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SUMMARY

We provide evidence that, in certain circumstances, a root-mean-square test of goodness of fit can be
significantly more powerful than state-of-the-art tests in detecting deviations from Hardy–Weinberg equi-
librium. Unlike Pearson’s χ2 test, the log-likelihood-ratio test, and Fisher’s exact test, which are sensitive
to relative discrepancies between genotypic frequencies, the root-mean-square test is sensitive to abso-
lute discrepancies. This can increase statistical power, as we demonstrate using benchmark data sets and
simulations, and through asymptotic analysis.
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1. INTRODUCTION

Hardy (1908) and Weinberg (1908) independently derived mathematical equations to corroborate the
theory of Mendelian inheritance, proving that, in a large population of individuals subject to random
mating, the proportions of alleles and genotypes at a locus stay unchanged unless specific disturbing
influences are introduced. Today, Hardy–Weinberg equilibrium (HWE) is a common hypothesis used in
scientific domains ranging from botany (Weising, 2005) to forensic science (Council, 1996), and genetic
epidemiology (Sham, 2001). Statistical tests of deviation from HWE are fundamental for validating such
assumptions. Traditionally, Pearson’s χ2 goodness-of-fit test, or an asymptotically equivalent variant such
as the log-likelihood-ratio test, was used for this assessment. Before computers became readily avail-
able, the asymptotic χ2 approximation for the statistics used in these tests, however poor, was the only
practical means for drawing inference. With the now widespread availability of computers, exact tests
can be computed effortlessly, opening the door to more powerful goodness-of-fit tests. In their seminal
paper, Guo and Thompson (1992) campaigned for an exact test of HWE based on the likelihood func-
tion. While their work renewed interest in conditional exact tests for HWE (Raymond and Rousset, 1995;
Maiste and Weir, 1995; Diaconis and Sturmfels, 1998; Wigginton and others, 2005), likelihood-based
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Testing HWE with a simple root-mean-square statistic 75

tests have also been subject to criticism, and there is little evidence that such tests are more powerful
than other exact tests, such as those based on likelihood ratios (Engels, 2009) or the root mean square.

In this article, we demonstrate, using the classical data sets from Guo and Thompson (1992) and sev-
eral numerical experiments, that goodness-of-fit tests based on the root-mean-square distance can be up to
an order of magnitude more powerful than all of the classic tests at detecting meaningful deviations from
HWE. The classic tests, tuned to detect relative discrepancies, can be blind to overwhelmingly large dis-
crepancies among common genotypes that are drowned out by expected finite-sample size fluctuations in
rare genotypes. The root-mean-square statistic, on the other hand, is tuned to detect deviations in absolute
discrepancies, and easily detects large discrepancies in common genotypes.

None of the statistics we consider produces a test that is uniformly more powerful than any other. At
the very least, the root-mean-square statistic and the classic statistics focus on complementary classes of
alternatives, and their combined p-values provide a more informative test than either p-value used on
its own.

The results of our analysis are consistent with the numerous experiments conducted in recent work
(Perkins and others, 2013), which highlight the power of the root-mean-square statistic over classic statis-
tics in detecting meaningful discrepancies in non-uniform distributions. Tygert (2012) provides several
representative examples for which the root-mean-square test is more powerful than Fisher’s exact test for
homogeneity in contingency-tables.

This article is structured as follows: in Section 2, we recall the set-up and motivation for testing HWE.
We describe the relevant test statistics in Section 3, and in Section 4 we compare the performance of
these statistics on the classic data sets from Guo and Thompson, and also compare the power and Type I
error of the statistics in detecting deviations due to inbreeding and selection. We provide an asymptotic
analysis of the various statistics in Section 5 to highlight the limited power of the classic statistics compared
with the root-mean-square statistic in distinguishing important classes of deviations from HWE, and end
with concluding remarks in Section 6. Supplementary material available at Biostatistics online includes
pseudocode for algorithms and proofs of technical results.

2. HWE: SET-UP AND MOTIVATION

Recall that a gene refers to a segment of DNA at a particular location (locus) on a chromosome. The gene
may assume one of several discrete variations, and these variants are referred to as alleles. An individual
carries two alleles for each autosomal gene—one allele selected at random from the pair of alleles carried
by the mother, and one allele selected at random from the pair of alleles carried by the father. These
two alleles, considered as an unordered pair, constitute the individual’s genotype. A gene having r alleles
A1, A2, . . . , Ar has r(r + 1)/2 possible genotypes. These genotypes are naturally indexed over the lower-
triangular array of indices ( j, k) satisfying j � k.

A population is said to be in HWE if the following holds. If p j,k is the relative proportion of genotype
{A j , Ak} in the population, and if θk is the proportion of allele Ak in the population, then the system is in
HWE if

p j,k = p j,k(θ j , θk) =
{

2θ jθk, j > k,

θ2
k , j = k.

(2.1)

3. TESTING HWE

A random sample of n genotypes X1, X2, . . . , Xn from this population can be regarded as a sequence
of independent and identical draws from the multinomial distribution specified by probabilities pr(Xi =
{A j , Ak}) = p j,k, 1 � k � j � r . If n j,k realizations of genotype {A j , Ak} are observed in the sample
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of n genotypes, then the number of instances of allele A j in the observed sample of 2n alleles

is n j = ∑r
k= j nk, j + ∑ j

k=1 n j,k, j = 1, . . . , r . In order to gauge the consistency of the sample counts
(n j,k) with HWE, we must first specify the r − 1 free parameters θ1, θ2, . . . , θr−1 corresponding
to the underlying allele proportions in the HWE model (2.1). The observed proportions of alleles,
n1/(2n), n2/(2n), . . . , nr−1/(2n), are the maximum likelihood estimates of θ1, θ2, . . . , θr−1 in the family
of HWE equilibrium equations (2.1); these parameter specifications give rise to the model counts of geno-
types under HWE, m jk = (2 − δ jk)(n j nk)/(4n), where δ jk is the Kronecker delta function with δ jk = 1 if
j = k and = 0 otherwise. A goodness-of-fit test serves as an omnibus litmus test to gauge the consistency
of the data with HWE. Ideally, the goodness-of-fit test should be sensitive to a wide range of possible
local alternatives; more realistically, several different goodness-of-fit tests can be used jointly, each sensi-
tive to its own class of alternatives. If a non-parametric test as such indicates deviation from equilibrium,
different parametric tests can then be used to elucidate particular effects of the deviation such as direc-
tions of disequilibrium or level of inbreeding. Several parametric Bayesian methods have been proposed
as well (Lindley, 1964; Chen and Thomson, 1999; Shoemaker and others, 1998; Ayres and Balding, 1998;
Lauretto and others, 2009; Li and Graubard, 2009; Wakefield, 2010; Consonni and others, 2011). In this
paper, we will focus only on non-parametric (or nearly non-parametric) tests of fit, but we emphasize that
goodness-of-fit tests should be combined with Bayesian approaches and other types of evidence for and
against the HWE hypothesis before drawing the final inference.

3.1 Goodness-of-fit testing

A goodness-of-fit test compares the model and empirical distributions using one of many possible mea-
sures. Three classic measures of discrepancy, all special cases of Cressie–Read power divergences, are
Pearson’s χ2-divergence

X2 =
∑

1�k� j�r

(n j,k − m j,k)
2/m j,k, (3.1)

the log-likelihood ratio or G2 divergence, G2 = 2
∑

1�k� j�r n j,k log(n j,k/m j,k), and the Hellinger
distance H 2 = 4

∑
1�k� j�r (

√
n j,k − √

m j,k)
2. Another classic measure of discrepancy is the negative

log-likelihood function, which is based directly on the likelihood function for the multinomial distri-
bution, L = − log(L), where L(n j,k; n, m j,k) = (n!/n1,1!n1,2! · · · nr,r !nn)m

n1,1

1,1 m
n1,2

1,2 · · · m
nr,r
r,r . The negative

log-likelihood statistic looks similar to the log-likelihood-ratio statistic G2, but there is an important dis-
tinction to be made: the log-likelihood ratio, which sums the logarithms of ratios between observed and
expected counts, is a proper divergence. The negative log-likelihood function is not a divergence, and this
results in several undesirable properties that have led many to criticize its use (Gibbons and Pratt, 1975;
Radlow and Alf, 1975; Engels, 2009).

The negative log-likelihood function does have something in common with the power-divergence dis-
crepancies: under the null-hypothesis, the negative log-likelihood statistic L and the power divergence
statistics X2, G2, and H 2 all become a χ2 random variable with r(r − 1)/2 degrees of freedom as the
number of draws n goes to infinity and the number of alleles remains fixed (Brownlee, 1965). Before
computers became widely available, using a statistic with known asymptotic approximation was nec-
essary for obtaining any sort of approximate p-value. The exact (non-asymptotic) p-values for these
statistics or any other measure of discrepancy can now be computed effortlessly using Monte-Carlo
simulation.

In this paper, we distinguish two types of commonly used p-values, which we refer to as the plain
p-value and fully conditional (FC) p-value. One could also consider Bayesian p-values (Gelman, 2003),
among other formulations.
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To compute the plain p-value, one repeatedly simulates n independent and identically distributed
draws from the model multinomial distribution (m j,k/n). For each simulation i , the genotype counts

N (i)
j,k , allelic counts N (i)

j = (
∑r

k= j N (i)
k, j + ∑ j

k=1 N (i)
j,k), allelic proportions �

(i)
j = N (i)

j /(2n), and equilib-

rium model counts associated to this sample, M (i)
j,k = (2 − δ j,k)N (i)

j N (i)
k /(4n), are computed. The plain

p-value is the fraction of times the discrepancy between the simulated counts (N (i)
j,k) and their model counts

(M (i)
j,k) is at least as large as the measured discrepancy between the observed counts n j,k and their model

counts m j,k . Henze (1996) shows that this procedure has an asymptotically correct Type I error for fixed r
as n → ∞. This procedure for producing p-values can be viewed as a parametric bootstrap approximation,
as discussed, for example, by Efron and Tibshirani (1993), Henze (1996), and Bickel and others (2006).

The FC p-value corresponds to imposing additional restrictions on the probability space associated to
the null hypothesis. To compute the FC p-value, the observed counts of alleles, n1, . . . , nr , are treated
as known quantities in the model, to remain fixed upon hypothetical repetition of the experiment. This
would hold, for example, if the sample population used in the experiment were the entire population of
individuals. More specifically, one repeatedly simulates n i.i.d. draws from the hypergeometric distribution
that results from conditioning the multinomial model distribution (m j,k/n) on the observed allele counts,
N1 = n1, N2 = n2, . . . , Nr = nr . Guo and Thompson (1992) provided an efficient means for performing
such a simulation: apply a random permutation to the sequence

A=
⎧⎨⎩

n1︷ ︸︸ ︷
A1, A1, . . . , A1,

n2︷ ︸︸ ︷
A2, . . . , A2, . . . ,

nr︷ ︸︸ ︷
Ar , . . . , Ar︸ ︷︷ ︸

2n

⎫⎬⎭ , (3.2)

and identify the pairs {A2 j , A2 j+1}. The FC p-value is the fraction of times the discrepancy between the
simulated counts (N (i)

j,k) and the model counts (m j,k) is at least as large as the measured discrepancy.
Pseudocode for calculating plain and FC p-values is provided in Algorithms 1 and 2 of Appendix S.1

in supplementary material available at Biostatistics online.

3.2 The root-mean-square statistic

A natural measure of discrepancy for goodness-of-fit testing that has not received as much attention in the
literature is the root-mean-square distance,

F =
⎧⎨⎩ 2

n2r(r + 1)

∑
1�k� j�r

(n j,k − m j,k)
2

⎫⎬⎭
1/2

. (3.3)

In contrast to the classic statistics, the asymptotic distribution for the root-mean-square statistic F in the
limit of infinitely many draws and fixed alleles, while completely well-defined and efficient to compute,
depends on the model distribution, as described by Perkins and others (2011, 2012). Using the pseudocode
provided in Algorithms 1 and 2 of Appendix S.1 in supplementary material available at Biostatistics online,
we can compute p-values for the root-mean-square statistic.

4. NUMERICAL RESULTS

4.1 Benchmark data sets

We next compare the performances of the root-mean-square statistic and the classic statistics in detecting
deviations from HWE. We first evaluate the performance of the various statistics on three benchmark
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78 R. WARD AND R. J. CARROLL

(a)

(b)

(c)

Fig. 1. The three data sets from Guo and Thompson (1992). Observed counts are in bold and expected counts under
HWE are below. (a) Example 1: n = 45, (b) Example 2: n = 8297, and (c) Example 3: n = 30.

data sets from Guo and Thompson (1992). The three data sets, which we refer to as Examples 1–3, are
represented in Figure 1 as lower-triangular arrays of counts. The bold entry in each cell corresponds to
the number n j,k of observed counts of genotype {A j , Ak} in the sample, and the second entry in each cell
corresponds to the expected number m j,k of counts under HWE.

For each example, and for each of the five-test statistics X2, G2, H 2, L , and F , we calculate
both the plain and FC p-values using 16 000 000 Monte-Carlo simulations for each calculation. The
results of the analyses of Examples 1–3 are displayed in Table 1. We next discuss the results for each
example.
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Testing HWE with a simple root-mean-square statistic 79

Table 1. Plain and FC p-values for Pearson’s statistic X2, the log-likelihood-ratio statistic G2, the
Hellinger distance H 2, the negative log-likelihood statistic L , and the root-mean-square statistic F, for

the observed genotypic counts in Examples 1–3 to be consistent with the HWE model (2.1)

Example 1 Example 2 Example 3

Statistic Plain p-value FC p-value Plain p-value FC p-value Plain p-value FC p-value

X2 0.693 0.709 0.020 0.020 0.015 0.026
G2 0.600 0.630 0.013 0.013 0.181 0.276
H2 0.562 0.602 0.027 0.025 0.307 0.449
L 0.648 0.714 0.016 0.018 0.155 0.207
F 0.039 0.039 0.002 0.002 0.885 0.917

With 99% confidence, p-values are correct to ±0.001.

(a)

(b)

Fig. 2. (a) Expected vs. observed root-mean-square discrepancies and (b) expected vs. observed χ2 discrepancies.
By root-mean-square and χ2 discrepancies, we mean the terms within the summations in formulas (3.3) and (3.1),
normalized to sum to 1.

4.1.1 Graphical views of the data. Figures 2–4 contain boxplots displaying the median, upper and lower
quartiles, and whiskers reaching from the 1st to 99th percentiles for root-mean-square discrepancies and
χ2 discrepancies simulated under the plain HWE null hypothesis for the data sets from Examples 1–3.
The boxplots are for simulated data, whereas the large open circles indicate the observed data. In the χ2

boxplots, we see the division by expected proportion in the summands of the χ2 discrepancy (3.1) reflected
in the larger contribution of relative discrepancies to the reported p-values; in contrast, we see the equal-
weighting of the summands of the root-mean-square distance (3.3) reflected in the larger contribution of
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(a)

(b)

Fig. 3. (a) Expected vs. observed root-mean-square discrepancies and (b) expected vs. observed χ2 discrepancies.
By root-mean-square and χ2 discrepancies, we mean the terms within the summations in formulas (3.3) and (3.1),
normalized to sum to 1.

absolute discrepancies to the reported root-mean-square p-values. In Section 5, we will see that all of the
classic statistics, not just the χ2 statistic, are sensitive to relative rather than absolute discrepancies.

4.1.2 Interpretation of the results for Example 1. Comparing the boxplots in Figure 2, we see that both
χ2 and root-mean-square tests report a significant deviation in the largest index, among others. The largest
index corresponds to the 18 observed counts vs. 10 expected counts of genotype {A3, A2} in Example 1.
However, as reported in Table 1, the p-value of 0.039 given by the root-mean-square test is an order of
magnitude smaller than the p-value of 0.693 reported by the χ2 test, as this discrepancy is larger com-
pared with expected root-mean-square fluctuations than it is compared with expected χ2 fluctuations. As
indicated by the boxplots in Figure 2, the statistical significance of the deviation in index 10 (as well as
the deviations in indices 6 and 7) is masked by large expected relative deviations in the rare genotypes in
the χ2 summation.

4.1.3 Interpretation of the results for Example 2. The distribution of discrepancies in Figure 3 can be
interpreted similarly to the boxplots from Figure 2. In contrast to the n = 45 draws from Example 1, how-
ever, this data set contains n = 8297 draws; we infer that the qualitative differences between the root-mean-
square and χ2 statistic are not unique to small sample-size data.
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(a)

(b)

Fig. 4. (a) Expected vs. observed root-mean-square discrepancies and (b) expected vs. observed χ2 discrepancies.
By root-mean-square and χ2 discrepancies, we mean the terms within the summations in formulas (3.3) and (3.1),
normalized to sum to 1.

4.1.4 Interpretation of the results for Example 3. Comparing the expected and observed χ2 discrepancies
in Figure 4(b), we might posit that the small p-value of 0.015 that the χ2 test gives to the data in Example
3 depends strongly on the discrepancy at the fourth index on the plot, corresponding to a single draw of
genotype {A6, A6}. By removing this draw from the data set and re-running the χ2 goodness-of-fit test on
the remaining n = 29 draws, the χ2 statistic X2 returns a p-value of 0.207, well over an order of magnitude
larger than the previous p-value, confirming that the small p-value given by the χ2 statistic for the data
set in Figure 4 is the result of observing a single rare genotype. The root-mean-square statistic is not as
sensitive to this discrepancy.

4.2 Power analyses

We now compare the power and Type I error for the statistics X2, G2, H 2, L , and F in detecting practical
deviations of genotype frequencies from those expected under HWE, namely populations with increased
homozygosity (as due to inbreeding), populations with increased heterozygosity, and populations of geno-
types undergoing selection (Chen and Thomson, 1999; Ayres and Balding, 1998; Lauretto and others,
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82 R. WARD AND R. J. CARROLL

Table 2. Statistical power and Type I error of the various tests of HWE against deviations due to selec-
tion, i.e. deviations of the form (4.1) with parameters as specified in Alternatives 1–4 and fitness param-
eters (4.2) and deviations due to inbreeding, i.e. deviations of the form (4.3) with parameters as specified

in Alternatives 1–4 and inbreeding parameter f = 1
10

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Statistic Power Type I Power Type I Power Type I Power Type I

Deviations due to selection for the common allele—plain p-value test
X2 0.06 0.06 0.04 0.05 0.04 0.04 <0.01 0.06
G2 0.07 0.08 0.07 0.06 0.07 0.06 0.01 0.08
H2 0.07 0.07 0.08 0.06 0.08 0.05 0.01 0.07
L 0.03 0.04 0.03 0.04 0.04 0.04 <0.01 0.03
F 0.09 0.05 0.13 0.05 0.19 0.05 0.23 0.05

Deviations due to selection for the common allele—FC p-value test
X2 0.04 0.05 0.03 0.04 0.05 0.06 0.03 0.05
G2 0.05 0.05 0.04 0.04 0.06 0.06 0.04 0.05
H2 0.04 0.05 0.05 0.05 0.07 0.06 0.04 0.05
L 0.04 0.05 0.03 0.04 0.03 0.06 0.02 0.05
F 0.09 0.05 0.11 0.05 0.13 0.06 0.15 0.05

Deviations due to inbreeding—plain p-value test
X2 0.20 0.06 0.34 0.05 0.60 0.04 0.64 0.06
G2 0.25 0.08 0.29 0.06 0.48 0.06 0.64 0.08
H2 0.19 0.07 0.18 0.06 0.28 0.05 0.42 0.07
L 0.23 0.04 0.39 0.04 0.63 0.04 0.70 0.03
F 0.11 0.05 0.16 0.05 0.26 0.05 0.29 0.05

Deviations due to inbreeding—FC p-value test
X2 0.21 0.05 0.35 0.04 0.61 0.06 0.68 0.05
G2 0.18 0.05 0.26 0.04 0.48 0.06 0.56 0.05
H2 0.14 0.05 0.16 0.05 0.30 0.06 0.36 0.05
L 0.25 0.05 0.37 0.04 0.63 0.06 0.74 0.05
F 0.12 0.05 0.15 0.05 0.27 0.06 0.32 0.05

Power and Type I errors are at the 5% significance level, and computed using 5000 simulations from the alternative distribution and
expected distribution, respectively, and 5000 Monte-Carlo trials per each simulation.

2009). The results in Table 2 support the assertion that the root-mean-square statistic and the classic
statistics focus their power on complementary classes of alternatives. In this section, we will consider
four parameter specifications:

(1) Alternative: r = 10, n = 50, and θ1 = θ2 = 1
3 , and θ j = 1

24 for 3 � j � 10;
(2) Alternative: r = 10, n = 100, and θ1 = θ2 = 1

3 , and θ j = 1
24 for 3 � j � 10;

(3) Alternative: r = 10, n = 200, and θ1 = θ2 = 1
3 , and θ j = 1

24 for 3 � j � 10;
(4) Alternative: r = 20, n = 200, and θ j ∼ 1/j for 1 � j � 20.

4.2.1 Deviations due to selection. When there is selection for or against a particular allele or genotype
in the population, the result is an excess or deficiency of genotypes carrying a particular allele or pair
of alleles compared with what would be expected under HWE. To account for selection, one introduces
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Testing HWE with a simple root-mean-square statistic 83

fitness parameters w j,k > 0 into the HWE equations,

p j,k =
{

2(w j,k/w̄)θ jθk, 1 � k < j � r,

(wk,k/w̄)θ2
k , j = k,

(4.1)

where w̄ is a normalization constant. We consider the scenario where the common allele A1 is undergoing
selection, so that genotypes carrying allele A1 have higher fitness in the population:

w j,k =
{

1.5, k = 1,

1, otherwise.
(4.2)

The power and Type I errors of the various statistical tests in detecting deviations from HWE due to
selection for common alleles are listed in Table 2. In all examples, the root-mean-square statistic appears
to be uniformly more powerful than the classic statistics while maintaining the correct asymptotic Type I
error rate. We will provide theoretical justification for these observations through an asymptotic analysis
in Section 5.

4.2.2 Deviations due to inbreeding. We now consider genotypic distributions parameterized by an
inbreeding coefficient, f , which describes the extent to which members of the population with similar
genetic make-up are more or less likely to mate with each other:

p j,k =
{

2θ jθk(1 − f ), j > k,

θ2
k + f θk(1 − θk), j = k,

1 � k � j � r. (4.3)

HWE corresponds to f = 0. A negative value f < 0 corresponds to a deficiency of homozygotes, while a
positive value of f corresponds to an excess of homozygotes. Table 2 displays the power of the various tests
against alternatives of the form (4.3) with positive inbreeding coefficient. The root-mean-square statistic
appears to be less powerful than the classic statistics in detecting deviations due to inbreeding. Moreover, it
is often desired to estimate the inbreeding coefficient f itself, for example, because of its role in quantifying
the behavior of marker-trait association tests in non-HWE populations, and the χ2 test statistic is equal to
n f̂ , where f̂ is the maximum likelihood estimator for f (see Rori and Weir (2008)).

5. AN ASYMPTOTIC POWER ANALYSIS

In this section, we give theoretical justification to our assertion that the root-mean-square statistic can
be more powerful than the classic statistics in detecting deviations from HWE. To model the setting
where the number of draws and number of genotypes are of the same magnitude, we consider the limit
in which the number of alleles and number of draws go to infinity together, so that the asymptotic χ2

approximation to the classic statistics is not valid in this limit. Our method is to create data sets such that
the root-mean-square statistic has asymptotic power 1 while the χ2 statistics have asymptotic power zero.

We consider a gene having r + 1 alleles, one common allele, and r rare alleles. The Common Allele
data set we consider involves n = 3r observed genotypes, distributed as indicated below.

Common Allele data set :

⎧⎪⎨⎪⎩
n1,1 = r of type {A1, A1},
n1,k = 2 of type {A1, Ak}, 2 � k � r + 1,

n j,k = 0 of type {A j , Ak}, 2 � j � k � r + 1.

(5.1)
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84 R. WARD AND R. J. CARROLL

Fig. 5. The p-values (accurate to three digits with 99% confidence) for Pearson’s statistic X2, the log-likelihood-ratio
statistic G2, the Hellinger statistic H2, and the root-mean-square statistic F in the Common Allele data set to be
consistent with the HWE model (2.1), as a function of the number of alleles r . The left plot is for the plain p-values,
while the right plot is for the FC p-values.

Note that the Common Allele data set consists of n1 = 4r alleles of type A1 and nk = 2 alleles of type Ak ,
2 � k � r + 1. The maximum-likelihood model counts are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1,1 = 4r/3,

m1,k = 4/3, 2 � k � r + 1,

mk,k = 1/(3r), 2 � k � r + 1,

m j,k = 2/(3r), 2 � j < k � r + 1, j < k.

(5.2)

To see that the Common Allele data set becomes increasingly inconsistent with the Hardy–Weinberg model
as r increases, observe that, under the null hypothesis, we would expect in a sample of n = 3r genotypes to
see r/3 = ∑r+1

j=2

∑r+1
k=2 m j,k genotypes containing only rare alleles. The Common Allele data set, however,

contains no genotypes containing only rare alleles. In spite of this inconsistency, we will prove that the
plain p-values for each of the four classic statistics X2, G2, and H 2, converge to 1 as r → ∞, indicating
zero asymptotic power. In contrast, the p-value for the root-mean-square statistic converges to zero.

THEOREM 5.1 In the limit as r → ∞, the plain p-values (as computed via Algorithm 1 of Appendix S.1
in supplementary material available at Biostatistics online) given by X2, the log-likelihood-ratio statistic
G2, and the Hellinger distance H 2 for the Common Allele data set to be consistent with the HWE model
all converge to 1, while the plain p-value for the root-mean-square statistic converges to 0.

The proof of Theorem 5.1 is given in Appendix S.2 of supplementary material available at Biostatistics
online. Figure 5 shows that the convergence of the classic p-values to 1, and of the root-mean-square
p-value to 0, occurs very quickly. This convergence is demonstrated for both the plain and FC p-values,
even though Theorem 5.1 applies directly only to the plain p-values. Finally, the particular distribution of
the draws in the Common Allele data set was somewhat arbitrary; a similar asymptotic analysis holds for
many other data sets. We could have considered instead a data set involving two or three common alleles,
one common and three fairly common alleles, and so on.
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6. CONCLUDING REMARKS

We have proposed the use of a simple root-mean-square statistic for testing deviations from HWE. The
classic tests, tuned to detect relative discrepancies, can be blind to large discrepancies among common
genotypes that are drowned out by expected finite-sample size fluctuations in rare genotypes. The root-
mean-square statistic, on the other hand, easily detects large discrepancies in common genotypes. We
demonstrated this in the analysis of three benchmark data sets of Guo and Thompson (1992). We also
found that the root-mean-square test can be significantly more powerful at detecting deviations from HWE
arising from selection. These numerical results were complemented by the asymptotic power analysis of
Section 5. At the very least, the root-mean-square statistic and the classic statistics focus on complementary
classes of deviations from HWE (see Figure 3), and their combined p-values provide a more fortified test
than either p-value used on its own.

7. SOFTWARE

Code for calculating plain and FC p-values using the root-mean-square test statistic is available in R at
http://math.utexas.edu/∼rward. With appropriate citation, the code is freely available for use and can be
incorporated into other programs.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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