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a b s t r a c t

Joint models for a wide class of response variables and longitudinal measurements consist
on a mixed-effects model to fit longitudinal trajectories whose random effects enter as
covariates in a generalized linear model for the primary response. They provide a useful
way to assess association between these two kinds of data, which in clinical studies are
often collected jointly on a series of individuals and may help understanding, for instance,
the mechanisms of recovery of a certain disease or the efficacy of a given therapy. When
a nonlinear mixed-effects model is used to fit the longitudinal trajectories, the existing
estimation strategies based on likelihood approximations have been shown to exhibit some
computational efficiency problems (De la Cruz et al., 2011). In this article we consider a
Bayesian estimation procedure for the joint model with a nonlinear mixed-effects model
for the longitudinal data and a generalized linear model for the primary response. The
proposed prior structure allows for the implementation of an MCMC sampler. Moreover,
we consider that the errors in the longitudinal model may be correlated. We apply our
method to the analysis of hormone levels measured at the early stages of pregnancy that
can be used to predict normal versus abnormal pregnancy outcomes. We also conduct a
simulation study to assess the importance of modelling correlated errors and quantify the
consequences of model misspecification.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Inmany biomedical studies longitudinal biomarker profiles carry important information about the outcome of a therapy,
a disease or a particular condition. In such cases, the association between the response or outcomeand a series of longitudinal
measurements is of primary interest. In Fig. 1 we illustrate one example that motivates the current paper. The longitudinal
measurements of this data set represent beta human chorionic gonadotropin (β-HCG) levels measured over time on 173
pregnant woman during the first 80 days of gestation. Here, the response of interest for each woman is given by her
pregnancy outcome: normal, if she had a normal delivery or abnormal if she had any complication resulting in a nonterminal
delivery and loss of the foetus. In such a framework a relevant question is how the variation of hormone concentration
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Fig. 1. Observed β-HCG time profiles in the log scale for women with normal and abnormal pregnancy outcomes.

during the early stages of pregnancy may affect its outcome. In this case we are interested in a binary outcome but in a
general setting we may be dealing with any kind of response.

If we observed longitudinal measurements without noise on a dense grid of time points this problem could be addressed
from a functional perspective by using a logistic functional regression model with functional predictor and scalar response
[28,8] or, more generally, a generalized functional linear model [17,26]. However, this is an unrealistic setting in many
biometrical applications inwhich the design for longitudinal data is irregular and sparsewith very fewobservations available
per individual and measurements are subject to experimental error. This is for instance the case in the β-HCG data set in
which the number of observations per women varies from 1 to 6, with a median of 2.

Therefore, when dealing with noisy and highly sparse longitudinal trajectories a natural way of measuring their impact
on the response of interest consists on extracting relevant latent information that could be used as covariates of a generalized
linear model. Several authors have studied this problem focusing mainly on two types of response: binary outcomes and
survival data. They propose joint models in which longitudinal data are fitted with a mixed-effects model whose random
effects are covariates in a generalized linear model (GLM) for the response of interest. If we consider a linear mixed-effects
(LME) model for the longitudinal trajectories, several solutions, including likelihood-based and Bayesian approaches, exist
([36,13,23,15,32]; see [27] for an overview).

However, when fitting nonlinear mixed-effects (NLME) models to the longitudinal data, an estimation approach that can
efficiently deal with the complexity of the joint model is yet to be proposed. Note that the use of NLME models vs LME
is necessary in some cases in which the evolution of the longitudinal trajectories over time is clearly nonlinear, as in the
pregnancy data set that motivates this work. De la Cruz et al. [4] compared several estimation methods for the analysis of
this data set with a NLME–GLM joint model, including the naive two-step approach, BLUP and likelihood approximation
methods based on several numerical integration techniques. They verified that as in the LME–GLM joint model, the first two
procedures yield biased estimates. The third method seemed to work better for some particular approximation techniques,
namely Laplacian and adaptive Gaussian approximations. However, these methods can be computationally inefficient in
practice.Wu et al. [38] also considered the problem of joint likelihood inference in the NLME–GLMmodel, although focusing
on the case in which the primary outcome is the time to a given event, and not a binary response, and encountered similar
implementation problems. Wu et al. [39] proposed a fast and accurate joint estimation procedure for that model relying
on the Laplace approximation. However, considering the findings of [19] about the asymptotic bias of estimators based on
Laplace approximation for GLM with discrete response, these authors acknowledged that the performance of their method
might be less satisfactory when dealing with binary outcomes instead of survival data.

To overcome these drawbacks, in this articlewe consider a Bayesian estimation approach for the NLME–GLM jointmodel.
The aim is to provide a framework for the implementation of anMCMC sampler in this kind of models. Indeed, we propose a
prior structure that allows for calculating some of the conditional distributions explicitly, which facilitates the construction
of a Metropolis-within-Gibbs algorithm. Although in its application to the pregnancy data set we focus in the prediction
binary outcomes, the general estimation framework that we describe is flexible enough to be usedwith any kind of response
of interest. Moreover, motivated by our real data set, we assume that we may have autocorrelated error terms in the NLME.
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The rest of the paper is organized as follows. In Section 2 we present the detailed specifications of the proposed joint
model. In Section 3 we describe the MCMC algorithm for Bayesian estimation. A model comparison strategy is discussed in
Section 4.1 and in Section 5 we conduct a simulation study to assess the performance of our method and the importance of
model misspecification in the presence of autocorrelated errors. In Section 6 we apply our method to the β-HCG data set,
comparing the results to previous analyses on this data set. Finally, we offer a general discussion in Section 7.

2. Joint model

The structure of interest here can be described by two components. The first component contains repeated observed
measurements that are assumed to follow a nonlinear mixed-effects model over possibly unequally spaced times. The
second component contains the primary outcome, which is assumed to follow a generalized linearmodel where the random
coefficients of the nonlinear mixed-effects models are used as covariates.

Denote by yij, i = 1, . . . ,m, j = 1, . . . , ni, the observation of a continuous response for individual i at time tij. Let
yi = (yi1, . . . , yini)

′ be the observed vector of longitudinal measurement data at times ti = (ti1, . . . , tini)
′. Assume that yi

follows the nonlinear mixed-effects model

yi = g(α, Xi; ti) + ϵi, i = 1, . . . ,m, (1)

where α is a vector of p unknown fixed effects parameters, Xi is a vector of q unobservable random effects, g is a real-
valued nonlinear function of the fixed and random effects, and ϵi = (ϵi1, . . . , ϵini)

′ is the within individual random
error vector. We assume that the random effects Xi’s are independent and identically normally distributed with mean
vector µX and covariance matrix ΣX . Typically, the error terms ϵi’s are assumed to be normal with zero mean vector and
covariance matrix Σϵi = σ 2

ϵ Ini , i.e. independent measurements errors, where Ia denotes the identity matrix of dimension a.
However, in longitudinal data, measurements taken over time on individuals usually show a highly unbalanced structure
(i.e.measurement timesmay be unequally spacedwithin an individual andmay differ across individuals) andmay be serially
related. To take this into accountwe assumeΣϵi = Σϵi(σ

2
ϵ , ρ), withσ 2

ϵ being a scalar parameter andρ a vector of parameters
describing the correlation structure. Depending on the context, various assumptions about the matrix Σϵi(σ

2
ϵ , ρ) can be

made (see [35, Chap. 7]). In the following we consider that Σϵi(σ
2
ϵ , ρ) = σ 2

ϵ Σi(ρ), where Σi(ρ) is an ni × ni scaled matrix
with (k1, k2)th element equal to ρ|tik1−tik2 | though other choices are possible. This matrix has a continuous time first-order
autoregressive, CAR(1), structure (see [5]), which can cope with nonequally spacedmeasurements. We also assume that the
Xi’s and ϵi’s are mutually independent.

Now, assume that in addition to the ni-dimensional vector of longitudinal measurements yi, a primary response Di, and
a k-vector of observed covariates, Wi, are observed on the ith individual. We assume that the primary response and the
random effects covariates are related via a GLM in canonical form; i.e., the conditional distribution of Di given Xi (and Wi;
conditioning onWi is dropped throughout) is

f (Di|Xi; θ) = exp

Di(β

′

0Wi + β ′

1Xi) − b(β ′

0Wi + β ′

1Xi)

a(φ)
+ c(Di, φ)


, (2)

where θ = (β, φ)′, with β = (β ′

0, β
′

1), are the parameters of primary interest; β0 and β1 are regression parameters, φ
is a dispersion parameter and a(·), b(·), c(·, ·) are known functions. In our context, β1 is of particular interest because it
represents the relationship between the primary response and features of longitudinal profiles. As discussed in [36], we can
further assume that yi and Di are conditionally independent given Xi, in which case

f (yi,Di, Xi) = f (yi,Di|Xi)f (Xi) = f (yi|Xi)f (Di|Xi)f (Xi).

The likelihood for the joint model (yi,Di) is given by

f (y,D) =

m
i=1


Rq

f (yi|Xi)f (Di|Xi)f (Xi)d Xi, (3)

where y = (y1, . . . , ym) and D = (D1, . . . ,Dm). Note that the joint model (yi,Di) is nonlinear in Xi, thus the integral in
(3) does not have a closed-form expression. However, approximation methods can be used to help the estimation. De la
Cruz et al. [4] discuss methods based on numerical integration techniques to obtain the MLE of the joint model in the special
case for which the primary response is binary. In this paper we propose to estimate the model parameters using a Bayesian
approach which is implemented using MCMC methods.

3. Estimation via MCMCmethods

Bayesian fitting of the joint model described in Section 2 involves, as usual in the Bayesian framework, the updating
from prior to posterior distributions for the parameters via appropriate likelihood functions. However, closed-form exact
expressions for most of the relevant joint and marginal posterior distributions are not available. Instead, we rely here on
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sampling-based approximations to the distributions of interest via Markov chain Monte Carlo (MCMC) methods: we use a
Gibbs sampler or a Metropolis-within-Gibbs algorithm to explore the posterior.

We now consider the problem of choosing prior information for the parameters β, α, µX , ΣX , σ
2
ϵ , ρ, and φ of the joint

model. The specification of the priors on the model parameters is often guided by mathematical and practical convenience.
We assume prior independence for parameters and

α ∼ Np(a1, A), µX ∼ Nq(c1, C), ΣX ∼ IW (v, vV ), σ 2
ϵ ∼ IG(v1, v2),

ρ ∼ π(ρ), β ∼ Nr(s, S), and φ ∼ π(φ). (4)

Here IG(h, k) denotes the inverse gamma distribution, with shape parameter h and scale parameter k, and mean
(h − 1)−1k−1. By V ∼ IW (d,D), we mean that the random matrix V follows an inverse Wishart distribution with scalar
parameter d andmatrix parameter D (by letting V ∼ IW (d, dD)we ensure that themean of V−1 equals D−1). Also,Np(µ, Σ)
represents the p-variate normal distribution with vector mean µ and covariance matrix Σ , and π(·) stands for a general
prior distribution to be specified in each case, as we discuss below. For the variance components, ΣX and σ 2

ϵ , we choose
conjugate priors.

In (4) the hyperparameters (a1, A, c1, C, v, V , v1, v2, s, S), and those involved in the prior for ρ and φ, are all assumed
to be known and chosen so that the priors are proper. In practice the elicitation of hyperparameters may be difficult. Thus,
the choice of the values of the hyperparameters can be based on strong prior knowledge or be chosen to reflect diffuse prior
information.

Note that in (2), for binomial and Poisson primary responses, the dispersion parameter is φ = 1. In that case no prior
specification is required for φ in (4). For normal primary response, φ is σ 2, and we can follow common practice in choosing
an inverse gamma prior, IG(r1, r2), for σ 2, i.e. π(σ 2) = IG(r1, r2). In (4) we assume a uniform prior for ρ.

We now present the posterior density associated with the joint model. We will note fN , fIG, fU and fIW the multivariate
normal, inverse gamma, uniform and inverse Wishart densities, respectively. Furthermore, fGLM denotes the primary
response in the generalized linear model (2). The joint posterior density of X, β, α, µX , ΣX , σ

2
ϵ , ρ, and φ given the observed

data dm = {(yi,Di)}
m
i=1 is

π(X, β, α, µX , ΣX , σ
2
ϵ , ρ, φ|dm) =

π∗(X, β, α, µX , ΣX , σ
2
ϵ , ρ, φ; dm)

m∗(dm)
, (5)

where the unnormalized posterior density is

π∗(X, β, α, µX , ΣX , σ
2
ϵ , ρ, φ; dm) =


m
i=1

fN(yi; g(α, Xi; ti), σ 2
ϵ Σi(ρ))fGLM(Di; Xi, θ)fN(Xi; µX , ΣX )


× fN(α; a1, A)fIG(σ 2

ϵ ; v1, v2)fU(ρ)fN(µX ; c1, C)fIW (ΣX ; v, vV )

× fN(β, s; S)π(φ)

and the normalizing constant (which is also the marginal density of the data) is

m∗(dm) =


π∗(X, β, α, µX , ΣX , σ

2
ϵ , ρ, φ; dm)dX dβ dα dµX dΣX dσ 2

ϵ dρ dφ.

The full conditionals to implement the MCMC procedure can be easily derived from (5). Indeed, we have

π(X |rest, dm) =

m
i=1

π(Xi|rest, dm), (6)

π(α|rest, dm) ∝ π(α)

m
i=1

f (yi|Xi)

∝ exp

−

1
2
tr


1
σ 2

ϵ

Σ−1(ρ)(yi − g(α, Xi; ti))′(yi − g(α, Xi; ti)) + A−1(α − a)′(α − a)


, (7)

π(β|rest, dm) ∝ exp


−

1
2
tr(S−1(β − s)′(β − s)) +

n
i=1

Diθi − b(θi)
a(φ)


, (8)

π(µX |rest, dm) ∝ π(µX )

m
i=1

f (Xi), (9)

π(ΣX |rest, dm) ∝ π(ΣX )

m
i=1

f (Xi), (10)
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π(σ 2
ϵ |rest, dm) ∝ π(σ 2

ϵ )

m
i=1

f (yi|Xi), (11)

π(ρ|rest, dm) ∝ π(ρ)

m
i=1

f (yi|Xi)

∝ exp

−

1
2
tr


1
σ 2

ϵ

Σ−1(ρ)(yi − g(α, Xi; ti))′(yi − g(α, Xi; ti))


, (12)

π(φ|rest, dm) ∝ π(φ)

m
i=1

f (Di|Xi), (13)

where θi = β ′

0Wi + β ′

1Xi and rest denotes the remaining components of the model to which we are conditioning in each
case. Some of these densities have a closed-form expression. Indeed, from (9)–(11) it is easy to check that µX |rest, dm is
multivariate normal with mean

(mΣ−1
X + C−1)−1


Σ−1

X

m
i=1

Xi + c1C−1


and covariance matrix (mΣ−1

X + C−1)−1. Also, ΣX |rest, dm follows an inverse Wishart distribution with scale parameter
v +

m
i=1 ni and matrix parameter

vV +

m
i=1

(yi − g(α, Xi; ti))′(yi − g(α, Xi; ti)).

Finally, σ 2
ϵ |rest, dm follows an inverse gamma distribution with shape parameter N/2 + v1 and scale parameter 1
v2

+

m
i=1

RSSyi

2


−1

,

where RSSyi = (yi − g(α, Xi; ti))′Σ−1
i (ρ)(yi − g(α, Xi; ti)). Due to the fact that g(·) is a nonlinear function of Xi, the full

conditional density in (6), π(X |rest, dm), cannot be written explicitly. However, the full conditional density of Xi can be
written, up to a proportionality constant, as

exp

−

1
2
tr


1
σ 2

ϵ

Σ−1(ρ)(yi − g(α, Xi; ti))′(yi − g(α, Xi; ti)) + Σ−1
X (Xi − µX )

′(Xi − µX )


+

Di(β
′

0Wi + β ′

1Xi) − b(β ′

0Wi + β ′

1Xi)

a(φ)


. (14)

In this case, to simulate from this full conditional we use a Metropolis–Hastings algorithm within each Gibbs step. Because
(14) is known up to a normalization constant, we can compute its mode X⋆

i and Hessian V ⋆
i using numerical optimization

techniques. This yields a natural choice of the proposal distribution, a multivariate normal distribution with mean vector X⋆
i

and variance–covariance matrix cV ⋆−1
i , denoted by fN(Xi; X⋆

i , cV
⋆−1
i ), where c is a known suitable tuning parameter chosen

to get sure that the acceptance rate is satisfactory (typically between 0.2 and 0.5), see [10]. Then we can implement the
Metropolis–Hastings algorithm as follows. Denote X (r)

i the current value of Xi at the rth iteration. A new candidate value
Xnew
i is drawn from the proposal distribution fN(Xi; X⋆

i , cV
⋆−1
i ). The acceptance probability is computed as:

min


1,

fN(Xnew
i ; X⋆

i , cV
⋆−1
i )

fN(X (r)
i ; X⋆

i , cV
⋆−1
i )

fN(yi; g(α, Xnew
i ; ti), σ 2

ε Σi(ρ))fGLM(Di; Xnew
i , θ)fN(Xnew

i ; µX , ΣX )

fN(yi; g(α, X (r)
i ; ti), σ 2

ε Σi(ρ))fGLM(Di; X
(r)
i , θ)fN(X (r)

i ; µX , ΣX )


.

Note that there is no need to compute the normalization constant because it cancels out in the acceptance probability. For the
remaining full conditionals, no such closed-form expression exists either and the same Metropolis–Hastings within Gibbs
algorithm is used to obtain draws from them. Note that the full conditional of the dispersion parameter φ of the GLM is only
required depending on the kind of the primary response. For instance, for the binomial and Poisson model we have φ = 1.

TheMarkov chain associatedwith theMCMC algorithm is denoted byΦ{(X (n), α(n), β(n), µ
(n)
X , Σ

(n)
X , σ 2(n)

ϵ , ρ(n), φ(n))}∞n=0

and has the posterior density (5) as its stationary density. To run the algorithm, given the current state, (X (n), α(n), β(n), µ
(n)
X ,

Σ
(n)
X , σ 2(n)

ϵ , ρ(n), φ(n)), we draw each of the X (n+1)
i ’s independently and form X (n+1). Then, the following series of steps is

conducted: given X (n+1), σ 2(n)
ϵ and ρ(n), we draw α(n+1); given X (n+1) and φ(n) we draw β(n+1); given X (n+1) and Σ

(n)
X we

draw µ
(n+1)
X ; given X (n+1), α(n+1) and µ

(n+1)
X we draw Σ

(n+1)
X ; given X (n+1), α(n+1) and ρ(n) we draw σ 2(n+1)

ϵ ; given X (n+1)

and α(n+1) we draw ρ(n+1); and finally, given X (n+1) and β(n+1) we draw φ(n+1).
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4. Model comparison

4.1. Conditional predictive ordinate

The conditional predictive ordinate (CPO) statistics introduced by [9] is a popular and useful model assessment tool
based on the marginal posterior predictive density of the response for individual i given the observed data from the rest of
the individuals. Let θ = (β, α, µX , ΣX , σ

2
ϵ , ρ, φ) be the parameters of the joint model, let dm be the observed data for all

individuals, and let d−(i) and X−(i) denote the observed data and random-effects vector, respectively, of the whole sample
excluding individual i. Further, let us note di = (yi,Di) where, for individual i, yi is the observed vector of longitudinal
measurements and Di is the primary response of the GLM. Then, the CPO statistic for individual i for our joint model is
defined as

CPOi = f (di|d−(i))

=


f (d−(i))

f (dm)

−1

=


Eθ,X |dm


1

f (yi|Xi, θ)f (Di|Xi, θ)f (Xi|θ)

−1

.

AMonte Carlo estimate of CPOi can be obtained by using a single MCMC sample from the posterior distribution π(X, θ |dm).
Let (θ (1), X (1)

i ), . . . , (θ (R), X (R)
i ) be a sample of size R, for corresponding parameters and individual-specific random effect,

drawn from π(θ, X |dm) after the burn-in phase. A natural Monte Carlo approximation of CPOi is given by

CPOi ≈


1
R

R
r=1

1

f (yi|X
(r)
i , θ)f (Di|X

(r)
i , θ (r))f (X (r)

i |θ (r))

−1

.

For each individual, larger values of CPO imply a better fit of the model. As a summary statistic of CPO over all individuals,
we use the logarithm of the pseudomarginal likelihood (LPML; [16]), which is defined by

LPML =
1
m

m
i=1

log
CPOi


. (15)

LPML measure focuses on both prediction of the primary response and longitudinal trajectory. Models with greater
LPML values represent a prediction accuracy. The LPML is well defined under the posterior predictive density and it is
computationally stable. LPML has been extensively used in Bayesian analysis for model selection in situations of simpler
and more complicated models and has a long history in statistics literature (see [3,1,2,12]). Model comparison can also be
performed using summarymeasures. Suppose that we have twomodelsM1 andM2 under consideration. The pseudo-Bayes
factor (PsBF), a surrogate for the Bayes factor [18,21] based on the CPO for comparing the two models, is defined as

PsBF(M1, M2) =

m
i=1

CPOi(M1)CPOi(M2)
= exp{LPML(M1) − LPML(M2)}

where CPOi(Mℓ) and LPML(Mℓ), with ℓ = 1, 2, correspond, respectively, to the CPO and LPML estimated for model ℓ.

4.2. Testing for zero correlation

In model (1)–(2), it may be interesting to test for zero correlation of the errors. Let M0 and M1 denote the restrictions
that ρ = 0 and ρ > 0, respectively. Following [25], we can apply the Savage–Dickey method to compute the Bayes factor
associated to this restriction:

B01 =
π(ρ = 0|dm; θ)

π(ρ = 0)
(16)

where π(ρ = 0|dm; θ) represents the marginal posterior density function for ρ at 0, and π(ρ = 0) represents the marginal
prior density for ρ at 0 within the unrestricted model, i.e. with correlated errors.

In order to compute the Savage–Dickey density ratio, the posterior density must be estimated at the desired restriction
using approximate samples from the posterior distribution of the unrestrictedmodel. Following [22], we can use the output
from our Gibbs sampler and the prior to estimate the required ratio

B01 =

1/R
R

r=1
π(ρ = 0|X (r), β(r), α(r), µ

(r)
X , Σ

(r)
X , σ 2(r)

ϵ , φ(r), dm)

π(ρ = 0)
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where r = 1, . . . , R indicates the number of the (post burn-in) Gibbs sampler iteration and superscript (r) denotes
the replications themselves. Nevertheless, when the full conditional posterior density does not have a closed form, an
approximation strategy is required. In our context, following [37], we may use a normal approximation to the posterior
distribution. The mean and variance of the posterior density of ρ are computed from the MCMC results. Another alternative
method consists on generating a marginal posterior sample for ρ, fitting a density (e.g. kernel density estimator) to the
sample, and evaluating it at the point of interest (in our case ρ = 0). This might be faster andmore accurate than the normal
approximation to the posterior distribution. Note also that since ρ is compactly supported one has to be careful about the
use of normal approximations.

5. Simulation study

In order to assess the performance of our estimation method, we conducted a simulation study with highly sparse and
unbalanced synthetic data. Indeed, we used the joint model (17)–(18) to simulate observations that replicate the structure
of the real data set analysed in Section 6, keeping the same number of individuals in each group and for each individual, the
same number of observations as well as the same observation time points. We simulated 500 data sets using the following
parameter values:

µX = 4
α = (αq, q = 1, 2) = (15, 7)
β = (βh, h = 1, 2) = (−22, 5)
σ 2
X = 0.2

σ 2
ϵ = 0.2

ρ = 0.9.

To assess the importance of considering correlation in the error term of the NLME on synthetic data, the generated data
sets were analysed using the estimation procedure presented in Section 3 assuming both correlated and independent error
terms (i.e. Σϵi(σ

2
ϵ , ρ) = σ 2

ϵ Ini ). This strategy allows us to analyse the bias introduced by the misspecified model which does
not consider the correlation structure of the data.

Implementing Gibbs sampling requires adopting specific values for the hyperparameters (a1, A, c1, C, v, V , v1, v2, s, S).
The values for the hyperparameters were taken as follows: a1 = s = (0, 0), A = S = 1 000I2, c1 = 0, C = 1 000, v =

6, V = 0.00083, v1 = 3 and v2 = 0.01.
We performed 2000000 iterations of the MCMC procedure. After the first 10 000 iterations, samples were collected, at a

spacing of 50 iterations, to obtain approximately independent samples. We ended up with R = 39 800 samples to calculate
posterior quantities of interest. Summary statistics for the Bayesian estimates obtained for these 500 simulated data sets are
given in Table 1. The true values of the parameters used in the simulation, the means and the medians with their respective
standard errors, and individual coverage probability are provided. It can be seen that the mean and median values for the
logistic submodel parameters present important biases. Specifically, when we use the misspecified model, we observe an
important overestimation for β1 and an underestimation for β2. Instead, as expected, we get much better results when we
consider correlated errors. On the contrary, the nonlinear model parameter estimates are very close to the simulated values
for both models. We can observe the same behaviour in terms of coverage probabilities. Figs. 2 and 3 provide a graphical
representation of these results displaying the distribution of estimates of the longitudinal and logistic submodel parameters.
This simulation study shows that not taking into account correlation among errors in the longitudinal measurements of the
joint model may introduce large bias in GLM parameter estimates.

6. Analysis of pregnant women data

The main objective of the analysis of the pregnant women data set presented in Section 1 is to investigate the effects
of the β-HCG longitudinal process on pregnancy outcomes, and in particular the association between normal pregnancy
and features of longitudinal β-HCG profiles. The data were collected from a total of 173 young pregnant women over a
period of 2 years in a private fertilization obstetrics clinic in Santiago, Chile. The resulting data set consists of 124 patients
whose pregnancies developed without any complications and 49 patients with abnormal pregnancies. Let Di = 1 and 0
denote normal and abnormal pregnancy outcomes, respectively, forwoman i, i = 1, . . . ,m, (m = 173). For the longitudinal
β-HCG concentrations, the 173women altogether contribute a total of 375 observations, where the number of observations
ni per woman ranges from 1 to 6 (median 2). Approximately 30% of the 173 women have only one β-HCG measurement,
31% have two, 33% have three, and only 6% have four or more measurements.

As discussed in previous work [24,6,7], a reasonable representation of the log β-HCG profile (yi) for the ith woman
is

yi =
Xi

1 + exp{−(ti − α1)/α2}
+ ϵi (17)
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Table 1
Results obtained on 500 simulated data sets for a joint model with independent and correlated errors.

True value Mean SDX̄ Median SDMedian Coverage Prob.

Independent errors

Longitudinal submodel
µX 4.00 3.998 0.067 3.998 0.065 0.95
α1 15 14.86 1.239 14.88 0.546 0.91
α2 7 7.137 0.738 7.095 0.698 0.91
σ 2

ϵ 0.2 0.147 0.022 0.144 0.015 0.12
σ 2
X 0.2 0.285 0.044 0.282 0.044 0.44

ρ 0.9 – – – – –
Logistic submodel
β1 −22 −13.06 3.330 −12.823 3.067 0.31
β2 5 2.861 0.797 2.805 0.725 0.30
Correlated errors

Longitudinal submodel
µX 4.00 4.004 0.067 4.003 0.066 0.938
α1 15 14.90 0.519 14.92 0.515 0.942
α2 7 7.163 0.639 7.130 0.633 0.930
σ 2

ϵ 0.2 0.186 0.033 0.177 0.032 0.850
σ 2
X 0.2 0.229 0.050 0.235 0.052 0.896

ρ 0.9 0.853 0.049 0.862 0.041 0.850
Logistic submodel
β1 −22 −19.28 3.578 −19.561 3.043 0.996
β2 5 5.15 0.935 5.218 0.797 0.998

where time is measured in days and the measurement errors ϵi are Gaussian. Indeed, levels of β-HCG in the log scale
clearly evolve nonlinearly with time and present a threshold after 50 days of pregnancy, which is well captured by the
horizontal asymptote of this function (see Fig. 1). For this data set, it seems reasonable to consider the error distribution
ϵi ∼ Nni(0, Σϵi(σ

2
ϵ , ρ)) where Σϵ(σ

2
ϵ , ρ) is a correlation structure with unknown σ 2

ϵ and ρ parameters. In particular, we
consider the CAR(1) correlation structure described in Section 2. The woman-specific random effect Xi is assumed to satisfy
Xi ∼ N(µX , σ

2
X ) and it represents the asymptotic behaviour of the log β-HCG profile. To describe the relation between the

pregnancy outcome and Xi, we consider the primary logistic regression model

Pr(Di = 1|Xi) = [1 + exp{−(β1 + β2Xi)}]
−1. (18)

We used the Bayesian approach described in Section 3 to estimate the parameters of this joint model. To illustrate the gain
obtained by considering correlated errors, we also fitted the same joint model with independent errors in (17). We also
considered separate fitting, i.e. we estimated independently the NLME (17) and the GLM (18), assuming both independent
and correlated errors.

Implementing Gibbs sampling requires adopting specific values for the hyperparameters (a1, A, c1, C, v, V , v1, v2, s, S).
The values for the hyperparameters were taken as follows: a1 = s = (0, 0), A = S = 1 000I2, c1 = 0, C = 1 000, v =

6, V = 0.00083, v1 = 3 and v2 = 0.01. We also performed the analysis with different hyperparameter values, obtaining
very similar results. This suggests robustness to the hyperparameter choices. Always, the choice of the hyperparameter
values was made to use diffuse proper priors. For the standard deviations σϵ and σX , other prior formulations were also
considered, including uniform and half-Cauchy distributions, with no substantive effect on the posterior distributions for
this data set.

We performed 2000000 iterations of the MCMC procedure. After the first 10 000 iterations, samples were collected, at a
spacing of 50 iterations, to obtain approximately independent samples. We ended up with R = 39 800 samples to calculate
posterior quantities of interest. In the implementation of the Metropolis–Hastings step, we obtained an acceptance rate
around 0.30. The program used to fit the model was written in Fortran (and it is available under request), but let us point
out that themodel for the i.i.d. case can be fitted in OpenBUGS. To diagnose convergence, we suggest any of the convergence
criteria discussed in the literature, for example, those included in the BOA package [33]. We prefer to use diagnostics which
do not require multiple parallel chains, as proposed by [11]. This criterion consists on testing the equality of the means of
the first (10%) and last parts (50%) of the chain. The test statistic is simply the difference between the two sample means
divided by the estimated standard error (adjusted for autocorrelation), which, under the null hypothesis that both parts of
the sample are drawn from the stationary distribution of the chain, has an asymptotically standard normal distribution. In
this analysis, applying Geweke’s convergence criterion separately to eachmodel parameter, where the absolute value of the
Z statistic was less than 1.6 in all cases, showed that convergence had been achieved.

Table 2 presents the results obtained by fitting the joint model (17)–(18) by the procedure described in this article and
also the estimates provided by MCMCmethods for the separate fitting. For both strategies, we considered independent and
correlated errors for the NLME model. For each parameter and each model, the posterior mean, the standard error and the
posterior median together with a 95% credible interval are given.
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Fig. 2. Longitudinal submodel: Distribution of fixed effects parameter estimates over 500 simulated data sets using a jointmodelwith independent (dashed
line) and correlated (solid line) errors. Vertical lines represent true values.

From Table 2, we can see that there are no important differences between the parameter estimates obtained from joint
and separate fitting under the assumption of independent errors. However, if we assume correlation in the error term, we
obtain, as expected, a significant difference in the GLM parameter estimates β1 and β2 obtained from joint and separate
fitting. If we now compare the estimates obtained when fitting a joint model with correlated and independent errors, we
observe that the estimate of β1 with correlated errors decreases in almost 50% in comparison with the estimate obtained
under the independent error assumption whereas for β2 we observe an increase of almost 50%. This is consistent with the
estimation biases detected for these parameters in the simulation study of Section 5.

Now, from the estimated parameter values we get estimates of P(Di|Xi), which allows us to consider the underlying clas-
sification problem and compare the four model performances. To do so, we calculated the confusion matrix of classification
which contains information about correspondence between actual and predicted classes. A probability cut-off value of 0.5
was considered as classification rule. The results are presented in Table 3 and are summarized in the first three columns of
Table 4. The best classification is obtained with the joint model with correlated errors for which all individuals with normal
pregnancy outcomes are correctly classified and only 13 individuals with abnormal pregnancy outcomes are incorrectly
classified.

Table 4 shows the error rate, the sensitivity, and the specificity of the classification rule with a probability cut-off value
of 0.5 for the four models. It also presents the area under the Receiver Operating Characteristic (ROC) curve (AUC) and its
standard deviation. The ROC curve represents the sensitivity versus 1 minus the specificity for any cut-off value from 0 to 1.
Then, a larger value of AUCmeans a better classifying performance. In the case of independent errors, we found an error rate
estimation of approximately 13.3% and 17.3% for the joint and separate models respectively. As discussed before by [4], the
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Fig. 3. Logistic submodel: Distribution of fixed effects parameter estimates over 500 simulated data sets using a joint model with independent (dashed
line) and correlated (solid line) errors. Vertical lines represent true values.

Table 2
Parameter estimates for joint and separate modelling.

Joint model Separate model
Mean SD 2.5% Median 97.5% Mean SD 2.5% Median 97.5%

Independent errors

Longitudinal submodel
µX 4.495 0.063 4.375 4.494 4.620 4.513 0.065 4.388 4.512 4.643
α1 14.850 0.400 14.040 14.870 15.590 15.000 0.392 14.190 15.020 15.740
α2 7.467 0.520 6.510 7.446 8.551 7.482 0.527 6.515 7.461 8.581
σ 2

ϵ 0.132 0.014 0.108 0.131 0.161 0.131 0.014 0.107 0.130 0.161
σ 2
X 0.290 0.045 0.211 0.287 0.388 0.294 0.047 0.212 0.291 0.395

Logistic submodel
β1 −15.280 3.957 −24.340 −14.850 −8.788 −14.460 2.868 −20.450 −14.320 −9.224
β2 3.682 0.902 2.204 3.576 5.737 3.443 0.638 2.279 3.413 4.777

Correlated errors

Longitudinal submodel
µX 4.495 0.063 4.373 4.494 4.621 4.521 0.064 4.399 4.519 4.649
α1 15.180 0.409 14.340 15.190 15.940 15.330 0.433 14.460 15.340 16.160
α2 7.211 0.487 6.311 7.193 8.228 7.278 0.504 6.361 7.256 8.331
σ 2

ϵ 0.187 0.025 0.143 0.185 0.240 0.250 0.053 0.162 0.245 0.359
σ 2
X 0.223 0.046 0.141 0.220 0.322 0.127 0.075 0.003 0.128 0.275

ρ 0.924 0.017 0.884 0.927 0.951 0.944 0.017 0.903 0.947 0.968

Logistic submodel
β1 −22.860 5.474 −34.790 −22.400 −13.400 −39.040 6.965 −53.530 −38.730 −26.450
β2 5.431 1.259 3.261 5.325 8.174 8.885 1.546 6.088 8.815 12.110
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Table 3
Confusion matrix of classification for the joint and separate fitting with independent and correlated errors.
Rows indicate the actual groupswhereas columns represent the classification into groups obtainedwith each
model.

Group Joint model Separate Model Total
Normal Abnormal Normal Abnormal

Independent errors
Normal 122 2 120 4 124
Abnormal 21 28 26 23 49

Total 143 30 146 27 173

Correlated errors
Normal 124 0 119 5 124
Abnormal 13 36 21 28 49

Total 137 36 140 33 173

Table 4
Error-rate, sensitivity, specificity and area under curve (AUC) for joint and separate models. In parenthesis,
the standard deviation of AUC.

Error-rate Sensitivity Specificity AUC (s.d.)

Joint model: Errors
Independent 13.3% 98.4% 71.8% 0.908 (0.032)
Correlated 7.5% 100% 73.5% 0.988 (0.007)

Separate model: Errors
Independent 17.3% 96.8% 46.9% 0.792 (0.046)
Correlated 15.0% 96.0% 57.1% 0.815 (0.044)

jointmodel seems to improve classification. Now, considering a CAR correlation structure in the errors, we obtained an error
rate estimation of approximately 7.5% and 15.0% for the joint and separate models, respectively. Therefore, it is clear that
the inclusion of correlation structure allows to significantly improve the classification results in this data set. We observe
the same kind of improvement for the sensitivity, the specificity and the AUC for the joint correlatedmodel versus the other
three models. It then appears evident that the joint strategy with correlation structure in the error term globally improves
the sensitivity and the specificity for predicting a normal pregnancy outcome for this population of women.

To further compare the two joint models, this time in terms of predictive performance, we calculated for each one its
LPML, as defined in Section 4.1 (see Eq. (15)). Models with greater LPML values will indicate a prediction accuracy. We found
LPML = −321.03 for the jointmodelwith correlated errors and LPML = −350.26 for the jointmodel assuming independent
errors. This suggests that the joint model with a correlation structure in the errors provides a marginally better prediction
performance to this specific data set. The 2 × log10(PsBF) for the independent errors model versus the correlated errors
model was −25.39. Therefore, the improvement on fitting the data of the joint model with correlated errors over the joint
model with independent errors is noticeable. Additionally, let us point out that in accordancewith the credible interval for ρ
in Table 2, the Savage–Dickey density ratio is close to zero, providing strong evidence against the hypothesis of independent
errors. This ratio was evaluated following the two strategies described in Section 4.2 obtaining similar results.

We compare our resultswith those found using the Bayesian longitudinal discriminant analysis (BLDA) approach (see [6])
in which case the reported error rate was approximately 16% which is greater than under the joint model with correlated
errors, 7.5%. The same happens with the sensitivity and the specificity: with the BLDA approach the sensitivity was found
to be 95% and the specificity 57%.

7. Discussion

In this paperwehave proposed inferential strategies for a generalized linearmodel for a primary outcomewith covariates
that are underlying individual-specific randomeffects in a nonlinear randomeffectsmodel for longitudinal data, considering
correlated errors in the NLME. We use an MCMC procedure to jointly estimate all parameters in the model. The proposed
approach provides a general framework for estimation in joint NLME–GLMmodels that circumvents some problems related
with likelihood approximations.

In the analysis of the pregnancy data set that motivates this work, we only use as the covariate for the logistic regression
model the latent random effects of β-HCG profiles, but other covariates, such as age, number of previous normal and
abnormal pregnancies and smoking status, could be useful for targeting specific individuals in future analysis. In our
particular data set, however, a number of women had missing values for many of these covariates.

All the proposed estimators assume normality of random effects and within-individual errors. The latter is often
reasonable, perhaps on a transformed scale. However, some authors (e.g., [34] among others), have shown that violation
of this assumption can compromise inference in mixed-effects models, which raises similar concerns for the proposed joint
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model. Further research on methods that go beyond traditional normality assumption on random effects would be useful.
These topics are the subject of current research to be reported elsewhere.

Although in the examples studied in Sections 5 and 6 our MCMC sampler is fast and does not exhibit convergence
problems, in some cases it may be difficult to choose the hyperparameter values in the Metropolis step. Thus, an interesting
future work is to consider an adaptive Metropolis step (see for example [29]) for the joint model proposed in this paper
in order to automatize the choice of the parameters of the proposal distribution. We are afraid that this method could be
slower than our MCMC procedure.

Another important issue in the field of MCMC procedures is about the theoretical convergence of the MCMC sampler. In
the context of Bayesian linear mixed-effects model, there have been several studies on the convergence properties of the
Gibbs sampler (see [14,20,30,31]) that have resulted in easily-checked sufficient conditions for geometric ergodicity of the
underlying Markov chain. However, our joint model turns out to be more complex since some full conditional distributions
do not have a closed form, so providing similar results might be the object of future work.
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