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Abstract. Streaming data are dynamic in nature with frequent
changes. To detect such changes, most methods measure the differ-
ence between the data distributions in a current time window and a
reference window. Divergence metrics and density estimation are re-
quired to measure the difference between the data distributions. Our
study shows that the Kullback-Leibler (KL) divergence, the most
popular metric for comparing distributions, fails to detect certain
changes due to its asymmetric property and its dependence on the
variance of the data. We thus consider two metrics for detecting
changes in univariate data streams: a symmetric KL-divergence and
a divergence metric measuring the intersection area of two distribu-
tions. The experimental results show that these two metrics lead to
more accurate results in change detection than baseline methods such
as Change Finder and using conventional KL-divergence.

1 Introduction

Discovering changes in data streams is a widely studied problem,
which covers applications such as intrusion detection in networking
and suspicious motion detection in vision systems. Change detection
methods generally fall into two categories. The first detecting strat-
egy is based on comparing the distribution in current stream window
with a reference distribution [4]. Density estimation and divergence
metrics are designed to evaluate and compare the distributions. The
second type of approaches are based on prediction [8]. Changes are
reported when samples deviate from a predictive model.

Kifer et al. [4] is an example of a window-based change detection
framework. At each time step, the distance of the data distribution
in the reference window (first m1 samples arrived after a reported
change point) and test window (newest m2 samples in the stream) is
measured. A change is reported if the distance is above a threshold.

The prediction-based approach is less popular than the window-
based ones. In [8], changes are detected through checking if there
are a large number of outliers in the time series. The detection accu-
racy highly depends on the prediction algorithm used for reporting
outliers that deviate from the predicted value.

In this paper, we study change detection method that falls un-
der the first category, where divergence metrics are the essential
component for measuring the difference between reference and test
windows. The most popular distribution divergence metric is the
Kullback-Leibler (KL) divergence [5]. KL-divergence is asymmetric
non-negative metric that is affected by the type of change in data vari-
ance (from large to small or from small to large). If the distribution P
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has larger variance value than the distributionQ, thenDKL(P ||Q) is
much larger than DKL(Q||P ). Therefore, algorithms employing the
KL-divergence fail to detect some changes with decreasing variance
or detect them with a large delay.

To overcome the asymmetric property of KL-divergence, two met-
rics for valid distribution comparisons are used for the first time for
online change detection: a modified symmetric KL-divergence and
a measure of intersection area of two distributions. Our approaches
are named accordingly CD-MKL and CD-Area. Note that these two
metrics are used for the first time for online change detection.

We validated the proposed change detection framework on sev-
eral synthetic datasets, including various changes. We also compared
them with two baseline methods, Change Finder [8] and KDE-KL
[3]. The experimental results show that both CD-MKL and CD-Area
are more accurate in detecting changes. In addition, CD-Area is gen-
erally better than CD-MKL as it detects most of the changes.

2 CD-MKL and CD-Area Algorithm
Algorithm 1 presents our framework for change detection in stream-
ing data. The symbol DM denotes any divergence metric.

Algorithm 1 Framework of CD-MKL and CD-Area
Parameters: window size w
Online flow in: streaming data S = {x1, ..., xt, ...}
Online output: time t when detecting a change
Procedure:
1: Initialize tc = 0
2: Set reference window S1 = {xtc+1, ..., xtc+w}
3: Estimate f̂1 using data in S1
4: Clear S1
5: Set test window S2 = {xtc+w+1, ..., xtc+2w}
6: Estimate f̂2 using data in S2
7: while a new sample xt arrives in the stream do
8: remove xt−w from S2

9: update f̂2 using xt and xt−w

10: if reference window < 2w then
11: update f̂1 using xt−w

12: end if
13: if mod(t, 0.05w) = 0 then
14: Score = DM

(
f̂2||f̂1

)
15: Compute the threshold τt
16: if Score > τt then
17: Report a change at time t
18: Clear S2 and GOTO step 2
19: end if
20: end if
21: end while

Line 2 in Algorithm 1 sets the reference window S1 to be the first
w samples arriving after the change point tc. Intuitively, when a data
distribution shifts to a new one, the reference window should be up-
dated to represent the new distribution. This update also enables the



detection of further changes. Line 5 sets the test window S2 as a col-
lection of w samples after the reference window. This S2 will slide
along the data stream to include the newest w samples (lines 7, 8).

The window size w is usually set according to the application
problems. A small window size will allow for detecting short term
changes and reducing the delay but may lead to false positives. A
large window size will make the algorithm more robust but may miss
alarms. The setting of this parameter is usually left to the user in order
to give them the ability for monitoring the long/short term changes,
depending on their interests and the application sensitivity.

Change scores are computed by using a divergence metric on two
density functions f̂1 and f̂2 (line 14), which are updated upon each
sample arrival. The divergence metrics are crucial for computing
change scores. In this study, we focus on three important divergence
metrics. The Kullback-Leibler (KL) divergence [5] is defined as:

DKL

(
f̂2||f̂1

)
=

∫
x

f̂2(x) log

(
f̂2(x)

f̂1(x)

)
dx, (1)

where f̂i is the Probability Density Function (PDF) estimated from
Si, i = 1, 2. The DKL is a nonnegative (≥ 0) and nonsymmetric
measure. It is 0 when the two distributions are completely identical,
and becomes larger as the two distributions deviate from each other.
The nonsymmetry property of the DKL complicates the procedure
of setting the threshold for detecting changes in data streams.

To overcome the problem of the KL-divergence, we use a modified
symmetric KL-divergence [6]

DMKL = max
(
DKL

(
f̂1||f̂2

)
, DKL

(
f̂2||f̂1

))
. (2)

The metric was used in [6] for evaluating the correlation between two
matching scores in optimal feature selection and shown to be more
robust than SKL = DKL

(
f̂1||f̂2

)
+DKL

(
f̂2||f̂1

)
used in [2].

The second divergence metric is the intersection area under the
curves of two density functions [1]. This test can be formulated as:

DA

(
f̂2||f̂1

)
= 1−

∫
x

min
(
f̂1(x), f̂2(x)

)
dx. (3)

ThisDA takes values in [0, 1], where the value one means completely
different distributions and zero means two identical distributions.

The PDFs required by the divergence metrics must be accurately
and timely estimated. KDE-Track, a dynamic density estimator we
studied in [7], adapts KDE to handle the evolving underlying distri-
bution in data streams. It gains linear time complexity by adopting
linear interpolation and adaptive resampling.

The threshold at time t is set to be τt = D̄t
M + 3e(w), where D̄t

M

is the accumulated mean of change scores, and e(w) is a function of
w that approximates the error in computing the change score. Most
of the change score values are in the interval (D̄M − 3e(w), D̄M +
3e(w)). Values outside this interval are extreme points and indi-
cate changes. This adaptive threshold automates the monitoring of
changes under different settings of window w. Therefore, our thresh-
old setting is superior to the fixed setting of threshold, which requires
users’ prior knowledge for different application data sets.

Table 1. Evaluation results in terms of precision (P) and recall (R) of the
four methods on the five datasets in percentage.

Dataset CF KDE-KL CD-MKL CD-Area
P R P R P R P R

Data1 100 66.7 100 88.9 100 88.9 100 88.9
Data2 100 58.3 100 91.7 100 91.7 100 100
Data3 100 55.6 100 100 100 100 100 100
Data4 100 79.6 100 83.7 100 89.8 100 91.8
Data5 98.2 70.5 100 69.2 100 71.8 100 94.9

3 Experimental Evaluation
The performance of CD-MKL and CD-Area is compared with the
performance of Change Finder (CF) [8] and KDE-KL [3] on several
synthetic datasets. KDE-KL employs the traditional KL-divergence
to compare the distributions in the reference and test windows, which
is similar to our framework but uses fixed threshold value and the
traditional kernel density estimator. The sliding window size is set to
w = 2 ∗ 103 for the three window-based methods.

Data1 is an example of a mean shift with varying amount of
change µk = µk−1 + 9 − k. The dataset was generated from the
normal distribution (N (µk, 1)) with µ1 = 0. Changes happen at the
time points k ∗ 105, k = 1, 2, · · · , 9. Data2 was generated based on
Data1 by adding changes of variance. Data3 is an example of jump-
ing variance, where the standard deviation changes from 1 to 3 and
back to 1. Data4 consists of 106 samples, where the mean and vari-
ance randomly change every 2 ∗ 104 samples. Data5 contains 100
data segments of size 2 ∗ 104. Each data segment was extracted from
normal distribution N (0, σ2

i ) with σi ∈ {1, 3, 5, 7, 9}. The dataset
has 78 change points as the data distribution is not changing at the
starting of each segment.

The performance of the four methods is compared in Table 1 in the
terms of the precision P = TP

TP+FP
and the recall R = TP

TP+FN
,

where TP = true positives, FP = false positives and FN = false
negatives. The results show that KDE-KL, CD-MKL and CD-Area
produce better results than CF on Data1-3 when the changes are easy
to be detected. CD-Area outperforms the other methods on Data4
and Data5, which contain changes that are harder to detect. Note
that KDE-KL is computationally much more expensive. For exam-
ple, when obtaining the results for Data5, KED-KL took 5260 sec-
onds, compared with 4429, 65, and 50 seconds for CF, CD-MKL,
and CD-Area, respectively.

4 Conclusion
In this paper, we present a framework for detecting changes in data
streams with two more effective metrics, a symmetric version of the
KL-divergence (DMKL) and the area metric (DA). These two met-
rics also enables the automatic setting of the detection threshold τt.
Evaluation results show that the presented CD-Area and CD-MKL
approaches perform better than the baseline methods for reporting
changes accurately.
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