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a b s t r a c t

We propose an L2-norm based global testing procedure for the null hypothesis that mul-
tiple group mean functions are equal, for functional data with complex dependence struc-
ture. Specifically, we consider the setting of functional data with a multilevel structure of
the form groups–clusters or subjects–units, where the unit-level profiles are spatially cor-
related within the cluster, and the cluster-level data are independent. Orthogonal series
expansions are used to approximate the group mean functions and the test statistic is es-
timated using the basis coefficients. The asymptotic null distribution of the test statistic is
developed, under mild regularity conditions. To our knowledge this is the first work that
studies hypothesis testing, when data have such complex multilevel functional and spatial
structure. Two small-sample alternatives, including a novel block bootstrap for functional
data, are proposed, and their performance is examined in simulation studies. The paper
concludes with an illustration of a motivating experiment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Advancements in technology and computation have led to a rapidly increasing number of applications where repeated
functional data are observed per subject, formany subjects. These developments have been accompanied and, in some cases,
anticipated by intense methodological development in functional data analysis (Ramsay and Silverman, 2005; Ferraty and
Vieu, 2006). Althoughmuch work has been done on estimation in various models for multilevel functional data (Morris and
Carroll, 2006; Di et al., 2009; Crainiceanu et al., 2009; Staicu et al., 2010), there is only limited work on inference for the
fixed effects in these more complex models. This paper focuses on closing this gap for functional data that have a natural
multilevel structure, group–subject–unit with functional-type measurements at unit level, such that conditional on the
subject, the unit-level measurements are spatially correlated. Accounting for the complex dependence among the curves
when carrying hypothesis testing about the group means is very important, since the common testing procedures, applied
by ignoring the curve-dependence, yield misleading results.

When there is a single curve per cluster, thus all the curves are independent, testing the significance of the group mean
functions has been studied extensively (Fan and Lin, 1998; Faraway, 2004; Cuevas et al., 2004; Staicu et al., 2014). For
example, to assess the equality of the group means when the random curves have a stationary time series covariance, Fan
and Lin (1998) proposed a powerful overall test based on the decomposition of the original functional data into Fourier or
wavelet series expansions. Cuevas et al. (2004) developed an ANOVA-like test statistic for the hypothesis testing about group
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mean functions, when the curves come from independent samples of independent curves; their setting assumes the curves
are fully observed and without noise. Zhang and Chen (2007) considered a similar model setup and discussed an L2-norm
test in the context where the curves are observed on a dense grid of points and are corrupted with measurement error. For
two samples of curves, Zhang et al. (2010) discussed both a pointwise t-test and a global L2-norm based test statistic and
employed bootstrap procedure to approximate the null distribution. However, all these methods rely on the assumption
that the curves in the samples are independent, and extending them to the setting where curves have complex correlation
structures is far from straightforward. For paired functional data, where the data consist of independent pairs of functions
and each pair of functions exhibits complex dependence, Crainiceanu et al. (2012) discussed bootstrap-based inferential
methods for the difference in the mean profiles, and Staicu et al. (2014) proposed likelihood-ratio type statistics. These
results, while are in the direction of our research, are not applicable to our setting where we have ‘clusters’ of dependent
curves contained in multiple independent samples.

The objective of this paper is to develop inferential methods for testing hypotheses about group mean and group mean
differences for hierarchical functional data of the type group–cluster–unit, when the unit-level functions exhibit spatial cor-
relation. We take a nonparametric approach and study a test statistic based on the L2 distance among the group mean func-
tions. To the best of our knowledge, no asymptotic distribution results are currently available for hypothesis testing about
the group mean functions, when data are curves with complex multilevel functional and spatial structure. Small-sample al-
ternatives based on the bootstrap procedure are proposed and are examined in simulation studies. Themain contributions of
this paper are (i) the proposal and development of the asymptotic null distribution of the testing procedure for group mean
functions for functional data with such complex dependence; and (ii) the proposal of a novel block bootstrap approach for
functional data, inspired from spatial statistics.

The remaining part of the paper is structured as follows. Section 2 introduces the notation, describes the hypothesis
testing problem thatwe consider, introduces the testing procedure and outlines theworking assumptions. Section 3presents
the asymptotic study of the null distribution of the testing procedure. Bootstrap approximations to the asymptotic null
distribution are detailed in Section 4. Illustration of the proposed approach in the finite sample is via a simulation study in
Section 5 and application to a long range infrared light detection and ranging (LIDAR) study in Section 6. Section 7 concludes
with a discussion.

2. Statistical framework

2.1. Preliminaries

We first introduce the notation, the model assumptions, and the testing procedure. Broadly, the structure of the data is
groups–clusters or subjects–units, where the unit-level data consist of a sequence of repeatedmeasurements, the unit-level
data are spatially correlated within the cluster or subject, and the cluster or subject-level data are assumed independent of
each other. For exposition simplicity we use ‘subjects’ throughout the paper. Let i index the subjects, j index the units, and
denote by Yijl the lth repeatedmeasurementwhich corresponds to the timepoint tijl.Moreover it is assumed that the units are
‘ordered’ and denote by sij the location of the jth unit within the ith subject. LetNij be the number of repeatedmeasurements
for unit jwithin subject i, letMi be the number of units within subject i, and n be the total number of subjects. The subjects
are separated into D groups, and let G(i) denote the group membership of the ith subject, G(i) ∈ {1, . . . ,D}, and let nd be
the number of subjects in group d.

It is assumed that observed data are realizations of a random process on discrete grids, which are further contaminated
by noise, as follows:

Yijl = µG(i)(tijl)+ Vi(tijl, sij)+ ϵijl, (1)

for l = 1, . . . ,Nij, j = 1, . . . ,Mi and i = 1, . . . , n. Here µd(·) is the unknown mean function in group d and the main object
of inference, Vi(·, ·) a mean-zero bi-variate random process defined on T × D , where T ∈ R and D ∈ R2, and ϵijl is the
random error. We assume that Vi(·, ·)’s are independent and identically distributed over i, and ϵijl are independent and
identically distributed with mean zero and variance σ 2

ϵ , and furthermore are independent of Vi(·, ·).
Our objective is to test the hypothesis that the group mean functions µd(·) are equal

H0 : µ1(·) = · · · = µD(·) versus Ha : µd1(·) ≠ µd2(·), for some d1 ≠ d2. (2)

In the casewhen {Yijl : l = 1, . . . ,Nij} are random curves observed on the entire domain, say {Yij(t) : t ∈ [0, 1]}, andwithout
measurement error such that Yij(t) = µG(i)(t) + Wij(t), for independent and identically distributed zero-mean processes
Wij(·), then the testing hypothesis (2) has also been considered by Cuevas et al. (2004). Our model framework (1) reduces to
the framework considered by Cuevas et al. (2004), when Vij(t, sij) = Wij(t) and ϵijℓ = 0 for all i, j, ℓ. The authors proposed a
test statistic that quantifies the ‘‘between’’ groups variability in this functional framework: specifically, whenMi = 1 for all
i, using our notation, their test is


d<d′ nd∥µd(·)−µd′(·)∥2

L2
, where nd is the number of subjects in group d,µd is the sample

mean estimator of the group mean function µd and ∥ · ∥
2
L2

refers to the L2 norm induced by the inner product ⟨f , g⟩L2 = 1
0 f (t)g(t) dt . Cuevas et al. developed the asymptotic distribution of this test statistic, when the null hypothesis (2) is true.

Nevertheless, testing the null hypothesis (2) under a more realistic and general framework that does not restrict the curves
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to be observed entirely (or on a regular dense grid) and without noise, nor to be all mutually independent, has not been
considered yet. A naïve application of the methods described in Cuevas et al. (2004), by ignoring the complex dependence
among the curves within the same cluster (subject), or the measurement error may result in considerably increased size.

To the best of the authors’ knowledge this research is the first to propose a testing procedure for (2) in the case when
(1) the curves are contaminatedwithmeasurement error, (2) the curves are not fully observed, as in Cuevas et al. (2004), and
(3) the random deviations, as described by Vi(t, sij) in (1) are not independent and identically distributed over both indices
i and j. We consider that the random deviations Vi(t, sij) are bi-variate stochastic processes and have a complex covari-
ance structure that combines covariance components commonly encountered in functional as well as spatial data analysis.
Specifically, assume that Vi(t, sij) have the following decomposition:

Vi(t, sij) = Zi(t)+ Wij(t)+ Ui(sij), (3)

where Zi(t),Wij(t) and Ui(s) are independent random components, Zi(t) is the subject-specific random effect and the term
{Wij(t)+Ui(sij)} represents the unit-specific random deviation from the subject mean. The latter term consists of two com-
ponents: Ui(sij), which varies with the spatial location, sij, and Wij(t), which varies with the time index, t . This modeling
assumption has also been considered by Staicu et al. (2010) in the context of modeling multilevel functional data that are
spatially correlated. It is assumed that Zi(·),Wij(·) are square integrable random processes on the closed and bounded set T ,
that Ui(·) is second order stationary on some domain D , and they all have mean zero and continuous covariance functions.
For simplicity set T = [0, 1] and assume that the sampling region D is a bounded subset of R2. Furthermore, it is assumed
that sij = M1/2

i Sij, where Sij are independent and identically distributed random variables defined on a bounded domain, see
Lahiri (2003, Chapter 12).

We take a nonparametric approach, similar to Cuevas et al. (2004), and consider a testing procedure that measures the
L2 distance between the group mean functions. Let µd(t) be a smooth estimator of the group mean function µd(t), and letµ·(t) =

D
d=1(md/m)µd(t) be a weighted estimator of the overall mean function µ(t), where md =


i:G(i)=d Mi is the

number of curves in group d and m =
n

i=1 Mi is the total number of curves. It is assumed that md,m → ∞ for all d such
that the limit qd = limmd/m exists and is in (0, 1). We propose to test the null hypothesis (2) using the global test:

Tn =

D
d=1

 1

0
nd{µd(t)− µ·(t)}2 dt. (4)

When Mi = M1 for all i, we have µ·(t) =
D

d=1(nd/n)µd(t); thus when the group sample mean functions are used to
estimate µd(t), this test is proportional to the one discussed in Cuevas et al. (2004). Nevertheless its null asymptotic distri-
bution will be different from the one developed by Cuevas et al. (2004), due to the complex structure that is assumed for the
covariance of the random component Vi(t, sij). Also, when D = 2 and nd = 1 the testing procedure (4) is similar to Horváth
et al. (2013), who considered the problem of testing the equality ofmeans of two functional samples which exhibit temporal
dependence. Here we develop the asymptotic null distribution for (4) when the observed data Yijl are discrete realizations
from a bi-variate stochastic process having a functional/spatial dependence in a hierarchical setting, as in (1).

2.2. The testing procedure

If the sampling design is regular, tijl = tl, then the group mean functions,µd(·) can be estimated as common group sam-
ple means (see Cuevas et al., 2004). To bypass the restriction on the design regularity, other techniques use local or global
smoothing techniques e.g. Yao et al., 2005; Crainiceanu et al., 2012), etc.), under a working independence assumption. We
take a similar viewpoint and consider orthogonal basis expansions for the group mean functions. Specifically, let {ψℓ(·)}ℓ≥1
be an orthogonal pre-determined basis in L2[0, 1], and write µd(t) =


ℓ≥1 ψℓ(t)βd,ℓ, where βd,ℓ are uniquely determined

by βd,ℓ =
 1
0 µd(t)ψℓ(t) dt . For fixed truncation value L, the group mean can be approximated by µL

d(t) =
L

ℓ=1 ψℓ(t)βd,ℓ.
Estimation of the basis coefficients {βd,ℓ : ℓ = 1, . . . , L}d can proceed via a sum of squares criterion using L2 norm. Specif-
ically, the estimatorsβd,ℓ and furthermoreβ·,ℓ and are calculated by

βd,ℓ = m−1
d


{i:G(i)=d}

Mi
j=1

Nij
l=1

Yijl


Aijl
ψℓ(t) dt, (5)

β·,ℓ = m−1
n

i=1

Mi
j=1

Nij
l=1

Yijl


Aijl
ψℓ(t) dt, (6)

where Aijl = [tijl, tij(l+1)), for l = 1, . . . ,Nij. The basis coefficientsβd,ℓ are estimated by using integrals of the basis functions
over smaller intervals, which are different from the common approach that uses basis functions evaluated at single time
points (see for example, Fan and Lin, 1998). Our preference for this approach is basedmainly on the simplicity of the expres-
sions of the estimators; our practical experience is that the estimation/testing results obtained with the two approaches are



4 A.-M. Staicu et al. / Journal of Statistical Planning and Inference 156 (2015) 1–13

very close. The consistency of the estimatorsβd,ℓ andβ·,ℓ is proved in Appendix A.1 and is based on regularity assumptions
of the sampling design, group mean function and covariance function, K Z (·, ·), of the process Zi(·). It follows that the group
mean functions can be estimated by µL

d(t) =
L

ℓ=1
βd,ℓψℓ(t), and the overall mean function by µL

·, (t) =
L

ℓ=1
βℓψℓ(t).

These mean estimators are consistent, and to avoid digression from the main point of the paper we defer the discussion of
their asymptotic properties to Appendix A.1.

Using the group estimates above, the test statistic Tn is approximated by

T L
n =

D
d=1

L
ℓ=1

nd(βd,ℓ − β·,ℓ)
2 (7)

since {ψℓ(·)}ℓ≥1 is an orthogonal basis on [0, 1] and thus

ψℓ(t)ψℓ′(t) dt = 1 if ℓ = ℓ′ and 0 otherwise. Here the superscript

L emphasizes the truncation used in the basis representation of the groupmean functionsµ(t). The asymptotic distribution
of the test, when the null hypothesis, that the group mean functions are the same is true is developed next. We present first
the regularity assumptions on which we base our results.
Assumption 1 (A1): The group mean functions µd(·)’s have the following properties:
(a) there exists α > 0 such that µd(·) is α-Hölder on [0, 1]; µd is differentiable;
(b) µd(·) ∈ L2[0, 1] and

 1
0 |µ′

d(t)| dt < ∞, where µ′

d(t) = ∂µd(t)/∂t .
Assumption 2 (A2): The bivariate process Vi(t, sij) admits the decomposition Vi(t, sij) = Zi(t)+ Wij(t)+ Ui(sij), where the
independent components Zi(·),Wij(·) and Ui(·) satisfy the conditions:
(a) The randomprocesses Zi(·),Wij(·) are square integrable on [0, 1] and have zero-mean functions and covariance functions
K Z (·, ·) and KW (·, ·), respectively that are both uniformly bounded in L2[0, 1]. Furthermore the covariance function K Z (·, ·)
is assumed twice continuously differentiable and E(∥Zi(·)∥4

L2
) < ∞.

(b) The random process Ui(·) is second order stationary onD , with zero-mean and continuous covariance function. The unit
locations {sij : j = 1, . . . ,Mi} are generated by a spatial stochastic design through the relation sij = M1/2

i Xij for independent
and identically distributed random vectors Xij, independent of the other random variables, with density f on some prototype
set R0. Furthermore f is assumed continuous and positive on R0.
Assumption 3 (A3): We require the following assumptions about the sampling design:
(a) nd → ∞ and Mi → ∞ for all i = 1, . . . , n. For every d = 1, . . . ,D we have nd/n → pd > 0, and md/m → qd > 0,
where md =


{i:G(i)=d} Mi and m =

n
i=1 Mi.

(b) There exists 0 < c1 < c2 < ∞ such that c1 < Mi/Mi′ < c2 for all i, i′ such that G(i) = G(i′).
(c) For every d = 1, . . . ,Dwe have min{Nij : G(i) = d} > nθd , where θ > 1/(2α), where α is given in condition (A1).

Generally, the selection of the orthonormal basis is important, in the sense that some orthonormal bases may be more
appropriate than others under a given situation. However, the theoretical properties of the estimators are independent of the
particular basis, as long as it is a pre-determined orthonormal basis (Fourier, orthonormal wavelets, orthonormal B-splines
and so on). As a result the choice of basis is expected to have little effect on the testing procedure; the number of basis
functions L that does not change considerably the results (size/power) would vary with the choice of the basis. In particular,
a smaller value L would suffice if the mean and error process are approximated well by the first few basis functions, than
otherwise. We recommend to select L carefully in any particular application.

In our simulation study and data application we used the Fourier basis {ψ1(t) = 1, ψ2ℓ+1(t) =
√
2 cos(2ℓπ t), ψ2ℓ(t) =

√
2 sin(2ℓπ t), for ℓ ≥ 1}, which is flexible for smooth functions (see also Ramsay and Silverman, 2005). This choice ismainly

motivated by the Fourier computational advantage and by their rigorous theoretical study in the literature. For differentiable
functionsµd, with the bounded derivative in absolute value, the basis coefficients βd,ℓ decay at the rate ℓ−1 (see Efromovich,
1999). Typically, the smoother a function is, the faster its Fourier coefficients decay to zero.

3. Main result

To derive the asymptotic distribution of the test statistic T L
n we assume also that the covariance K Z has finite trace, that

is tr(K Z ) =

K Z (t, t) dt =


k≥1 λk < ∞ where λk’s are the eigenvalues of K Z ; this assumption is common in the func-

tional data literature (see Zhang and Chen, 2007; Horváth and Kokoszka, 2012). Denote by κ > 0 the number of positive
eigenvalues λk; κ = ∞ if all the eigenvalues are positive.

Theorem 3.1. Assume that (A1)–(A3) hold. Then, under the null hypothesis H0 we have:

T L
n →d

κ
k=1

λkξ
T
k Aξk (8)

where →d denotes convergence is in distribution as n → ∞ and L → ∞ such that n1/2
d L−1

= o(1) for all d. Here ξk ∼ Normal
(0, ID−1) for k ≥ 1, A = ID−1 + RT

B(q−D − p−D)(q−D − p−D)
TRB, q−D = (q1, . . . , qD−1)

T and p−D = (p1, . . . , pD−1)
T , ID is the

D × D identity matrix and RB is the Cholesky factor of B, i.e. B = RBRT
B , where B = diag(p−1

1 , . . . , p
−1
D−1)+ p−1

D 1D−11T
D−1.
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The proof is in Appendix A.2. When pd = qd for all d, which yields A = ID−1, Theorem 3.1 implies that the distribution of
T L
n is asymptotically the same as that of a χ2-type mixture,. Specifically, in this situation, the null asymptotic distribution of

T L
n simplifies to

κ
k=1 λkΞk, where Ξk ∼ χ2

D−1. An example of setting pd = qd is when Mi = M for all i = 1, . . . , n. In the
particular case Mi = 1, Theorem 3.1 is in agreement with the results of Zhang and Chen (2007) for the testing hypothesis
that the group mean functions are equal.

The test statistic T L
n depends on the number of basis components used for the representation of the groupmean functions,

L. Intuitively, L needs to be sufficiently large in order to approximate well the group mean functions; on the other hand, a
large value L accumulates large stochastic noise. In practice we recommend to select L using a hard truncation approach of
the Fourier coefficients; see Donoho and Johnstone (1994). Specifically, estimate L byL = argminℓ{ℓ : |βd,ℓ| ≤ λ}, where
λ is a tuning parameter, in our application in Section 6 the choice λ = 0.03n−1/2 was used. However, this threshold should
be carefully tuned in any other particular application using simulations.

Hypothesis testing (2) can be tested more generally via contrasts: Zhang and Chen (2007) discussed this problem for
Mi = 1. For example, consider the hypothesis testing of interest

H0 : Cµ(t) ≡ µ0(t), ∀t versus Ha : Cµ(t) ≠ µ0(t), for some t; (9)

where C is a r × D matrix of contrasts, µ(t) and µ0(t) are D-dimensional vectors of mean functions, with µ0(t) known.
Remark that as L → ∞ and nd → ∞ such that n1/2

d L−1
= o(1), the limit of the asymptotic distribution of n1/2(CP−1

n CT )−1/2

{CµL(t) − µ0(t)} is AGP(0, IrK Z ), where AGP(η, γ ) denotes an asymptotic Gaussian process with mean function η(t) and
covariance function γ (t, t ′), and Pn = diag{n1/n, . . . , nD/n}. Then a test statistic of the form

Tn,C = n
 1

0
∥(CP−1

n CT )−1/2
{Cµ(t)− µ0(t)}∥

2 dt (10)

can be used to test (9); here ∥ · ∥ denotes the usual Euclidean vector norm andµ(t) is the D dimensional vector with group
mean estimatesµd(t).When the groupmean functions are estimated using truncated basis function expansion, as described
in Section 2.2, then Tn,C is approximated by T L

n,C ; the superscript emphasizes the dependence on the truncation L. One can
show that, under the regularity Assumption (A1)–(A3) stated above and when the null hypothesis (9) holds true, then

T L
n,C →d

κ
k=1

λkΞk, (11)

as L → ∞ and nd → ∞ such that n1/2
d L−1

= o(1), whereΞk ∼ χ2
r .

An important characteristic of both T L
n and T L

n,C is that the asymptotic sampling distributions are typically unknown, be-
cause they are based on unknown quantities, such as the covariance function of K Z (·, ·), pd’s and qd’s. In practice, one can use
consistent estimators of these quantities, and substitute their value into the expression used by the asymptotic distribution.
For example, Staicu et al. (2010) propose ways to obtain a consistent estimator of K Z (·, ·) in the case of balanced design for
the grid points at which the unit profiles are sampled. In such situations, we can use the estimators of the eigenvalues,λk’s
and the eigenfunctions Φk(·)’s corresponding toK Z (·, ·).

The main downside of using the asymptotic distribution of the test statistic is the poor performance for small sample
sizes nd. When the asymptotic distribution with the plug-in estimates for the parameters involved is used, the test T L

n shows
an increased Type I error rate for small/moderate sample sizes; similar performance is expected for T L

n,C . This is due to the
finite sample bias collected by terms such as n1/2

d {µL
d(t) − µd(t)}, on which the test is based. To address this limitation, in

the following, we discuss two bootstrapping procedures that allow approximation of the sampling distribution of the tests.
While the description of the procedures will be tailored on the first test, T L

n it can be easily adapted to be used for the more
general test, T L

n,C .

4. Bootstrap approximations

Bootstrapmethodology has attracted recent interest in the context of functional data (see for example Cuevas et al., 2006;
Hall and Van Keilegom, 2007; Cuevas, 2014). In this section we propose two practical bootstrap-based alternatives for the
approximation of the null sampling distribution of Tn. The first method, the single-level bootstrap, involves resampling the
subject-level data, under the assumption that the groupmeans are equal. The secondmethod, the nested bootstrap, involves
two steps: first resampling the subject-level data, and second resampling theunit-profile datawithin the resampled subjects.
The sampling strategy for the resampling at the unit level is based on the spatial block bootstrap (Lahiri, 2003, Chapter 12),
and uses the spatial location of the units within the subject. The latter method may seem somewhat counter-intuitive,
since the spatial covariance component does not have any effect on the asymptotic distribution of the test T L

n . However, our
simulation studies in Section 5 show that by accounting for the spatial dependence, the Type I error rate of the test, using
the nested bootstrap, is considerably improved for small samples.

Both bootstrap approaches use the so called ‘bootstrap of the residuals’. Fix L > 0 and let µL
d(t) =

L
ℓ=1 ψℓ(t)βd,ℓ

and µL
·
(t) =

L
ℓ=1 ψℓ(t)β·,ℓ be the estimate of the dth group mean function and the overall mean function respectively,
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whereβd,ℓ andβ·,ℓ are the estimated Fourier coefficients determined by (5) and (6) respectively. The selection of L will be
discussed later. Denote by Yijl the de-trended data, which is obtained by Yijl = Yijl − µL

G(i)(tijl), for all i’s and j’s. It follows
that the ‘‘curves’’ {Yijl : 1 ≤ l ≤ Nij} have mean zero, irrespective of the ith subject group membership, G(i). LetYij be the
Nij-dimensional vector with the lth element equal toYijl, and byYi the vector obtained by stackingYij over j = 1, . . . ,Mi.

Single-level bootstrap. The single-level bootstrap is simply an extension of the common bootstrap for independently and
identically distributed scalar random variables to independently and identically distributed random processes. We define
the bootstrap set as B = {Yi : i = 1, . . . , n}. For each group d = 1, . . . ,D, obtain {Y (b)i : G(i) = d} by sampling with
replacement nd vectors from B. The corresponding bootstrap sample is Y ∗(b)

ijl = Y (b)ijl + µL
·
(tijl). The estimators ofβ(b)d,ℓ , andβ(b)

·,ℓ are obtained as detailed in Section 2.2 corresponding to the resample of subjects and the resampled data Y ∗(b). The test
statistic is then calculated using the expressions given earlier: e.g. T L,(b)

n =
D

d=1
L

ℓ=1{
β(b)d,ℓ−

β(b)
·,ℓ }

2. Because the single-level
bootstrap is based on resampling independent objects, it is not hard to check that, for fixed L, the distributions of T L,(b)

n and
T L
n are asymptotically the same. The null distribution of the test T L,(b)

n is always available, and furthermore it requires little
computational cost.

The nested bootstrap is amore complex bootstrap approach that accounts for the spatial dependence of the randomcurves
within a subject. It encompasses resampling at the subject level and resampling at the unit level. At the first step, a bootstrap
sample is obtained using the single-level bootstrap technique (i.e. bootstrapping the subjects). Let {Y (b1)i : G(i) = d}, for
d = 1, . . . ,D be such a sample, where the superscript (b1) emphasizes the use of the single-level bootstrap. At the second
step, we propose to further resample the subject-level data for each selected subject by using the spatial locations of the
unit-level profiles; we do this by employing a method inspired by block bootstrapping, a standard technique for dependent
data such as time series or spatial data (Lahiri, 2003, Chapter 12). We describe this approach next.

Denote by Bi = {Y (b)ij : j = 1, . . . ,Mi} the set of unit-level profiles, and by Si = {si1, . . . , siMi} the set of unit loca-
tions corresponding to subject i of the single-level bootstrap sample. The basic idea is first to resample the unit locations
by using block-bootstrapping, and second to form the bootstrap samples of the subject-level data by collecting the unit-
level profiles that correspond to the selected sample of unit locations. For simplicity, consider the case when the spatial
domain is D = [0, S) ⊂ R and we refer the reader to Lahiri (2003, Chapter 12) for general sampling regions. Let bu > 0 be
some constant, commonly known as ‘block length’, and construct M ′

i overlapping blocks, of length bu, Bi(j) = [sij, sij + bu),
and such that sij + bu ≤ S. Corresponding to each block Bi(j), define the set of spatial locations included in this block as
Ji(j) = {sij′ ∈ Si : sij < sij′ < sij + bu}. To account for possible sparsity in the sampling spatial sampling design we consider
only the sets Ji(j) for which their cardinality is at least 6, that is |Ji(j)| ≥ 6. With little abuse of notation assume there areM ′

i
such pairs. Let nS,bu = ⌊S/bu⌋. Then to construct the bootstrap sample for subject i, a number of nS,bu blocks Bi(j∗) are drawn
with replacement from {Bi(j) : j ∈ M ′

i }. Denote the blocks obtained by Bi(j
(b2)
1 ), . . . , Bi(j

(b2)
nS,bu ); the blocks of unit locations

will be aligned in the order they were picked and such that the ℓth selected sample to start at (ℓ − 1)bu for 1 ≤ ℓ ≤ nS,bu .
Corresponding to the selection of blocks, let S(b2)i = {s(b2)ij : 1 ≤ j ≤ M(b2)

i } be the bootstrap of sample of unit locations.

The corresponding resample of the ith subject data is obtained by collecting the trajectories {Y (b1)ijl : 1 ≤ l ≤ Nij} accord-

ing to the sample locations sij that are included in the selected bootstrap samples Ji(j
(b2)
ℓ ), for all ℓ’s; denote by [{Y (b)ijl : 1 ≤

l ≤ Nij} : j = 1, . . . ,M(b)
i ] the bootstrap de-trended data, using the two-step procedure. The nested bootstrap sample is

thenY ∗(b)
ijl = Y (b)ijl + µL

·
(tijl).

One may argue that standard block bootstrap produces replicates which are non-smooth near the joint-points, and thus
the use of such approach in our context may be debatable. However, even with non-smooth replicates, the block bootstrap
is known to perform better than the independently and identically distributed bootstrap, and this is what motivated us to
apply it at the unit level data. The selection of the block length, bu, is another issue one has to consider. The most prominent
selection rule for the optimal block length in standard block bootstrap is themethod byHall et al. (1995); for amore complete
list of methods see Lahiri (2003, Chapter 7). However, no results exist for irregularly spaced spatial data, to the best of our
knowledge. In the simulation study and data application we consider an ad-hoc criterion and determine bu by requiring
that there are at least 6 blocks per subject of cardinality 6 or more. The performance of the two bootstrap approaches is
investigated numerically in several simulation scenarios, as illustrated in the next section.

5. Simulation studies

We conducted a simulation study to investigate the finite sample performance of the test. In this section we summarize
themain findings based on data sets, each consisting ofD = 3 groups of nd = 10, 15, 30, 50 subjects per group, andMi = 20
units per subject. The unit-level profiles correspond to a grid of equidistant Nij = Ni1 points in [0, 1], and Ni1 are generated
uniformly between 27 and 36. Each data set is generated from the model Yijl = µG(i)(tijl)+ Zi(tijl)+ Wij(tijl)+ Ui(sij)+ ϵijl,
and G(i) = ⌊(i − 1)/nd⌋ under all the possible combinations from the following scenarios:
Scenario A: (i) µd(t) = 4.2 + cos(2tπ) for d = 1, 2, 3; (ii) µd(t) = 4.2 + cos(2tπ) + 1(d = 2)0.5t for d = 1, 2, 3;
(iii) µd(t) = 4.2 + cos(2tπ) + 1(d = 2)0.5 for d = 1, 2, 3. Case (Ai) corresponds to a situation where the null hypothesis
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Table 1
Estimated Type I error rate of T L

n (and L = 9) using single-level (SB)/nested bootstrap (NB),
for various group sizes nd and significance levels. The data sets are generated using mean
functions specified by (Ai) and covariance functions described by (Bi) and (C).

100α% 1% 5% 10% 15% 20%
nd SB/NB SB/NB SB/NB SB/NB SB/NB

10 2.47/1.80 9.27/7.40 14.97/12.57 19.67/16.90 24.80/21.40
15 2.23/1.50 7.20/5.67 12.50/10.47 18.33/15.30 23.20/20.30
30 1.33/0.93 5.67/4.33 10.87/8.37 16.23/13.47 21.33/18.47
50 1.27/0.83 5.20/4.00 10.40/8.27 15.50/13.03 20.37/16.97

H0 is true; cases (Aii) and (Aiii) describe situations where the null hypothesis is false, and the departure from the null is
moderate and stronger respectively. In particular, the mean functions in (Aii) are separated by at most a linear trend, while
they are separated by a constant trend in case (Aiii).

Scenario B: Zi(t) =


k≥1 λ
1/2
Z,k ξi,kφZ,k(t) where λZ,1 = 0.5, λZ,2 = 0.125, and λZ,k = 0 otherwise and (i) φZ,1(t) = 1,

φZ,2(t) =
√
2 sin(2π t); (ii) φZ,1(t) =

√
3(2t − 1), φZ,2(t) =

√
5(6t2 − 6t + 1). We take Wij(t) =


k≥1 λ

1/2
W ,kζij,kφW ,k(t),

where λW ,1 = 0.33, and λW ,2 = 0.11, and λW ,k = 0 otherwise, and φW ,1(t) = 1, φW ,2(t) =
√
7(20t3 − 30t2 + 12t − 1).

The random coefficients {ξi,k}i,k and {ζij,k}i,j,k are assumed mutually uncorrelated, and identically distributed as standard
normal variables. In addition ϵijl ∼ Normal(0, 0.1).

Scenario C: Ui is stationary Gaussian process with mean 0, variance 0.5 and auto-correlation function specified by Matérn
function defined by ρ(∆;φ, ν) = 21−ν

{Γ (ν)}−1 (∆/φ)ν Kν (∆/φ) where φ and ν are the unknown parameters and Kν is
the modified Bessel function of order ν (see Stein, 1999). We consider ν = 1.5, φ = 70; this corresponds to a setting where
the correlation is negligible (i.e. with values smaller than 0.003) for ∆ > 640. It is assumed a uniform sampling design for
the units, that is the unit locations are independent and identically distributed as Uniform [0, S], where S = 15, 000.

For each setting, obtained by combining the above scenarios, we test the null hypothesis that the group mean func-
tions µd(·) are equal. Cuevas et al. (2004) cannot be applied directly to test this hypothesis, because of three reasons:
(1) the curves are observed at discrete points, (2) the number of grids per curve is varying, and (3) the observations in-
cludemeasurement error. The testing procedure proposed by Zhang and Chen (2007) via contrasts, and assuming a working
independence among all the curves, is highly misleading and results in very large Type I errors, because the variability of
the test statistic under the null assumption is under estimated. Due to these considerations we do not pursue these two
approaches in our study. We carry this hypothesis testing using our proposed test statistic T L

n . The distribution of the test
statistic T L

n is approximated using the single-level and nested bootstrap with B = 1000 bootstrap samples. We examine the
Type I error rate corresponding to the significance levels α = 0.01, 0.05, 0.10, 0.15, 0.20 when the group mean functions
are equal, and investigate the power at these levels, when the group mean functions are different, under different covari-
ance structures and for various sample sizes. For each data set, the size and power probabilities are based on estimated tail
probabilities P(T L

n > tL,0n ), where P is the null distribution of T L
n as approximated by single-level or nested bootstrap, and

t0,Ln is the observed value of the test, corresponding to the particular data set. The size of the test corresponding to a nominal
level α is then estimated by

Nsim
k=1 1{P(T L

n > tL,0n ) ≤ α}/Nsim, presuming the data are generated under the null hypothesis,
where Nsim is the number of simulated data sets.

In all the simulations the number of Fourier basis function is set to L = 9—for our setting this choice corresponds to
undersmoothing the groupmean functions. For comparisonwe also examined the results corresponding to L = 3 and L = 15
and observed that they barely change; for example in the case nd = 10, the estimated Type I error rate for 10% nominal level
is 15.00% and 14.97% respectively for single-level bootstrap and 12.60% and 12.53% respectively for the nested bootstrap;
the results remain unchangedwhen the nominal level equals 1% or 5%. Generally, the number of basis functions L is a tuning
parameter and its selection can be compared to the selection of a smoothing parameter in the context of penalized splines.

Table 1, presents the estimated Type I error of the test using the two bootstrap approaches, based on Nsim = 3000 gener-
ated data setswithmean functions specified by (Ai) and covariance functions specified by (Bi) and (C); results corresponding
to a covariance function described (Bii) are similar and are omitted out of brevity. Several nominal sizes α and group sample
sizes nd are investigated. The results emphasize that single-level bootstrap performs well for moderate and large sample
sizes, nd = 30 or nd = 50 confirming the theoretical expectations. However, it gives an inflated Type I error when the group
sample sizes are smaller like nd = 10, 15. On the other hand, the nested bootstrap has an excellent performance, particularly
for smaller group sample sizes, in having a Type I error close to the nominal level. The estimated Type I error rate with the
nested bootstrap is much improved over the single-level bootstrap: compare the results for nd = 10 and nd = 15 obtained
with both types of bootstrap. Formoderate or larger group sample sizes, both bootstrap proceduresworkwell in terms of ac-
curately estimating a Type I error rate of the test, with the single-level bootstrap tending to bemore liberal, while the nested
bootstrap more conservative. The block size for the nested bootstrap was fixed to 4192—a value determined by requiring
that there are at least 6 blocks per subject of cardinality 6 or more; all the simulation results are based on this value.

Table 2, in the blocks labeled M1 and M2, gives the estimated power of the test using the two bootstrap approaches,
based on Nsim = 1000 generated data sets with mean functions specified by (Aii) and (Aiii) respectively, and the covariance



8 A.-M. Staicu et al. / Journal of Statistical Planning and Inference 156 (2015) 1–13

Table 2
Estimated power of T L

n (and L = 9) using single-level (SB)/nested bootstrap (NB), for various group sizes nd
and significance levels. The data sets are generated using mean functions specified by (Aii), block column
M1 , and (Aiii), block column M2 , and covariance functions described by (Bi) and (C).

Model 100α% 1% 5% 10% 15% 20%
nd SB/NB SB/NB SB/NB SB/NB SB/NB

M1 10 6.2/5.0 16.8/13.9 27.2/22.8 34.4/30.2 39.9/36.6
15 8.3/6.2 18.8/16.0 29.4/25.5 38.9/34.5 45.8/41.7
30 14.7/11.5 33.3/29.9 46.3/41.0 54.0/50.2 60.5/58.1
50 24.7/18.9 46.9/43.1 60.6/55.4 69.5/65.4 76.3/72.9

M2 10 20.1/18.1 37.4/33.6 48.6/45.4 55.7/52.2 63.4/59.4
15 29.9/24.4 49.8/45.9 61.1/56.6 68.0/64.4 73.8/71.0
30 57.8/53.3 76.8/72.5 85.6/83.2 89.3/87.4 91.9/90.1
50 84.1/80.1 94.5/92.9 97.2/96.7 98.4/97.9 98.9/98.4

functions of the random components specified by (Bi) and (C). As expected, from the analysis of the Type I error, the power
of the test with single-level bootstrap is larger comparative to when nested bootstrap is used. The difference decreases as
the sample size increases or the departure from the null hypothesis is stronger.

6. Data analysis

The proposed testing procedure was applied to a long range infrared light detection and ranging (LIDAR) study, with the
objective to test whether the backscatter efficiency is affected by the type of aerosol clouds. The study comprises measure-
ments of the spectral backscatter taken at different time periods and corresponding to various CO2 laser wavelengths for
two types of clouds: control clouds that were non-biological in nature and treatment clouds that were biological. This is an
example where the biological clouds may be a threat (perhaps from a terrorist) while the non-biological ones are benign. So
there is a lot of interest in knowing whether the two types of clouds are different. The data have been previously described
in Carroll et al. (2012) and discussed recently in Serban et al. (2013) and Xun et al. (2013).

In the experiment, 30 aerosol clouds are investigated: control clouds that were non-biological in nature and treatment
clouds that were biological. For each cloud i = 1, . . . , 30 at 50 time periods (called bursts), which are sampled at one second
apart, and various CO2 laser wavelengths, the background corrected received signal is observed at 250 equally spaced range
values. Herewe concentrate on the (range invariant) backscatter efficiency of the true signal as estimatedusing the algorithm
of Warren et al. (2008, 2009), but applied to the observed data rather than the deconvolved data.

Because of physical properties, the backscatter efficiency can be viewed as a function of the wavelength for each burst
(see Serban et al. (2013)). Define the response Yijl as the backscatter efficiency for CO2 laser wavelength tijl for the jth
burst sampled at sij within cloud i. The burst level profiles are sampled at regular wavelengths tijl ∈ {1, . . . , 19} and
the measurements are likely contaminated with measurement error. Furthermore because of the nature of the bursts, the
dependence among responses for the same cloud depends on the relative location of the bursts, not through the mean, but
rather through the covariance, as a function of the distance between the burst locations. It is reasonable to assume that the
spectral backscatter can be modeled using (1), where it is assumed that the cloud-type specific mean trend and covariance
structure are of the form (3). Fig. 1 shows the spectral backscatter profiles for all the clouds in the control group and for all
the clouds in the treatment group.

We are interested to test the null hypothesis that the mean backscatter efficiency for the control and treatment group
are equal, i.e.µctrl(t) ≡ µtrt(t) for all wavelengths t . Hitherto, there are no available approaches to test this null hypothesis,
when data exhibit this complex correlation structure. The proposed testing approachwas applied and the number of Fourier
coefficients was allowed to vary between L = 3 and L = 19. In our case D = 2 and Mi = M1 and thus the two testing
procedures Tn and Tn,C for C = (1,−1) agree with one another and, not surprisingly, their null distribution is the same. The
value of the test statistic ranges from 0.0046 when L = 3, to 0.0071 when L = 6 and to 0.0081 when L = 19. The p-value is
estimated using the three approximations of the null distribution of the test: via single bootstrap and nested bootstrap with
B = 10,000 replications, and by using the null distribution with the estimated model components.

Fig. 2 shows that the p-value varies from0.023 to 0.056 for the single-level and from0.016 to 0.044 for different truncation
levels L = 3, . . . , 19. Using the hard truncation criterion described earlier, we obtain L = 17, the test statistic value is 0.008
and the corresponding p-values are equal to 0.028 and 0.021 for the single level and nested bootstrap, respectively. For the
nested bootstrap, the size of the block bootstrap was fixed at 0.2; further investigation of the analysis for varying block size
between 0.15 and 0.4 indicates that the overall results remain roughly the same.

Finally, we considered the approximation of the null distribution of the T L
n given by (8) with the eigenvalues of K Z , λk,

replaced by their estimated values λk. In our case D = 2 and Mi = M1, thus the null distribution of T L
n is


k≥1 λkχ

2
1 .

We use the estimation algorithm proposed by Staicu et al. (2010) to compute the estimated covariance K Z , and thus the
estimated eigenvaluesλk. Using a percentage of explained variance equal to 0.95 we obtain 3 positive eigenvalues of K Z ,λ1 = 0.0013,λ2 = 0.0003,λ3 = 0.0001. The p-value with this approach is 0.016. All the results indicate strong evidence
of significant differences between the backscatter efficiency mean trend corresponding to the two types of clouds.
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Fig. 1. Backscatter efficiency profiles for the 16 types of clouds in the control group (left panel) and for the 14 clouds in the treatment group (right panel)
and all their bursts; same color is used for the responsesmeasured on the same cloud. Overlaid in solid line is the groupmean profile obtained using L = 17.

Fig. 2. P-values for various truncations L for testing the null hypothesis that all the groupmeans are equal. Displayed are results with single-level bootstrap
(circle symbol) and nested bootstrap (triangle). The size of the block bootstrap is fixed at 0.2 (left panel) and 0.4 (right).

7. Discussion and extensions

The present paper develops testing procedures for assessing the equality of the groupmean functions of several groups of
curves, when the data have a multilevel structure of the form groups–subjects or clusters–units with the unit-level profiles
being spatially correlated. We show that the asymptotic distribution of the significance tests depends solely on the subject
level covariance, provided that an analysis of variance-like decomposition of the functional processes according to the levels
of hierarchy, subject and unit, and the spatial correlation holds. The lack of dependence of the asymptotic distribution of the
tests statistics on the unit-level profiles may seem surprising. Intuitively, it appears to be the result of the combination be-
tween themodel assumption for the covariance structure and the increasing domain asymptotics used to handle the spatial
dependence. Such assumptions work well for settings similar to our data application. However, the asymptotic distribution
of the tests would most likely change structurally, by using infill asymptotics, which intuitively means that as the num-
ber of the unit-level curves increases, the correlation between them also increases, under a stationary spatial dependence
assumption.

Bootstrap alternatives are discussed and in particular a novel block bootstrap procedure for functional data is proposed,
which accounts for the spatial dependence between the curves. The block bootstrap, referred to as nested bootstrap, provides
a very accurate approximation of the null distribution of the test, and in particular for small sample sizes. For such sample
sizes, the regular bootstrap, referred to as single-level bootstrap has poor performance and yields inflated Type I error rates.
For larger sample sizes the nested bootstrap has a good performance and tends to be more conservative. The challenge
with using the block bootstrap approach is the selection of the block length, a challenge inherited from the classical block
bootstrap for spatial statistics (see Lahiri, 2003, Chapter 7). While there has been considerable research in optimal selection
of the size of the dependent bootstrap (see for example Lahiri, 1999; Patton et al., 2009) on optimal selection of the block
bootstrap, based on data, remains an open problem.
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Appendix

This appendix contains three sections. Appendix A.1 discusses asymptotic properties of the basis coefficients estimators
in terms of consistency and rate of convergence. Appendix A.2 gives the asymptotic distribution of the testing procedure,
including the proof of Theorem 3.1.

A.1. Asymptotic properties of the basis functions estimators

Recall the model assumption is Yijl = µG(i)(tijl) + V (tijl, sij) + ϵijl, for G(i) ∈ {1, . . . ,D}, where tijl ∈ T and sij ∈ D , l =

1, . . . ,Nij, j = 1, . . . ,Mi, i = 1, . . . , n. For simplicitywe set T = [0, 1] andD = R2. It is assumed that ϵijl is white noisewith
mean zero and constant variance σ 2

ϵ , for all l, j, and i. Without loss of generality we assume that there areNij+1 observations
per curve instead of Nij; this assumption is made to simplify notations.
Consistency of the estimators

We develop the consistency of the estimators of the basis functions coefficients.

Lemma A.1. Assumptions (A1)–(A3) hold. Then as nd → ∞, we have |βd − βd| = op(1).

Proof of Lemma A.1. We show thatβd,ℓ−βd,ℓ = op(1) for all ℓ ≥ 1. Because E{|βd,ℓ−βd,ℓ|
2
} = var(βd,ℓ)+{E(βd,ℓ)−βd,ℓ}

2

it is suffices to show that bias(βd,ℓ) → 0 and var(βd,ℓ) → 0, as nd → ∞,
Let µd,ij(t) =

Nij
l=1 µd(tijl)1{t ∈ Aijl}, for all i, j, d. Recall that {tijl : l = 1, . . . ,Nij + 1} are considered equally spaced in

[0, 1] with tijl = (l − 1)/Nij and Aijl = [tijl, tij,l+1). We write βd,ℓ = βd,ℓ + IVd,ℓ + Iϵd,ℓ, where βd,ℓ = m−1
d


{i:G(i)=d}

Mi
j=1 1

0 µd,ij(t)ψℓ(t) dt , IVd,ℓ = m−1
d


{i:G(i)=d}

Mi
j=1

Nij
l=1 Vij(tijl, sij)aijl,ℓ, Iϵd,ℓ = m−1

d


{i:G(i)=d}
Mi

j=1
Nij

l=1 ϵij(tij,ℓ)aijl,ℓ and

aijl,ℓ =

Aijl
ψℓ(t) dt . It is sufficient to show that |βd,ℓ − βd,ℓ| = o(n−1/2

d ) and var{βd,ℓ} = O(n−1
d ).

To simplify notation, in what follows we assume that all integrals without a range of integration are over Aijl. We show
first that |βd,ℓ − βd,ℓ| = o(n−1/2

d ) as nd → ∞, using the following inequalities:

|βd,ℓ − βd,ℓ| =

m−1
d


{i:G(i)=d}

Mi
j=1

Nij
l=1

 
µd(t)− µd(tijl)


ψℓ(t) dt

 ≤
C

√
2α + 1

n−αθ
d ,

which is of order o(n−1/2
d ) as lim nd = ∞, since θα > 1/2 and (A3)(c) holds. This sequence of equalities and inequalities

uses assumption (A1)(a) as well as the Hölder and Cauchy inequalities.
Next, we show that var{βd,ℓ} = O(n−1

d ). For simplicity we discuss first the error term, Iϵd,ℓ, and then the ‘random’ term IVd,ℓ.

Error term, Iϵd,ℓ: We show that Iϵd,ℓ = op(n
−1/2
d ).

Iϵd,ℓ = m−1
d


{i:G(i)=d}

Mi
j=1

Nij
l=1

ϵijl


Aijl
ψℓ(t) dt = Op(m

−1/2
d n−1/2

d ),

which is of order op(n
−1/2
d ) as lim nd = ∞. Thus var(Iϵd,ℓ) = op(n−1

d ).

Covariance term, IVd,ℓ: Using the ANOVA-like decomposition of the bivariate process Vij(t, s), we decompose the term IVd,ℓ
into the components IVd,ℓ = IZd,ℓ + IWd,ℓ + IUd,ℓ, using the modeling assumption (3). We will show that var(IZd ) = O(n−1

d ),
var(IWd ) = O(m−1

d ), and var(IUd ) = O(m−1
d ).

Claim: var(IZd,ℓ) = O(n−1
d ) for all ℓ.

We write var(IZd,ℓ) = m−2
d


{i:G(i)=d} E(F

2
iℓ), where Fiℓ =

Mi
j=1

Nij
l=1 Zi(tijl)aijl,ℓ. Let K

Z (·, ·) be the covariance function of
Z(·) defined by K Z (t, t ′) = cov{Z(t), Z(t ′)}. Then

cov(IZd,ℓ, I
Z
d,ℓ′) ≤ m−2

d


{i:G(i)=d}

Mi
j=1

Mi
j′=1

Nij
l=1

Nij′
l′=1

aijl,ℓaij′ l′,ℓ′K Z (tijl, tij′,l′)


= O(n−1
d ),

since K Z (·, ·) is uniformly bounded, from (A2)(a). The last equality is also based onmin{i:G(i)=d} Mi ≤ Mi ≤ c2 min{i:G(i)=d} Mi,
which follows from assumption (A3)(b).
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Claim: var(IWd,ℓ) = O(n−1
d ) for all ℓ.

In fact we can show a much stronger result, namely that var(IWd,ℓ) = O(m−1
d ). The reasoning is similar to the above, with

few modifications. First we write var(IWd,ℓ) = m−2
d


i:G(i)=d

Mi
j=1 E(F

2
ijℓ), where Fijℓ =

Nij
l=1 Wij(tijl)aijl,ℓ. It is easy to show

that cov(IWd,ℓ, I
W
d,ℓ′) = O(m−1

d ), again using assumption (A2)(a). Here ∥KW
∥ = supt,t ′∈[0,1] KW (t, t ′) < ∞, following the

assumption that
 1
0 KW (t, t) dt < ∞.

Claim: var(IUd,ℓ) = O(n−1
d ) for all ℓ.

In fact we will prove a stronger result that var(IUd,ℓ) = O(m−1
d ).

Let var(IUd,ℓ) = m−2
d


i:G(i)=d E{Var(H2

iℓ|Si)}, where Si is the Mi-dimensional vector of Sij, Hiℓ =
Mi

j=1 Ui(Sij)aℓ, aℓ = 1
0 ψℓ(t) dt; notice aℓ = 1 for k = 1 and 0 otherwise. We have that E{Var(H2

iℓ|Si)} =
Mi

j=1 σU(0) + E{
Mi

j=1
Mi

j′=1,j′≠j

σU(∥Sij − Sij′∥)} = MiσU(0)+ (Mi − 1)

σU(∆)f (s)f (s +∆) ds d∆. Hence var(IUd,ℓ) equals

m−1
d σU(0)+ m−2

d


{i:G(i)=d}

(Mi − 1)
 

σU(∆)f (s)f (s +∆) ds d∆ = O(m−1
d ), (A.1)

since |

σU(∆)f (s)f (s + ∆) ds d∆| < ∞ following the assumption that the density f (·) and the covariance function σU(·)

are non-zero on a finite interval. Here we used that for each i, the spatial locations Sij are independent and identically dis-
tributed with density function M−1/2

i f (M−1/2
i s) and the result that if S1 and S2 are independent and identically distributed

with density function f (·), then g(∆) =

f (s)f (s +∆) ds is the density function S1 − S2.

Asymptotic normality of the estimators
Next we show the asymptotic normality of n1/2

d (βd − βd) for fixed but arbitrary truncation value L.

Lemma A.2. Suppose the assumptions (A1)–(A3) hold. Let L be fixed truncation, and denote by βd = (βd,1, . . . , βd,L)
T , and byβd its analogous estimator, by suppressing the dependence on L. Then, for nd = |{i : G(i) = d}|, we have that as nd → ∞,

n1/2
d (βd − βd) → Normal(0,Σ), whereΣ is an L × L matrix with (ℓ, ℓ′) element equal to 1

0

 1

0
ψℓ(t)ψℓ′(t ′)K Z (t, t ′) dt dt ′. (A.2)

The proof is based on the remark thatβd − βd = (βd − βd)+ IZd + (IWd + IUd + Iϵd ), and that (1) (βd,ℓ − βd) = o(n−1/2
d ),

and (2) each of IWd , IUd , I
ϵ
d is op(n

−1/2
d ). It follows that the asymptotic distribution of n1/2

d (βd −βd) is the same as that of n1/2
d IZd .

Lemma A.3 shows that n1/2
d IZd → Normal(0,Σ).

Using this result, one can derive the asymptotic distribution of the group mean function estimator of µd(t), µL
d(t) =L

ℓ=1
βd,ℓψℓ(t). In particular, as L → ∞ and provided that maxℓ≥L+1 |βd,ℓ| = o(n−1/2

d ), it follows that the limiting distribu-
tion of n1/2

d {µL
d(t)−µd(t)} is AGP{0, K Z

}, where AGP(η, γ ) denotes an asymptotic Gaussian processwithmean function η(t)
and covariance function γ (t, t ′). The assumption maxℓ≥L+1 |βd,ℓ| = o(n−1/2

d ) is related to the rate of decay of the Fourier
coefficients βd,ℓ; this assumption ensures that the group mean estimatorsµL

d(t) are unbiased asymptotically.

Lemma A.3. Suppose that Zi(·) are independent and identically distributed as the stochastic process Z(·) for which assump-
tions (A2)(a) and (A3)(b, c) hold. Then, as nd → ∞ we have

n1/2
d (IZd,1, . . . , I

Z
d,L)

T
→ Normal(0,Σ), (A.3)

where the convergence is in distribution andΣ is an L × L matrix defined above.

Proof of Lemma A.3. We will show this in two steps. In Step 1 we prove that n1/2
d (IZd,ℓ −IZd,ℓ) converges in probability to

zero, whereIZd,ℓ = m−1
d


{i:G(i)=d} Mi

 1
0 Zi(t)ψℓ(t). In Step 2 we show that n1/2

d
IZd → Normal(0,Σ). The result then follows

by an application of Slutsky’s theorem.
We begin with proving Step 1. Our proof relies on the assumption that the covariance function of Zi is twice continuously

differentiable. Then by a Taylor expansion

K Z (t, t ′) = K Z (t1, t2)− K Z (t, t2)− K Z (t1, t ′)+ K Z
t,t ′(t1, t2)(t − t1)(t ′ − t2)+ o{N−2

min},

for |t − t1| < N−1
min and |t ′ − t2| < N−1

min. Here K Z
t,t ′(t1, t2) = ∂2K Z (t1, t2)/∂t∂t ′.
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Let ℓ ≥ 1 be arbitrary. It is sufficient to show that E[nd(IZd,ℓ −IZd,ℓ)2] → 0. Let Vij(t) =
Nij

l=1 Zi(tijl)1(t ∈ Aijl). Simple
algebra gives that E[nd(IZd,ℓ −IZd,ℓ)2] = ndm−2

d


{i:G(i)=d}
Mi

j=1
Mi

j′=1 Sjj′ , where

|Sjj′ | ≤ ∥K Z
t1,t2∥

Nij
l=1

Nij′
l′=1


Aijl


Aij′ l′

|(t − tijl)(t ′ − tij′,l′)||ψℓ(t)||ψℓ(t ′)| dt dt ′ + o(N−2
d,min)

= ∥K Z
t1,t2∥N

−1
ij N−1

ij′ /3, (A.4)

for Nd,min = min{Nij : G(i) = d}, and sup{|K Z
t1,t2(t, t

′)| : 0 ≤ t, t ′ ≤ 1} = ∥K Z
t1,t2∥ < ∞. We obtain that |E[nd(IZd,ℓ −IZd,ℓ)2]|

≤ CN−2
d,minnd


{i:G(i)=d} M

2
i /m

2
d which converges to zero as nd → ∞, from assumption (A3)(c).

Next we prove Step 2. Let b = (b1, . . . , bL)T be a vector and denote Ψb(t) =
L

k=1 ψℓ(t)bℓ; furthermore let Zi,ψ = 1
0 Zi(t)Ψb(t) dt . Then Zi,ψ are independent and identically distributed with mean zero and finite variance. The variance is

finite because

E[Z2
i,ψ ] =

L
k=1

L
k′=1

bℓbk′
 1

0

 1

0
K Z (t, t ′)ψℓ(t)ψℓ′(t ′) dt dt ′.

Thus |
 1
0

 1
0 K Z (t, t ′)ψℓ(t)ψℓ′(t ′) dt dt ′| ≤ {

 1
0

 1
0 |K Z (t, t ′)|2 dt dt ′}1/2 × {

 1
0 ψ

2
ℓ (t) dt} < ∞ using Hölder’s inequality, the

last step being a consequence of
 1
0

 1
0 |K Z (t, t ′)|2 dt dt ′ < ∞. Note that this constraint of the covariance operator of Zi’s is

met not only when ∥K Z
∥ < ∞, but also it can be met by assuming the less restrictive assumption E(∥Zi∥4

L2
) < ∞.

Thus the convergence of n1/2
d bTIZd is obtained by applying the Central Limit Theorem for independent random variables.

More specifically, let Xi = ndMi/mdZi,ψ , Rd =


{i:G(i)=d} Xi and note that Rd has zero-mean and variance equal to ndτ
2
d ,

where τ 2d = nd


{i:G(i)=d} M
2
i /m

2
dE[Z2

i,ψ ]; of course τd = O(1) since Zi,ψ has finite variance, say σ 2
Z,ψ , and ndm−2

d


i:G(i)=d M
2
i

= O(1). Then Lindeberg’s condition is satisfied by using the dominated convergence theorem along with Chebyshev’s
inequality and it follows that n−1/2

d


{i:G(i)=d} Xi → Normal(0, σ 2
Z,ψ ). The result n1/2

d
IZd,ℓ → Normal(0,Σ) follows from

Cramér–Wold device, whereΣ is given by expression (A.2).
A similar result has been discussed by Zhang and Chen (2007) in the context of groups of independent noisy curves. Their

rate of convergence, of orderm−1/2, is faster than ours, of order n−1/2
d , due to themore restrictive assumption used by Zhang

and Chen (2007) – that all the curves are independent – which is not met in our setting. Lemma A.2 can be used to derive
the asymptotic distribution of a linear combination

D
d=1 cdµL

d(t). Such a result is particularly useful for null hypotheses
testing of the type

D
d=1 cdµd = 0 which are discussed in more detail in Section 3.

Corollary A.1. Assume conditions (A1)–(A3) hold and consider that µ0(t) =
D

d=1 cdµd(t). Then as L → ∞ and provided that
L−1n1/2

d = o(1) we have:

n1/2


D

d=1

cdµL
d(t)− µ0(t)


→ AGP(0, cTP−1cK Z ) (A.5)

where the convergence is in distribution as n → ∞, cT = (c1, . . . , cD)T , P = diag{p1, . . . , pD}, and pd = lim nd/n as nd,
n → ∞ for each d with pd ∈ (0, 1).

A.2. Asymptotic distribution of the test

We present now the proofs on which the asymptotic distribution of the test is based.

Lemma A.4. Assume conditions (A1), (A2), (A3) and let µL(t) =
L

ℓ=1 ψℓ(t)βℓ. Then, under the null hypothesis H0, as L →

∞, n → ∞, and L−1n1/2
d = o(1).

n1/2
{µ(t)− 1DµL(t)} → AGP[0, (QBQ TK Z )] (A.6)

where µ stands for the vector of µL
d’s, 1D is the D column vector of ones, and Q is a D × (D − 1) dimensional matrix with the

(d, d′) element equal to Qdd = 1 − qd for d = d′ and Qdd′ = −q′

d for d ≠ d′. Also B = diag(p−1
1 , . . . , p

−1
D−1) + p−1

D 1D−11T
D−1.

Here the pd’s and qd’s are defined by assumption (A3)(a).

Proof of Lemma A.4. Let Pn = diag{n1/n, . . . , nD/n} and QN be the D× (D− 1) dimensional matrix that is the analogue of
Q with qd replaced bymd/m. Then the left hand side of (A.6) can he represented under the null hypothesisH0 as FnVn, where
Fn = QN ×[ID−1| − 1D−1]× P−1/2

n , and Vn is the D dimensional vector with the dth component equal to n1/2
d {µL

d(t)−µd(t)}.
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Here [ID−1| − 1D−1] denotes a (D − 1)× Dmatrix with the left (D − 1)× (D − 1) block matrix equal to the identity matrix
ID−1, and the Dth remaining column equal to −1D−1.

When nd → ∞ and in addition L → ∞ such that L−1n1/2
d = o(1) it follows that ∥βd,ℓ∥ = o(n−1/2

d ) for all ℓ ≥ L + 1
and all d; thus we have that the limiting distribution of Vn is AGP(0, IDK Z ). It follows that the limiting distribution of
n1/2

{µ(t)− 1DµL(t)} is AGP(0,QBQ TK Z ), since as nd → ∞ we have FnF T
n → QBQ T .

Proof of Theorem 3.1. Simple algebra shows that if B = RBRT
B is the Cholesky decomposition of B, then RT

BQ
TPQRB = ID−1 +

RT
B(q−D − p−D)(q−D − p−D)

TRB, since B−1
= Q TPQ − (q−D − p−D)(q−D − p−D)

T , using the Woodbury formula (Woodbury,
1950). Using Lemma A.4, and the continuity theorem one can show that when nd → ∞ and in addition L → ∞ the null
distribution of T L

n is
κ

k=1 λkξ
T
k Aξk, provided that L−1n1/2

d = o(1).
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