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ABSTRACT

Motivation: Gut microbiota can be classified at multiple taxonomy

levels. Strategies to use changes in microbiota composition to effect

health improvements require knowing at which taxonomy level inter-

ventions should be aimed. Identifying these important levels is difficult,

however, because most statistical methods only consider when the

microbiota are classified at one taxonomy level, not multiple.

Results: Using L1 and L2 regularizations, we developed a new variable

selection method that identifies important features at multiple

taxonomy levels. The regularization parameters are chosen by a new,

data-adaptive, repeated cross-validation approach, which performed

well. In simulation studies, our method outperformed competing

methods: it more often selected significant variables, and had small

false discovery rates and acceptable false-positive rates. Applying

our method to gut microbiota data, we found which taxonomic levels

were most altered by specific interventions or physiological status.

Availability: The new approach is implemented in an R package,

which is freely available from the corresponding author.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

With improved culture-independent techniques, a typical study
of gut microbiota now involves data from numerous microbes.

The microbes are classified at multiple taxonomy levels, namely,

phylum, class, order, family, genus and species. Each taxonomy

level has many subdivisions, and the number of subdivisions
increase on progression from phylum to species level.

Strategies to use changes in microbiota composition to effect

health improvements require knowing at which taxonomy level
interventions should be aimed. Levels to target are those with

subdivisions identified as having an impact on the target health

outcome. From a biological perspective, only a few subdivisions

at each level are believed to play a role in certain health

outcomes. Identifying the few important subdivisions at each
level is difficult, however, because of the increasing number of
subdivisions on progression from phylum to species level and

because the microbial data are typically based on small sample
sizes. Thus, a method that overcomes these difficulties and
identifies important subdivisions at multiple taxonomy levels
is needed.

This biological problem corresponds to a variable selection
problem where the variables are grouped at multiple levels,
and the number of variables (p) far exceeds the sample size (n).

We suppose that each level has sparse effects. In the microbiota
data, sparse effects mean that only a few subdivisions within a
particular taxonomy level actually impact the health phenotypes

of interest. For our purposes, we consider the case where
variables are divided into groups and subgroups within the
groups. Our interest, thus, is developing a method that selects
important groups (e.g. phyla), subgroups (e.g. families) and

individual predictors (e.g. genera).
Selecting variables clustered into groups and subgroups is

challenging. When the variables are divided only into groups

(without subgroups), a popular technique is the group Lasso
(Yuan and Lin, 2006), which selects an entire group of variables
to be included or excluded from the model. The group Lasso,

however, has substantial drawbacks. First, the method assumes
that the model submatrices for each group are orthonormal.
When orthonormality is not satisfied, the group Lasso may

select an incorrect model (Friedman et al., 2010). Second, the
group Lasso does not achieve sparsity within each group,
which can be useful. For the microbial data, we could design
more specific strategies for changing microbiota composition if

we knew which particular families (i.e. subgroups) in phyla (i.e.
group) impacted health phenotypes of interest.
To overcome the deficiencies of the group Lasso, Simon et al.

(2012) recently proposed the sparse-group Lasso (SGL). The
method imposes no orthonormality requirements on the
group model submatrices and achieves sparsity between and

within groups through a clever use of the Nesterov (2007)
method for generalized gradient descent. The SGL works well
when variables are clustered into groups, but not when they are
clustered at more than one level—a feature inherent to gut

microbiota data.*To whom correspondence should be addressed.
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To accommodate selecting important groups, subgroups

and individual predictors, we propose three new algorithms.

The first algorithm, the sparse group-subgroup Lasso

(SGSL), generalizes the work of Simon et al. (2012). It is

based on using L1 and L2 regularizations in a linear regression

model; convex non-linear regression models are discussed in

the Supplementary Material. Our two other proposed algo-

rithms use appropriate combinations of already existing vari-

able selection procedures. First, we propose applying the group

Lasso to the groups followed by SGL applied to the sub-

groups. Second, we propose applying the group Lasso to

both the groups and subgroups followed by applying the

Lasso (Tibshirani, 1996) to select among the individual pre-

dictors. We demonstrate in a simulation study that our first

algorithm outperforms the other two.

SGSL is a special case of the tree-structured group Lasso

(Jenatton et al., 2011; Liu and Ye, 2010; Zhao et al., 2009),

where nodes on the tree represent groups or subgroups of

features and ‘leaf’ nodes represent individual features. The

tree-structured group Lasso, however, uses a smoothing prox-

imal gradient method (Kim and Xing, 2012) to ‘prune’ the

entire tree collectively, whereas our method uses an accelerated

generalized gradient descent approach to determine sparsity

among groups, then subgroups and then individual features.

Moreover, we consider a tree without cycles, meaning there is

no overlap between groups/subgroups of features; i.e. each in-

dividual feature only belongs to one subgroup, and each sub-

group only belongs to one group. Hence, our problem differs

from the overlapping group Lasso as in the analysis of breast

cancer gene expression data (Van de Vijver et al., 2002) where

the interest is finding important pathways among overlapping

genes. Our problem also differs from a hierarchical variable

selection (Zhao et al., 2009) where a feature is subject to selec-

tion only after another feature is selected first. We do not

impose this requirement.
Like other Lasso-based procedures, SGSL also requires se-

lecting tuning parameters, for which we propose a data-adap-

tive approach. Our approach involves multiple applications of

10-fold cross-validation that we show performs well in selecting

the tuning parameters through various simulation studies.

Therefore, the main contributions from our work include (i) a

new variable selection procedure (SGSL), which identifies

important groups, subgroups and individual predictors through

combined L1 and L2 regularizations. (ii) We show that achiev-

ing sparsity at multiple levels cannot be achieved through

simple combinations of existing Lasso approaches. We show

that such combinations will select relevant features less

often than SGSL or never (Section 3). (iii) We provide a

data-adaptive cross-validation approach that improves over

the traditional cross-validation to select the tuning parameters.

(iv) In microbiome data, our method identifies which taxonomic

levels were most altered by specific interventions or physio-

logical status.
The rest of the article is as follows. Section 2 describes SGSL

and Section 3 evaluates its performance compared with

competing methods. In Section 4, we describe the microbiota

data that motivated this methodology and analyze the data.

Section 5 concludes the article.

2 METHODS

2.1 Data structure

We consider a linear regression model with sample size n, a response

variable y ¼ ðy1, . . . , ynÞ
T across the samples, and an n� p matrix of

predictors X. For the microbial data, y corresponds to measurements

of health features, and X contains information about the p microbes.

We have p4n, and without loss of generality, all variables are standar-

dized to have mean zero and sample variance one, so that the intercept

is excluded from the model.

Because the predictors have subgroup and group memberships, we

suppose there are L disjoint groups, and each group k has Mk disjoint

subgroups, k ¼ 1, . . . ,L. By the disjointedness assumption, there is no

overlap between groups, or overlap between subgroups.

We assume that group k contains pk predictors denoted by the n� pk

matrix XðkÞ � X. We also assume that subgroup m in group k contains

pk,m predictors denoted by the n� pk,m matrix Xðk,mÞ � XðkÞ. The nota-

tion is such that XðkÞ refers to the predictors in group k; whereas Xðk,mÞ

refers to the predictors in subgroup m of group k. The total number of

predictors across all subgroups in group k is pk (i.e.
PMk

m¼1 pk,m ¼ pk), and

the total number of predictors across all groups is p (i.e.

p ¼
PL

k¼1 pk ¼
PL

k¼1

PMk

m¼1 pk,m). Finally, bðkÞ denotes the coefficient

vector associated with group k, and bðk,mÞ is associated with subgroup

m in group k.

2.2 New criterion for achieving sparsity among groups,

subgroups and individual predictors

2.2.1 SGSL: extension of the SGL Our primary objective is iden-

tifying the relevant groups, subgroups and individual predictors in rela-

tion to y. Doing so involves finding a sparse solution for the coefficient

values; i.e. some coefficient values will be zero and some will be non-zero.

If a group’s (subgroup’s) coefficient vector is all non-zero, then that

group (subgroup) is relevant. Otherwise, if there is a mix of zero and

non-zero coefficients in a subgroup, then those predictors with non-

zero coefficient values are relevant and those predictors with zero

coefficient values are not.

To determine which coefficient values are zero and non-zero, we

propose solving bb ¼ argminbQðbÞ where

QðbÞ ¼ ð1=2Þjjy�
XL
k¼1

XðkÞbðkÞjj22 þ �1�
XL
k¼1

ffiffiffiffiffi
pk
p
jjbðkÞjj2

þ �2�
XL
k¼1

XMk

m¼1

ffiffiffiffiffiffiffiffiffi
pk,m
p

jjbðk,mÞjj2 þ ð1� �1 � �2Þ�jjbjj1:

Here, jj � jj2 denotes the L2-norm and jj � jj1 denotes the L1-norm. The

regularization parameters �, �1, and �2 control the level of sparsity

among the groups, subgroups and individual predictors, and satisfy

two criteria: �, �1, �2 � 0 and �1 þ �2 � 1. Sparsity among groups and

subgroups results from the non-differentiability of the L2-norm at zero.

For example, because jjbðkÞjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðkÞ

T

bðkÞ
q

is non-differentiable at

bðkÞ ¼ 0, the group coefficient bðkÞ can be exactly zero. Likewise, the

subgroup coefficient bðk,mÞ can be exactly zero because jjbðk,mÞjj2 is

non-differentiable at bðk,mÞ ¼ 0. Though we define QðbÞ for a linear

model, our method also extends to convex non-linear regression

models; see the Supplementary Material.

The criterion QðbÞ also encompasses different versions of the Lasso.

We have the Lasso (Tibshirani, 1996) at �1 ¼ 0, �2 ¼ 0; the group Lasso

(Yuan and Lin, 2006) at �1 ¼ 1, �2 ¼ 0; the group Lasso at the subgroup

level at �1 ¼ 0, �2 ¼ 1; SGL (Simon et al., 2012) among groups at

�2 ¼ 0; SGL among subgroups at �1 ¼ 0; and we have sparsity only

among groups and subgroups when �140, �240 and �1 þ �2 ¼ 1.
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To find the minimizerbb of QðbÞ, we take advantage of the criterion’s

convexity and separability between groups and subgroups. Through a

careful analytical derivation involving properties of subgradients

and the Karush–Kuhn–Tucker conditions, we derive the conditions

for when the group coefficient bðkÞ and the subgroup coefficient bðk,mÞ

are exactly zero; see Supplementary Material. These results motivate us to

use a blockwise descent algorithm at the group and subgroup levels.

When a subgroup’s coefficient vector bðk,mÞ is non-zero, we estimate the

subgroup coefficients using the accelerated generalized gradient descent

method (Nesterov, 2007) and a step-size optimization as in Simon et al.

(2012).

In the algorithm below, let rð�kÞ ¼ y�
P

‘6¼k X
ð‘Þbbð‘Þ denote the partial

residual after removing group k, and rð�k,mÞ ¼ rð�kÞ �
P

s 6¼m Xðk, sÞbbðk, sÞ
denote the partial residual after removing subgroup m from group k.

Let Sð�Þ be the coordinate-wise soft thresholding operator (Donoho

and Johnston, 1994): ½Sfz, ð1� �1 � �2Þ�g�j ¼ signðzjÞfjzjj � ð1� �1�

�2Þ�gþ where zþ ¼ maxðz, 0Þ. Let ‘frð�k,mÞ,b
ðk,mÞg ¼ jjrð�k,mÞ � Xðk,mÞ

bðk,mÞjj22=2, and define Rtfb
ðk,mÞg ¼ S

h
bðk,mÞ � tr‘frð�k,mÞ, b

ðk,mÞg,

ð1� �1 � �2Þt�
i
as well as ftfb

ðk,mÞg ¼ 1�
t�2�

ffiffiffiffiffiffiffi
pk,m
p

jjRtfb
ðk,mÞgjj2

h i
þ
Rtfb

ðk,mÞg.

Our proposed algorithm is then:

1. Group component: Iterate through each group k ¼ 1, . . . ,L. If for

group k,

XMk

m¼1

��
jjSfXðk,mÞ

T

rð�kÞ, ð1� �1 � �2Þ�gjj2

� �2�
ffiffiffiffiffiffiffiffiffi
pk,m
p

�
þ

�2

� �21�
2pk,

ð1Þ

setbbðkÞ ¼ 0; otherwise,bbðkÞ 6¼ 0 and do step 2 for group k.

2. Subgroup component: Iterate through the subgroups m ¼ 1, . . . ,Mk

of group k and do the following.

a. If jjSfXðk,mÞ
T

rð�k,mÞ, ð1� �1 � �2Þ�gjj2 � �2�
ffiffiffiffiffiffiffiffiffi
pk,m
p

, setbbðk,mÞ ¼ 0. Otherwise, bbðk,mÞ 6¼ 0, and do step (b).

b. Set the step-size t¼ 1 and counter s¼ 1. Define Atfb
ðk, 1Þ, . . . ,

bðk,MkÞg ¼

h
f Tt fb

ðk, 1Þg, . . . , f Tfb
ðk,Mk Þg

t

iT
and

Ufbðk,mÞ, tg ¼ 1�
t�1�

ffiffiffiffiffi
pk
p

jjAtfb
ðk, 1Þ, . . . , bðk,MkÞgjj2

� �
þ

� 1�
t�2�

ffiffiffiffiffiffiffiffiffi
pk,m
p

jjRtfb
ðk,mÞgjj2

� �
þ

Rtfb
ðk,mÞg:

Let bðk,mÞ, s ¼ hðk,mÞ, s ¼bbðk,mÞ, where bbðk,mÞ is the current value.

Iterate through the following steps until convergence:

(1) Compute the gradient g ¼ r‘frð�k,mÞ, b
ðk,mÞ, sg.

(2) Compute �ðs, tÞ ¼ Ufbðk,mÞ, s, tg � bðk,mÞ, s.

(3) If ‘
h
rð�k,mÞ,Ufb

ðk,mÞ, s, tg
i
4‘frð�k,mÞ, bðk,mÞ, sg þ gT�ðs, tÞþ

1
2t jj�ðs, tÞjj

2
2, update the step size t to 0:8t. Repeat until the

inequality no longer holds to optimize t.

(4) Set hðk,mÞ, sþ1 as Ufbðk,mÞ, s, tg.

(5) Set bðk,mÞ, sþ1 as hðk,mÞ, s þ fs=ðsþ 3Þgfhðk,m, sþ1Þ � hðk,mÞ, sg; i.e.

a Nesterov step.

(6) Update s to sþ 1.

The algorithm above, known as SGSL, generalizes the SGL algorithm.

When the predictors are divided only into groups (i.e. �2 ¼ 0), the above

algorithm is actually distinctly different from SGL. This is because of

the definition of Ufbðk,mÞ, tg in Step 2(b), which uses information from

subgroups and groups, not just groups. When �2 ¼ 0, the condition

in Equation (1) is equivalent to when an entire group is excluded from

the model in SGL (Simon et al., 2012).

2.2.2 Selection of regularization parameters Different choices of

�,�1,�2 yield different solutions bb. To select these tuning parameters,

we proceed as follows.

First, for a fixed �1, �2, we choose the optimal � by varying it over

the range ½��	, �	�, where �	 is the smallest � such that QðbÞ is minimized

at bb ¼ 0, and � is a small fraction, such as 0.05. To find �	, note that

from condition (1),bb ¼ 0 minimizes QðbÞ when

XMk

m¼1

jjSfXðk,mÞ
T

y, ð1� �1 � �2Þ�gjj2 � �2�
ffiffiffiffiffiffiffiffiffi
pk,m
p

h i
þ

� �2

� �21�
2pk,

ð2Þ

for all groups k ¼ 1, . . . ,L. Thus, �	 is the smallest � value where the

above inequality holds for all groups. A practical approach for approx-

imating �	 is taking � ¼ 2j for j ¼ 0, 1, 2, . . . , and stopping at the first j

for which condition (2) holds for all groups. At this first j, we have that

�	 2 ð2j�1, 2jÞ. To further improve the estimate of �	, one may then

bisect the interval ð2j�1, 2jÞ repeatedly until �	 2 ð�1, �2Þ, where

j�2 � �1j50:0001. Here, when � ¼ �2, condition (2) holds for all

groups, and when � ¼ �1, condition (2) fails to hold for at least one

group. Finally, take �	 ¼ �2.

Performing the algorithm in Section 2.2.1 at fixed �1, �2 and over

the range of � values yields different model fits. Among all fits, we

choose the best descriptive model as the one that minimizes Mallows’

Cp criterion:Mnðp
	Þ ¼ SSEp	=�̂

2 � nþ 2p	, where p	 denotes the number

of predictors in the selected model, SSEp	 denotes the residual sum of

squares and �̂2 is an appropriate estimator of the model error variance.

For example, when n4p, �̂2 can be the residual mean square when

using all available variables, or when n5p, �̂2 can be the variance of y

(Hirose et al., 2013). Mallows’ Cp criterion balances the residual sum

of squares of a fitted model with the number of non-zero parameter

estimates. Other model selection criteria may also be used (Müller and

Welsh, 2010).

The above procedure selects � well for a fixed �1, �2, and now we

describe how to optimally select �1 and �2. We propose selecting the

optimal �1,�2 based on repeated 10-fold cross-validation as advocated

by Garcia et al. (2013) and Martinez et al. (2011). For a fixed �1 ¼ �10
and �2 ¼ �20, a single application of 10-fold cross-validation works

as follows: (i) randomly partition the data into 10 non-overlapping

equal-sized subsets; (ii) remove data subset d, and apply the algorithm

in Section 2.2.1 at �10,�20 and over the range of �, and select the

model that minimizes Mallow’s Cp criterion. The minimizing model has

associated solution denoted by bbð�dÞ (the subscript ð�dÞ emphasizes the

notion that data subset d was removed); (iii) repeat step (ii) for each

data subset d ¼ 1, . . . , 10 and compute the cross-validation score

CVð�10,�20Þ ¼
P10

r¼1 jjyðdÞ � XðdÞbbð�dÞjj22 where yðdÞ and XðdÞ denote the

response and explanatory variables for the data subset d that was

removed and bbð�dÞ is the solution from step (ii). In our applications, we

repeated this three-step procedure for �10,�20 taking values 0.01, 0.04,

0.07, 0.10, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95 such that

�10 þ �2051. The optimal �1,�2 is the pair that minimizes the cross-

validation score.

Analogous to the work done in Garcia et al. (2013) and Martinez et al.

(2011), we did two additional steps to the above 10-fold cross-validation.

First, when the minimizer of the cross-validation score was not unique,

we took �1,�2 as the average of the minimizers. Second, because Step (i)

yields a different random partition on each application, repeated

applications of the 10-fold cross-validation may yield different optimal

�1,�2 and thus different selected variables, especially when the signals are

sparse and small. Martinez et al. (2011) also noted this and suggested

3
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performing the 10-fold cross-validation repeatedly, e.g. 100 times, to

develop a complete understanding of the variables selected. The idea,

thus, is to repeat the 10-fold cross-validation multiple times and retain

those variables that were selected at least 60% of the time, say.

2.3 Repeated application of current Lasso methods

Other possible approaches for obtaining sparsity among groups, sub-

groups and individual predictors are through appropriate combinations

of the Lasso, group Lasso and SGL.

2.3.1 Group Lasso and SGL To achieve sparsity among the groups,

one may first apply the group Lasso after orthonormalizing the group

model matrices. The group Lasso criterion is when �1 ¼ 1 and �2 ¼ 0 in

QðbÞ, and hence depends only on the regularization parameter �. To

optimally select �, we evaluate the criterion QðbÞ with �1 ¼ 1,�2 ¼ 0 at

a range of � values as in Section 2.2.2. The optimal � corresponds to the

model that minimizes Mallows’ Cp criterion. Because the group Lasso

selects an entire group of predictors to be included/excluded from the

model, the chosen model will have some groups with all non-zero coef-

ficients (i.e. groups retained by the group Lasso), and some groups with

all zero coefficients (i.e. groups dismissed by the group Lasso).

After achieving sparsity among groups, we then proceed to achieve

sparsity among the subgroups and individual predictors via SGL. For

those groups selected by the group Lasso, we apply SGL to all subgroups

within these groups. When applying SGL, we do not orthonormalize the

subgroup model matrices as done for the group Lasso. The criterion for

SGL among subgroups is when �1 ¼ 0 in QðbÞ and thus depends

on �2, �. We choose the optimal � and �2 via a repeated 10-fold cross-

validation as in Section 2.2.2.

2.3.2 Repeated group Lasso and Lasso Another way to achieve the

desired sparsity is as follows. First, apply the group Lasso to the ortho-

normalized group model matrices to select relevant groups. Second, using

the selected groups, select relevant subgroups within by applying the

group Lasso to the orthonormalized subgroup model matrices. Lastly,

select relevant individual predictors by applying the Lasso to all

predictors in the selected subgroups. In the last step, the Lasso is applied

to the original predictors, not the orthonormalized versions. In each

application of group Lasso and Lasso, criterion QðbÞ only depends on

�, which is chosen as in Section 2.2.2.

3 SIMULATION STUDY

3.1 Simulation design

We evaluated the performance of the proposed methods in
Section 2 on simulated data where predictors have group and

subgroup memberships. We considered L¼ 10 groups such that

each group had 2 subgroups. We divided p¼ 80 predictors

so that each subgroup had 4 predictors, and each group had
8 predictors.

Covariates in each group were generated from a Normalð0,DÞ
distribution where D ¼ diagðD	,D	Þ and D

	 ¼ 0:7J4 þ 0:3I4.
Here, J4 corresponds to a 4� 4 matrix of ones, and I4 is the

4� 4 identity matrix. This data generation procedure implies

that predictors within the same subgroup have a correlation of
0.7, but predictors in different subgroups/groups are

independent.
We set sample size n¼ 30 and generated the response variable

y ¼
P10

k¼1

P2
m¼1 X

ðk,mÞbðk,mÞ þ �, where � is Normalð0, �2InÞ.

The parameter �2 and the coefficient vectors for each subgroup

were chosen according to two settings. In Setting 1, bð1, 1Þ ¼

bð1, 2Þ ¼ bð2, 1Þ ¼ ð6, 6:4, 6:6, 8ÞT, bð3, 1Þ ¼ ð12:5, 12:5, 0, 0ÞT and

�2 ¼ 1. All remaining subgroup coefficients were zero. In

Setting 2, bð1, 1Þ ¼ bð1, 2Þ ¼ bð2, 1Þ ¼ ð2, 4, 6, 8ÞT, bð3, 1Þ ¼ ð10, 10,

0, 0ÞT and �2 ¼ 1. Again, all remaining subgroup coefficients

were zero.
For each parameter setting, we generated 500 datasets and

applied seven methods: SGSL, the two variable selection proced-

ures in Section 2.2.2 and the following four other competing

methods.

(1) Lasso: We applied the Least Angle Regression algorithm

of Efron et al. (2004), which provides the entire sequence

of model fits in the Lasso path. The best fitting model was

that which minimized Mallows’ Cp criterion. This method

ignores the grouped nature of the predictors.

(2) Group Lasso: We applied the group Lasso after orthonor-

malizing the group model matrices. To find the best fitting

model, we minimized QðbÞ, with �1 ¼ 1,�2 ¼ 0, over a

range of � values as in Section 2.2.2, and chose the

model that minimized Mallows’ Cp criterion. This

method yields sparsity among groups, but not among

subgroups, nor individual predictors.

(3) Repeated group Lasso: We applied the group Lasso at the

group and subgroup levels. In each application of the

group Lasso, the best fitting model was that which mini-

mized Mallows’ Cp criterion. This method yields sparsity

among groups and subgroups, but not among individual

predictors.

(4) Sparse-group Lasso: We applied SGL among the groups;

that is, we minimized QðbÞ where �2 ¼ 0. To select the

tuning parameter �1 and �, we applied the repeated

10-fold cross-validation in Section 2.2.2. This method

ignores subgroup memberships and may not select signifi-

cant subgroups.

For all methods requiring a selection of �1 and/or �2, we

repeated the 10-fold cross-validation 100 times to select the

optimal �1 and/or �2. Ultimately, this led to 100 possibly differ-

ent �1,�2 values, and thus 100 possibly different ways variables

were selected. Ultimately, we retained variables that were

chosen at least 60% of the time in the 100 repeated applications.

We did not use the average of the �1,�2 values to select the

variables.
To evaluate the seven methods, we computed the average

percentage of time predictors were selected, the observed false

discovery rate (Benjamini and Hochberg, 1995, FDR) and

geometric mean of specificity and sensitivity (defined later in

the text). To compute these quantities, we divided the predictors

in each subgroup into those whose true parameter values are

non-zero (i.e. relevant predictors), and those whose true param-

eter values are zero (i.e. irrelevant predictors). We then reported

the average percentage of time relevant and irrelevant predictors

were selected in each subgroup. The observed FDR is the ratio

of the average number of irrelevant predictors selected (i.e.

false selections) over the average number of predictors selected.

The geometric mean of sensitivity and specificity is

G 
 ðspecificity� sensitivityÞ1=2 (Kubat et al., 1998). Specificity

is the proportion of irrelevant predictors that were not selected
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among irrelevant predictors, and sensitivity is the proportion of
relevant predictors that were selected among relevant predictors.

The range of G is [0,1], and large G-values indicate that most

predictors are classified correctly. We prefer G over specificity

and sensitivity alone, as it counteracts the imbalance between the

number of relevant and irrelevant predictors (Kubat et al., 1998).

Observed FDR and G-values were computed using all groups,

and using only Groups 2 and 3 so as to demonstrate how the
methods perform for these two groups, which have sparsity

within their subgroups.

Among all methods, the reliable one will routinely select rele-
vant predictors, and rarely or never select irrelevant predictors.

Thus, the ideal method will have low FDRs and high G-values.

3.2 Simulation results

Results for the two simulation settings are given in Table 1. In
general, our procedure based on the new criterion QðbÞ provided

the most reliable results: it largely selected the relevant predictors

and ignored irrelevant predictors (irrelevant predictors were in-

correctly chosen55% of the time). This performance resulted in

small FDRs, often smaller than the FDRs from other methods.

In comparison to SGL, we expected our method to perform

equally well when determining relevant groups (both methods

have essentially similar criterion for determining if a group is
relevant or not), but we expected our method to outperform

SGL in detecting sparsity between and within subgroups. SGL

is not designed to detect relevant subgroups within a group, nor

is it designed to detect relevant individual predictors within a

subgroup. Our method, in contrast, can do this. The results

from our simulation study confirmed these expectations.
Our proposed procedure performed as well as SGL in

selecting Group 1, which had all non-zero coefficients. But, our

method better detected the true sparsity in Groups 2 and 3.

Compared with SGL, our method correctly selected the relevant
subgroups and relevant individual predictors at least 4% more

often, and had nearly the same or fewer incorrect decisions in

selecting irrelevant predictors. This correct classification is

evident by the larger G-value for Groups 2 and 3 (see Gz in

Table 1). For these two groups, our proposed method has a

G-value at least 1.14 times bigger than the G-value for SGL.

When considering all groups together (see G	 in Table 1), the

G-values for our proposed method and SGL are similar because

of the similar performance in Groups 1 and Groups 4–10. This is

no surprise given that for Group 1 and Groups 4–10, our pro-

posed method and SGL have similar selection criteria, and thus,

should behave equally well as they do. However, when there is

sparsity between and within subgroups (as is common in micro-

biome data; see Section 4), SGL fails to detect such a structure.

Thus, when there is sparsity between and within groups and

subgroups, our method has higher sensitivity and more power

than SGL.
Our proposed method also yielded better results than the other

five methods in terms of capturing the true clustering and achiev-

ing higher G-values. The Lasso, designed to select individual

predictors but not entire subsets, largely ignored the relevant

cluster of predictors in Group 1 and in Group 2, subgroup 1.

For Group 3, which only had 3 of 10 relevant predictors, the

Lasso did successfully select these variables as often as our pro-

posed procedure did. Thus, when necessary, our method can

behave similarly to the Lasso, which is an attractive feature

when individual features need to be selected. Still, because our

simulated data has a specific grouping structure which the Lasso

cannot capture, our proposed method has larger G-values than

the Lasso both when computed across all groups (0.64 for our

method compared with 0.56 for the Lasso) and when computed

for Groups 2 and 3 (0.40 for our method compared with 0.36 for

the Lasso). Hence, because our interest goes beyond selecting

individual predictors, we prefer our proposed method.
Lastly, the proposed iterative procedures all fared poorly,

with G-values nearly half that of our proposed method. These

Table 1. Simulation results for Setting 1 and 2 based on 500 simulations

Group Subgroup SGSL SGL Lasso GpL,

SGL

GpL� 2,

Lasso

GpL� 2 GpL New

method

SGL Lasso GpL,

SGL

GpL� 2,

Lasso

GpL� 2 GpL

Setting 1 Setting 2

1 1 (Non-zero) 53.20 56.70 40.80 14.10 11.05 20.80 25.20 50.80 52.45 38.85 11.00 9.25 16.80 18.00

2 (Non-zero) 54.05 56.35 41.50 14.10 12.65 23.00 25.20 52.50 52.95 39.90 11.10 8.20 15.20 18.00

2 1 (Non-zero) 16.55 12.55 13.40 0.00 0.00 0.00 0.00 17.65 12.75 15.45 0.00 0.00 0.00 0.00

2 (Zero) 4.85 5.45 5.70 0.00 0.00 0.00 0.00 4.90 5.30 5.70 0.00 0.00 0.00 0.00

3 1 (Non-Zero) 19.20 13.60 21.30 0.00 0.00 0.00 0.00 26.50 19.70 25.80 0.00 0.00 0.00 0.00

1 and 2 (Zero) 3.50 3.37 3.77 0.00 0.00 0.00 0.00 4.40 4.60 4.77 0.00 0.00 0.00 0.00

4–10 (Zero) 0.03 0.01 0.04 0.00 0.00 0.00 0.00 0.04 0.02 0.04 0.00 0.00 0.00 0.00

FDRa 0.07 0.07 0.10 0.00 0.00 0.00 0.00 0.08 0.09 0.11 0.00 0.00 0.00 0.00

Ga 0.64 0.64 0.56 0.30 0.28 0.38 0.41 0.63 0.63 0.56 0.27 0.24 0.33 0.35

FDRb 0.28 0.35 0.32 NA NA NA NA 0.27 0.35 0.31 NA NA NA NA

Gb 0.40 0.35 0.36 0.00 0.00 0.00 0.00 0.41 0.35 0.38 0.00 0.00 0.00 0.00

Note: Average percentages of time each set of variables is selected with our proposed sparse group–subgroup Lasso (‘SGSL’); sparse-group Lasso (‘SGL’); Lasso; group Lasso

at group level and sparse-group Lasso at subgroup level (‘GpL, SGL’); group Lasso at group and subgroup levels, and Lasso at individual features level (‘GpL� 2, Lasso’);

group Lasso at group and subgroup levels (‘GpL� 2’); and group Lasso (‘GpL’). A ‘non-zero’ subgroup means variables are relevant; a ‘Zero’ subgroup means variables are

irrelevant.
aWe also report observed false discovery rate (FDR) and G-values using all groups.
bWe also report observed false discovery rate (FDR) and G-values using Groups 2 and 3.

‘NA’ denotes values were incomputable because of division by 0.
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iterative methods selected relevant predictors in Group 1 nearly
three times less often than did our proposed method and never
selected the relevant predictors in Groups 2 and 3. The inability

to detect the relevant clusters in Groups 2 and 3 most likely
resulted from the initial application of the group Lasso. As the
group Lasso is designed to detect relevant groups, it has difficulty

determining if an entire group is relevant when that group is
sparse. Thus, the sparsity in Groups 2 and 3 prevented the

group Lasso, and all forthcoming Lasso-based methods, from
selecting these groups or the relevant clusters within.

4 EMPIRICAL EXAMPLE

4.1 Microbial data

Our motivating example is from a dietary treatment study in

mice (Thomas et al., 2013) for which we measured fecal micro-
bial diversity. The study used an obesity reversal paradigm and
consisted of n¼ 30 obese male mice equally and randomly

assigned to one of three diets: (i) a control soy-based diet with
0.5% (by weight) inorganic calcium; (ii) a high calcium soy-based

diet with 1.5% (by weight) inorganic calcium; and (iii) a non-fat
dry milk (NFDM) diet with 1.5% (by weight) calcium as
NFDM-intrinsic and inorganic calcium. After 10 weeks of feed-

ing, feces from all mice were analyzed for microbial communities
via pyrosequencing. Mice on the NFDM diet had enhanced

bodyfat loss (Thomas et al., 2013).
For each mouse, data consists of relative messenger RNA

(mRNA) expression of CD68 in adipose and microbial percent-

ages (X) from p¼ 51 microbes classified at the phylum, family
and genus levels. The mRNA expression of CD68 is used to
judge the extent to which macrophages have infiltrated adipose,

an event that occurs with bodyweight gain and is associated with
systemic inflammation (Thomas et al., 2013). The microbes were

classified into two phyla: Bacteriodetes and Firmicutes. Each
phylum had at least five families, with each family having at
least two bacterial genera. The key interest is to find those

microbial phyla, families and genera associated with CD68
mRNA expression in this p4n setting.
A prior analysis in Garcia et al. (2013) demonstrated that diet

has a significant impact on expression of mRNA for CD68. To
accommodate this diet effect, we took the response variable (y)
as the residuals from regressing expression of mRNA for CD68

on diet. See Garcia et al. (2013) for other approaches.

4.2 Results

We applied the same seven variable selection techniques from

the simulation study to the microbial data. We found that our
proposed procedure selected the entire family Streptococcaceae
in the Firmicutes phyla to have an effect on expression of

mRNA for CD68. The family consisted of Lactococcus and
Streptococcus genera. In comparison, SGL and Lasso were
only able to pick one member from this family (Streptococcus),

which indicates the inflexibility of these latter two methods in
selecting important families (i.e. subgroups).

Having our method select the Streptococcaceae family makes
sense, as members of Streptococcaceae flourish in nutrient-rich
environments, such as an overfed subject’s gut (e.g. obese mice).

Moreover, mice in this study experienced chronic inflammation

secondary to obesity and hyperglycemia as evidenced by elevated
adipose CD68 arising from macrophage infiltration of adipose
tissue (Thomas et al., 2013). At present, it seems unlikely that

simple chronic caloric excess promoted Streptococcaceae abun-
dance in the obese mice, as this relationship was not seen in
newly obese mice [see Thomas et al. (2012) and Supplementary

Material]. Secondary effects appear to play a role as changes in
host inflammatory state were previously associated with
Streptococcaceae family members in hosts with either strongly

positive or negative energy balance. Intestinal infusion of fecal
microbiota from lean donors improved glucose metabolism in
obese humans with metabolic syndrome in conjunction with a

30% reduction in the Streptococcaceae family member
Streptococcus bovis in the small intestine (Vrieze et al., 2012).

Obesity driven type II diabetes and metabolic syndrome are con-
sidered chronic inflammatory states (Dandona et al., 2005).
In recent studies, the Streptococcaceae family has been shown

to be associated with inflammation of various origins and in an
energy independent fashion. First, host physiology can influence
the composition of the microbiota. For example, poor glucose

control in a cohort of European women was associated with
Streptococcus sp. C150 (Karlsson et al., 2013). Second, micro-
biota composition can modulate host physiology in a variable

way. For example, formula feeding is associated with increased
frequency of pediatric intestinal inflammation including necrotiz-
ing enterocolitis; in a mouse model formula feeding increased

Lactococcus at the expense of Lactobacillus and altered host
gene expression to indicate increased oxidative stress, inflamma-
tion and impaired defense capacity (Carlisle et al., 2013). Third,

Smith et al. (2013) showed that microbiota composition deter-
mines host health outcome in response to identical dietary shifts;

in this case, microbiota from twin pairs discordant for the disease
Kwashiorkor variably provoke disease depending on the com-
plexity and adequacy of the diet.

Stability and resilience of intestinal microbial diversity is an
active area of research, and it is now recognized that chronic
alterations in host environmental exposure (e.g. diet) and physio-

logical state (e.g. obese) can influence intestinal microbiota
(Lozupone et al., 2012) and likewise microbiota can respond to
diet to increase/decrease susceptibility of the host to disease

(Carlisle et al., 2013; Smith et al., 2013). Our results further high-
light the need to understand temporal dimension of interventions
to improve efficacy.

5 DISCUSSION

We developed SGSL, a new variable selection procedure that
yields sparsity among predictor groups, subgroups and individ-
uals. For simulated data that had a rich clustering structure, our

method outperformed competing methods with small FDRs and
high geometric means of sensitivity and specificity. Our method
was capable of capturing features detectable by SGL and Lasso,

but went a step further: it correctly identified sparsity between
and within subgroups, a feature common to microbiome data.
We applied our method to a gut microbiota dataset to select

important phyla, families and genera that show an association
with CD68 mRNA expression in adipose. After controlling
for diet effects, our preferred method revealed a family level

relationship in which members of the Streptococcaceae family
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were linked to CD68 expression in adipose tissue of mice with
chronic obesity. All other methods could not detect this relation-
ship. In the Supplementary Material, we analyze a second micro-
biome dataset, in which only our method and Lasso detects an

important individual bacterial genus.
The data we analyzed were classified into different taxonomies

following pyrosequencing, which can result in some genera being

more diverse. If consistently sized operational taxa are needed,
one could use operational taxonomic unit clustering (The
Human Microbiome Project Consortium, 2012). Still, regardless

of the classification, our method is applicable. Thus, one could
apply our method using the different classifications to gain
insight into how microbes impact health-related features.

Of course, which classification to use depends on the project’s
overall goal and available resources.
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