.36
NB 93.35 95.10 97.75 74.05 88.24 116.0 4.54 5.41 7.11 105.1 125.2 164.6
PB 93.05 94.55 97.35 1634 1948 2559 3.55 4.23 5.56 94.25 112.3 147.6
FI 91.50 96.10 99.40 ∞ ∞ ∞ 2.13 2.97 7.75 ∞ ∞ ∞
DIMER 92.80 96.55 99.55 7.57 15.87 56.16 2.15 3.05 8.28 10.03 25.88 105.1
LR Test 86.55 92.00 97.85 ∞ ∞ ∞ 1.92 2.70 7.84 ∞ ∞ ∞
INL–LR 11.8% 18.8% 44.5%
INL–FI 11.8% 18.2% 39.2%

n1 = n2 = 25, cv(ω̂) = 0.28, cv(λ̂) = 0.28

mean(β̂10, β̂20, β̂21, ω̂) = (−0.00, 0.00, 1.17, 0.75),median(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.00, 0.75)

IF 85.65 91.40 96.30 2.02 2.40 3.16 1.27 1.51 1.99 3.20 3.81 5.01
HM 89.45 94.15 97.75 5.06 6.03 7.92 1.30 1.55 2.03 2.69 3.20 4.21
NB 93.40 95.55 98.25 42.36 50.47 66.33 2.07 2.47 3.24 45.18 53.84 70.75
PB 93.10 95.50 98.30 53.39 63.62 83.61 1.91 2.28 2.99 35.70 42.54 55.90
FI 91.05 96.50 99.65 ∞ ∞ ∞ 1.59 2.11 3.90 5.72 15.03 ∞
DIMER 92.40 96.95 99.75 4.53 9.82 35.54 1.62 2.16 4.15 4.64 7.96 61.76
LR Test 88.25 93.90 98.75 ∞ ∞ ∞ 1.49 1.96 3.65 5.14 11.50 ∞
INL–LR 4.5% 8.0% 24.6%
INL–FI 4.2% 7.1% 20.2%

n1 = n2 = 50, cv(ω̂) = 0.19, cv(λ̂) = 0.20

mean(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.04, 0.75),median(β̂10, β̂20, β̂21, ω̂) = (−0.00, 0.01, 1.00, 0.75)

IF 89.20 93.00 97.25 1.19 1.41 1.86 0.89 1.07 1.40 2.00 2.38 3.13
HM 90.80 95.30 98.45 0.99 1.17 1.54 0.89 1.06 1.39 1.43 1.70 2.23
NB 93.00 95.60 98.35 2.57 3.06 4.02 1.01 1.20 1.58 2.33 2.77 3.64
PB 92.75 96.10 98.65 3.79 4.52 5.93 1.00 1.19 1.57 2.19 2.61 3.43
FI 91.30 95.80 99.10 ∞ ∞ ∞ 0.97 1.21 1.77 1.73 2.28 4.13
DIMER 91.55 96.05 99.10 1.16 1.52 3.70 0.98 1.22 1.81 1.75 2.31 4.23
LR Test 90.20 95.00 98.95 ∞ ∞ ∞ 0.95 1.18 1.73 1.68 2.20 3.98
INL–LR 0.1% 0.4% 1.9%
INL–FI 0.1% 0.2% 1.3%

performances for all methods. Following Efron and Tibshi-
rani (1994, p. 52), we used B = 400 bootstrap replications
for all the bootstrap results reported in this article.

The results for the first parameter configuration
(β10, β20, β21, ω) = (0, 0, 1, 1) are given in Table 1 while
Table 2 presents the results for setting (β10, β20, β21, ω) =
(0, 0, 1, 0.75). QQ plots (not shown here) comparing the
quantiles of β̂21 with the quantiles of the standard nor-
mal distribution in the two parameter configurations with

n1 = n2 = 18 clearly show that for small to moderate sample
sizes, normal approximations are not appropriate.

Table 2 shows that when n1 = n2 = 18 the empirical mean
of β̂21 is 2.85 when the true value is 1.00. The reason for
this difference is that β̂21 follows a Cauchy like distribution,
and one of characteristics for this distribution is that it has
severely heavy tails. For example, the maximum of the abso-
lute values of β̂21 reached 3, 138 over the 2000 runs in this
case. Therefore, some severe outliers dramatically affected the
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empirical mean. In sharp contrast, the empirical median of β̂21

is 1.00.
Table 2 also displays the percentage of times the Fieller

and likelihood ratio confidence intervals have infinite length.
The inverse Fisher information matrix algorithm has the

lowest coverage probabilities. Hayya’s method and the likeli-
hood ratio test also have sub-nominal coverage probabilities
when the sample sizes are small. Moreover, the latter has a
positive probability to get infinite length. The performance
of the two bootstrap methods is acceptable when the sam-
ple sizes are relatively large. When the sample sizes are small
to moderate, the coverage rate of the bootstrap methods for
the 90% confidence intervals are higher than 90%, while the
coverage rate of the 99% confidence intervals is lower than
99%.

Fieller’s interval has good performance overall in coverage.
Here, we focus on cases that the sample sizes are small and
moderate (n1 = n2 = 18 and n1 = n2 = 25), where Fieller’s
interval can be the real line or otherwise of infinite length. The
inverse Fisher information method produced the shortest con-
fidence interval lengths, not surprising, since its coverage rates
are below the nominal values. Hayya’s method remains stable
but has a low coverage when the sample sizes are small. Com-
pared with the two bootstrap methods, our method obviously
has markedly shorter lengths in the 90% and 95% confi-
dence intervals when the sample sizes are small and moderate,
especially when (n1, n2) = (18, 18). When the sample sizes
are small, DIMER and Fieller’s interval have similar median
and interquartile ranges of lengths, but our method is much
shorter in terms of mean and 90th percentile of length.

4. Empirical Example and Further Simulations

4.1. Method and Data Analysis

The HEI-2005 and the NIH-AARP data available to us were
described in Section 1. The sample sizes were 4300 males
and 1916 females. Let H(x) = exp(x)/{1 + exp(x)} be the
logistic distribution function. Let  = 1, 2 denote men and
women, respectively. Let Yi denote the binary outcome of
colorectal cancer for person i = 1, . . ., n in sample  and
let Xij for j = 1, . . ., J = 12 denote the HEI-2005 score for
the jth dietary component. The traditional HEI-2005 anal-
ysis then posits a model pr(Yi = 1|Xi1, . . ., XiJ) = H(α +
β

∑J

j=1
Xij), in other words, the HEI-scores are equally

weighted. Notice here that the same predictor,
∑J

j=1
Xij, is

to be used both for men and for women. In our case, we allow
for the possibility that the predictor is the same in both pop-
ulations, but the scores are weighted to be based on the data,
so that our model is

pr(Yi = 1|Xi1, . . ., XiJ) = H(α + β

∑J

j=1
ωjXij), (3)

where the weights (ω1, . . ., ωJ) are estimated through the
data. The model as such is not identified, but if we make
the restriction that β1 = −1, then it is identified: the nega-
tive value is because higher HEI-2005 scores, that is, better
diets, lead to lower rates of colon cancer. Thus, with β1 = −1

(3) becomes

pr(Yi1 = 1|Xi11, . . ., XiJ1) = H(α1 − ∑J

j=1
ωjXij1);

pr(Yi2 = 1|Xi12, . . ., XiJ2) = H(α2 + β2

∑J

j=1
ωjXij2).

If we write Ti = ∑J

j=1
ωjXij, then we see that if the relative

risk in men for changing Ti is R, the same change in women
has a relative risk R−β2 . Hence we wish to form a confidence
interval for β2. We fit model (3) by maximum likelihood, and
the asymptotic covariance matrix � of (β2, ω1, . . ., ωJ)

T was
estimated using the Fisher information matrix.

To see how this relates to the Fieller problem, let ω =
(ω1, . . ., ωJ)

T, λ = β2ω, and e be the J × 1 vector of ones.
From � and the delta method, the asymptotic covariance
matrix for (ω̂, λ̂) can be constructed, and the covariance
matrix of (eTλ, eTω) is easily computed. Also, β2 = eTλ/eTω

and β̂2 = eTλ̂/eTω̂. Thus, we see that β̂2 is the ratio of two
asymptotically normal random variables, and hence DIMER,
Fieller’s method, etc. can be applied.

In the NIH-AARP study, the rate of colorectal cancer for
men is 0.73%, while it is 0.48% for women. In the data analy-
sis, we found that β̂2 = −0.747, so that if relative risk of 0.60
for men who improve their diet by a fixed amount, it is 0.68
for women who improve their diet the same amount. Thus,
for colorectal cancer, the indication is that men are more sus-
ceptible, a well-known fact, and that they will have greater
benefit for the same change in diet.

In the top panel of Table 3, we present the confidence inter-
vals for the various methods. We see there that the confidence
intervals for the inverse Fisher score method and Hayya’s
method are noticeably shorter than the others, the nonpara-
metric bootstrap is quite a bit longer, and the parametric
bootstrap, Fieller’s interval, DIMER, and the likelihood ratio
test are intermediate. The nonparametric bootstrap does not
suggest differences in risk between men and women even
at 90% confidence. With the exception of the nonparamet-
ric bootstrap, whose intervals we believe are much too long,
see Section 4.2, all indications are that the risk for men and
women for the same change in diet is statistically significant,
with a p-value of < 0.01 for DIMER.

In the next subsection, we study whether the different
lengths of the confidence intervals are reproducible in simula-
tions, and through these simulations, which methods attained
nominal coverage.

4.2. Simulation

The sample sizes were the same as in the data set, namely
4300 males and 1916 females. We used a bootstrap resample
of the HEI-2005 scores in the NIH-AARP data as the covari-
ates, separately for men and women, and generated 2000
data sets with binary outcome data according to the fit to
the model (3), the parameter estimates of which are given
in the caption to Table 3. The mean confidence intervals
across the 2000 simulations are given in the bottom panel of
Table 3. The result reflects the same phenomenon that was
observed in the actual data set, namely the inverse Fisher
score method and Hayya’s method are noticeably shorter
than the others, the nonparametric bootstrap is quite a bit
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Table 3
Top Panel: confidence intervals for β2 with the actual case-control data set of Section 4.1. The estimated values for

parameter are (β̂2, α̂1, α̂2) = (−0.747, −1.115, −1.024),
ω̂ = (0.030, 0.018, 0.083, 0.033, −0.001, 0.081, 0.094, −0.043, 0.068, −0.020, 0.041, 0.098)T. Bottom panel: average confidence
intervals for β2 in the simulation study of Section 4.2 for a logistic regression model with 2000 simulated case control data

sets. Here the acronyms are IF, inverse Fisher score method; HM, Hayya’s method; NB, nonparametric bootstrap; PB,
parametric bootstrap; FI, Fieller’s interval; DIMER, Direct Integral Method for Ratios; and LR Test, likelihood ratio test.

Data analysis

Method 90% 95% 99%
CI CI CI

IF (−1.17, −0.33) (−1.25, −0.25) (−1.40, −0.09)
HM (−1.18, −0.35) (−1.26, −0.27) (−1.41, −0.11)
NB (−1.67, 0.18) (−1.85, 0.35 ) (−2.20, 0.70)
PB (−1.26, −0.23) (−1.36, −0.13) (−1.56, 0.06)
FI (−1.26, −0.33) (−1.41, −0.24) (−1.84, −0.02)
DIMER (−1.26, −0.33) (−1.41, −0.24) (−1.84, −0.02)
LR Test (−1.28, −0.30) (−1.41, −0.22) (−1.69, −0.05)

Simulation: Average confidence intervals

Method 90% 95% 99%
CI CI CI

IF (−1.17, −0.37) (−1.24, −0.29) (−1.39, −0.15)
HM (−1.18, −0.38) (−1.26, −0.31) (−1.40, −0.16)
NB (−1.46, −0.08) (−1.59, 0.06) (−1.85, 0.32)
PB (−1.26, −0.27) (−1.36, −0.18) (−1.55, 0.01)
FI ∞ ∞ ∞
DIMER (−1.28, −0.35) (−1.47, −0.22) (−2.52, 0.53)
LR Test (−1.28, −0.36) (−1.40, −0.29) (−1.67, −0.14)

longer, and the parametric bootstrap, DIMER, and the
likelihood ratio test are intermediate. As seen in the previous
simulations, the mean lengths of Fieller’s interval in this case
are infinite for 90%, 95%, and 99% intervals.

In Table 4, we show the confidence interval coverage
performance of the various methods. The inverse Fisher
score method and Hayya’s method both have short confi-
dence intervals generally, but also much less than nominal

Table 4
Analysis of the confidence intervals for β2 in a simulation study of Section 4.2 for a logistic regression model with 2000

simulated data sets. There are 4300 males with 1075 individuals with colorectal cancer and 1916 females with 479 having the
disease. “INL–LR” depicts the % of times that the interval by the likelihood ratio test was of infinite length, and “INL–FI”
depicts the % of times that Fieller’s interval was infinite length, either the entire real line or two infinite length disconnected
intervals. Here the acronyms are IF, inverse Fisher score method; HM, Hayya’s method; NB, nonparametric bootstrap; PB,
parametric bootstrap; FI, Fieller’s interval; DIMER, Direct Integral Method for Ratios; and LR Test, likelihood ratio test.

Mean Mean Median 90% Quantile
Coverage length length length

Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
CI CI CI CI CI CI CI CI CI CI CI CI

IF 84.10 91.65 97.20 0.79 0.95 1.24 0.76 0.91 1.19 0.99 1.18 1.55
HM 83.35 91.25 97.25 0.79 0.95 1.24 0.76 0.91 1.19 0.99 1.18 1.55
NB 96.55 98.45 99.60 1.38 1.65 2.17 1.19 1.41 1.86 2.08 2.48 3.26
PB 92.05 96.15 99.25 0.99 1.18 1.56 0.98 1.17 1.54 1.08 1.29 1.70
FI 87.60 94.30 99.00 ∞ ∞ ∞ 0.87 1.09 1.68 1.22 1.61 ∞
DIMER 87.70 94.20 98.95 0.94 1.25 3.05 0.87 1.10 1.74 1.23 1.70 4.22
LR Test 86.85 92.80 98.25 0.92 1.11 1.53 0.87 1.05 1.43 1.18 1.44 2.01
INL–LR 0.0% 0.0% 0.0%
INL–FI 1.6% 3.5% 10.4%
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coverage probability. The likelihood ratio test has longer
intervals than the inverse Fisher score and Hayya’s method,
but it is still under coverage. The nonparametric bootstrap
had by far the longest intervals, and here we see great over
coverage. The parametric bootstrap, Fieller’s method and
DIMER have close to nominal coverage. For 95% confidence
intervals, Fieller’s method was of infinite length for almost
4% of the simulations. In this simulation, the parametric
bootstrap performed somewhat better than DIMER, with
its confidence intervals being somewhat shorter, although
computationally it is, on average, 35 times slower to compute
for data sets of this size.

For comparison purposes, the average computational time
in these simulations for the Fisher Score, Hayya, nonpara-
metric bootstrap, parametric bootstrap, Fieller’s interval,
DIMER, and likelihood ratio test were 0.07, 0.15, 75.94, 55.25,
0.15, 1.02, and 54.29 seconds, respectively. To do a more severe
time test, we also generated cohort data similar in size to the
NIH-AARP Study data (293, 615 males and 198, 245 females).
For one such data set, the computational time for the six
former methods (without the likelihood ratio test) was 9.80,
19.25, 8709.00, 3223.44, 19.25, and 20.34 seconds, respectively,
indicating that the time of the parametric bootstrap was 159
times larger than that of DIMER.

5. Discussion

We have developed DIMER for constructing confidence inter-
vals for the ratio of two location parameters. The method,
based on analytical results and further approximations to
account for nuisance parameters, is computationally fast. Our
simulations indicated that compared with other methods in
the literature, DIMER achieves coverage probabilities close to
the nominal levels in all the different scenarios under consider-
ation while providing competitive confidence interval lengths.

While we have no definitive explanation, it is a reasonable
conjecture that an important reason why the DIMER method
works well is that the distribution of the estimated ratio is
heavy tailed. Our DIMER method appeared to be less affected
by this problem due to its direct probability computation,
although it is not unaffected, see below.

However, there are obvious cases that any of the intervals,
including DIMER, may have poor performance. In particu-
lar, in the cases that Fieller intervals are of infinite length, we
found in our simulations that DIMER intervals also increase
in length, sometimes dramatically, especially when the p-value
for testing the denominator being 0 or not is large. We found
the same thing to happen to the other methods we have dis-
cussed: the results were poor, although in some cases better
than DIMER. In the case of normality, only Fieller’s interval
is guaranteed to achieve its nominal coverage probability, at
the potential cost of intervals of infinite length.

All the methods we have considered, other than Fieller’s
interval, are first-order correct, that is, their actual coverage
probability is the nominal one +O(n−1/2). There is a literature
on second order correctness, that is, nominal level +O(n−1),
such as Laplace approximations, second order bootstrap, etc.
It would be interesting to see how and whether these methods
can be applied to our problem of finding a confidence interval
for the ratio of two parameters. The properties of such meth-

ods such as confidence interval lengths and actual coverage in
the settings we have considered are not at all clear.

6. Supplementary Material

The NIH-AARP Study of Diet and Health references in Sec-
tion 4.1 can be accessed from the National Cancer Institute,
but they require a proposal and a Material Transfer Agree-
ment. The Supplementary Material includes a representative
simulated data set for men and for women as in Section 4.2.
The Supplementary Material referenced in Sections 2.1–2.5
and Sections 3.1–3.4 also includes a simulation when the slope
and the intercept are dependent, a series of additional simu-
lations including two with skew-normal regression errors, and
definition of the HEI-2005 scores. Matlab programs imple-
menting our method are also available at the Biometrics web
site on Wiley Online Library.
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