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Summary. Most cancer research now involves one or more assays profiling various biological molecules, e.g., messenger RNA
and micro RNA, in samples collected on the same individuals. The main interest with these genomic data sets lies in the
identification of a subset of features that are active in explaining the dependence between platforms. To quantify the strength of
the dependency between two variables, correlation is often preferred. However, expression data obtained from next-generation
sequencing platforms are integer with very low counts for some important features. In this case, the sample Pearson correlation
is not a valid estimate of the true correlation matrix, because the sample correlation estimate between two features/variables
with low counts will often be close to zero, even when the natural parameters of the Poisson distribution are, in actuality,
highly correlated. We propose a model-based approach to correlation estimation between two non-normal data sets, via a
method we call Probabilistic Correlations ANalysis, or PCAN. PCAN takes into consideration the distributional assumption
about both data sets and suggests that correlations estimated at the model natural parameter level are more appropriate than
correlations estimated directly on the observed data. We demonstrate through a simulation study that PCAN outperforms
other standard approaches in estimating the true correlation between the natural parameters. We then apply PCAN to the
joint analysis of a microRNA (miRNA) and a messenger RNA (mRNA) expression data set from a squamous cell lung cancer
study, finding a large number of negative correlation pairs when compared to the standard approaches.
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1. Introduction
We develop methods to analyze data concerning squamous
cell lung cancers from The Cancer Genome Atlas consortium
(https://tcga-data.nci.nih.gov/tcga/). MicroRNAs (miRNA)
refer to highly conserved, short non-coding RNAs which have
important roles in many biological processes such as cellular
differentiation, apoptosis, cell proliferation, and development.
They regulate protein production by repressing their putative
messenger RNA (mRNA) targets. Hence, high expression of a
miRNA is often associated with reduced expression of its gene
targets. A single miRNA can have many putative mRNA tar-
gets and a single mRNA can be regulated by many miRNAs.
The role of miRNA and mRNA interaction in many disease-
related regulatory pathways, is well established (Shah et al.,
2011).

In our analysis, the data are fragment (read) counts from
next generation sequencing using the Illumina Hiseq plat-
form. The data set contains 50 selected miRNAs based on
prior biological knowledge and 66 mRNAs of interests, jointly

obtained from 150 independent samples. Of the 66 mRNAs
considered, 23 have an average number of read counts between
1 and 2, which can be considered as lowly expressed, rel-
ative to the average number of reads for the other genes.
Standard correlation estimates based on low counts tend to
severely underestimate strong negative correlations, which are
expected in the expression between a miRNA and its target
mRNA. Our main goal is to quantify the dependency between
the miRNA read counts and the mRNA read counts, even
when the counts are small. More discussion of the data is given
in Section 3.2, which also contains the results of analysis of
the data.

By way of background, the decreasing cost of DNA
sequencing makes affordable for more biologists to run mul-
tiple assays profiling different biological molecules/platforms,
such as microRNA (miRNA) and messenger RNA (mRNA),
on the same sample. The primary objective when collecting
these various data sets on the same sample is to identify
possible sets of variables or features active in explaining the
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dependence within and across data sets. It is well known that
genes work in a complex network in connection with other
genes and biological molecules. Thus, a better understanding
of disease progression requires the characterization of these
pathways or networks. For example, Shah et al. (2011)
characterize the repressive effect of some miRNAs on their
putative target messenger mRNAs under various treatment
regimes, see also Ren et al. (2009). Canonical correlation
analysis is a standard statistical approach used to uncover the
relationship between two blocks of variables. Because in most
genomic data sets, few variables or features are expected to
be correlated, regularized canonical correlation analysis has
also been extensively considered (see González et al., 2008;
Lê Cao et al., 2009; Witten et al., 2009). However, in most of
the references provided on the canonical correlation analysis,
the data generating model is often not clearly specified.

Tipping and Bishop (1999) and Bach and Jordan (2006)
provided a probabilistic foundation for principal component
analysis and the canonical correlation analysis. Their work
established a link between standard canonical correlation
analysis and a latent factor model assuming a conditional
normal distribution for the block of variables (data sets), and
also paved the way for the development of a Bayesian version
of canonical correlation analysis through the latent variable
machinery. Various authors have addressed modeling issues
of block variables in the Bayesian setting assuming various
conditional distributions for the observed data, see for exam-
ple Klami and Kaski (2007), Archambeau and Bach (2008),
Virtanen et al. (2011) for a review.

We consider the joint analysis or correlation estimation
between two genomic block variables associated with data
from one of the next-generation (Next-Gen) sequencing plat-
forms. Next-Gen genomic data sets raise two main modeling
issues: (i) they are integer data for which the assumptions
of the standard canonical correlation analysis are violated
and hence may perform poorly; and (ii) a large proportion
of these counts are very small and standard correlation esti-
mate based on these counts can sometimes be misleading,
because a correlation of zero between two count variables does
not necessarily imply independence. In fact, Whitt (1976) and
Shin and Pasupathy (2007) show that the correlation between
two Poisson variables with low counts is restricted in a much
narrower interval than (−1, 1), even in the case where the nat-
ural parameters are perfectly correlated. To see this, consider
two variables u ∼ Pois{exp(λ1)} and v ∼ Pois{exp(λ2)}, where
λ1 ∼ Normal(0, 1) and λ2 = 1 − λ1. Although corr(λ1, λ2) =
−1, the corr(u,v) is ≈ −0.31, which is a weak correlation.
Further, assume now that λ2 = 1 − .01λ1 and the correlation
is corr(u,v) is −0.013, which is a much weaker correlation
estimate, although u and v are perfectly negatively corre-
lated. Because miRNAs and their putative targets mRNA are
expected to be negatively correlated, and correlation based on
the raw counts, as computed by current standard approaches,
may fail to reveal the strength of the association and cause
the investigator to dismiss its presence. Hence, we propose to
measure the strength of association at the natural parameter
level instead.

Thus, we consider the estimation of the dependency
between two Next-Gen genomic data sets, especially for small

counts, in the form of correlation using a novel Bayesian fac-
tor model. The article is organized as follows: we discuss
the model along with estimation in Section 2. Simulation
results and data analysis are given in Section 3. Discussion
and concluding remarks are given in Section 4. Web-based
Supplementary Material includes additional figures and tables
related to the data analysis in Section 3.2, the technical details
of the MCMC sampling, and R and Rstan (Stan Development
Team, 2013) programs for running the analyses.

2. Method

2.1. Model

Although this work was primarily motivated by the need to
estimate the correlation between features/genes in two next-
generation gene expression data sets, we propose a more
general model in a generalized linear model (GLM) frame-
work. Let x·j = (x1j, · · · , xpj)

T be a vector of length p and
y·j = (y1j, · · · , yqj)

T, another vector of length q, both denot-
ing co-occurring data vectors obtained from measurements on
the jth individual/sample. Let xij represent the observed value
for the ith feature/variable measured on the jth individual in
a set of p measured features/variables (e.g., mRNA). Let ykj

denote the observed value for the kth feature measured also on
the jth individual in another set of q measured characteristics
(e.g., miRNA), with i = 1, · · · , p, j = 1, · · · , N, k = 1, · · · , q,
and N denotes the sample size. We write X = (x·1, · · · ,x·N)
and Y = (y·1, · · · ,y·N). Throughout this article, we use bold-
face for vector values and matrices. Also, for a matrix U, Ui·
and U·j denote the ith row or jth column of U, respectively;
U·· is used to denote a scalar variable. Each individual data
vector is assumed to follow a conditional exponential fam-
ily distribution and we consider a generalized linear model
(GLM).

Let Fx(·) and Fy(·) be distribution functions with den-
sity/mass function from the natural parameter exponential
family. A vector x ∈ �m has a conditional distribu-
tion member of the exponential family if f (x | θ) =
c(x)g(θ) exp

{∑m

i=1
h(xi)θi

}
. We model both variable blocks

(data matrices) individually as

Xij | θij ∼ Fx(θij), Ykj | λkj ∼ Fy(λkj),

h1(θij) = μθi
+ Ai·Zj + εij, h2(λkj) = μλk

+ Bk·Zj + ηkj,

εij ∼ fε(εij), ηkj ∼ fη(ηkj), Zj ∼ fz(Zj). (1)

The parameter vector θ ∈ �m represents the natural param-
eters; c(x), g(θ) are both non-negative functions. We obtain
the natural family member by choosing h(x) = x, the canoni-
cal link. In model (1), the functions h1 and h2 are referred to
as link functions. We assume that the link functions h1 and
h2 are known smooth and invertible, as typically assumed
in the generalized linear model framework (see McCulloch,
2006). The parameters μθi

and μλk
represent the mean of the

natural parameters associated with the ith and kth feature in
data sets X and Y, respectively. The error terms εij and ηkj

are assumed independently distributed. In most applications,
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fε and fη are chosen to be the normal density with mean 0; the
matrix A, of dimension p × d, and the matrix B, of dimension
q × d, denote the weights (loading factors) matrices associated
with the latent vector Zj = (Z1j, · · · , Zdj)

T.
Model (1) is similar to the model considered in Virtanen

et al. (2011), however we consider an extra level of stochas-
ticity on the natural parameters. This allows for dependency
between vectors of natural parameters as seen below. The
shared vector of latent variables Zj allows for dependency
between variables in a specific data set. It also allows for
dependency between variables in separate data sets that
share a common vector of latent variables, i.e., data vector
that belongs to the same sample. In model (1), if we assume
normal distributions for Fx, Fy, fε, and fη we recover the
probabilistic canonical correlation model proposed by Bach
and Jordan (2006). Hence, model (1) is an extension of
that model. Our primary focus is estimation of depen-
dency between two data sets while keeping the number of
parameters to be estimated at a minimum.

Model (1) has few appealing characteristics, especially
when used to model Next-Gen sequencing data sets. To illus-
trate these properties, as in Next-Gen sequencing we assume
that entries of the data matrices X and Y are counts and we
consider the special case of (1), wherein

Xij | θij∼Poisson{δxj exp(θij)}, Ykj | λkj∼Poisson{δyj exp(λkj)},
θij = μθi

+ Ai·Zj + εij, λkj = μλk
+ Bk·Zj + ηkj,

εij ∼ fε(εij), ηkj ∼ fη(ηkj), Zj∼Normal(0, Id); (2)

where Id denotes the d × d identity matrix. δxj and δyj are
known as sequencing or library size normalization factor as
they adjust for the potential disproportional number of reads
in different samples. Note that δxj and δyj are assumed fixed
and are not estimated with the other model parameters. They
can be estimated using methods proposed by (Anders and
Huber, 2010; Robinson and Oshlack, 2010). We discuss sta-
tistical packages available to estimate δxj and δyj in more
detail in Section 3.2. The random noises εij and ηkj in (2)
are assumed independent and normally distributed with mean
0 and variances σ2

θ and σ2
λ , respectively. The latent vector

Zj has length d and assumed to have a multivariate nor-
mal with mean vector 0 and an identity covariance matrix.
The link functions h1 and h2 in (1) are chosen to be the log
function [log{exp(x)} = x], the canonical link for the Poisson
distribution.

Prior to computing the marginal mean and covariances,
we first define θ = (θij) and λ = (λkj), for i = 1, · · · , p, k =
1, · · · , q, and j = 1, · · · , N. Note that from (2), the vector
(θ1j, · · · , θpj, λ1j, · · · , λqj)

T has a multivariate normal dis-
tribution with mean μθ = (μθ1 , · · · , μθp

, μλ1 , · · · , μλq
)T and

covariance matrix

� =
(

AAT + σ2
θ I ABT

BAT BBT + Iσ2
λ

)
. (3)

Using properties of conditional expectation, the unconditional
(marginal) mean and covariances are

E(Xij) = μxij
= δxj exp

{
μθi

+ (Ai·AT
i· + σ2

θ )/2
}

var(Xij) = μxij
+ {

exp
(
Ai·AT

i· + σ2
θ

) − 1
}

μ2
xij

cov(Xij, Xlj) = μxij
μxlj

{
exp

(
Ai·AT

l·
) − 1

}
,

cov(Xij, Xim) = 0 for j �= m.

cov(Xij, Ykj) = μxij
μykj

{
exp

(
Ai·BT

j·
) − 1

}
,

cov(Xij, Ykm) = 0 for j �= m. (4)

We make the following remarks about the quantities in (4):

� Although we assumed a conditional Poisson distribution for
each entry of the data matrix X and Y, the unconditional
distribution has a larger variance than that of the Poisson.
We can easily verify that exp

(
Ai·AT

i· + σ2
θ

) − 1 > 0. This is
desirable, especially when modeling Next-Gen sequencing
data that tends to be over-dispersed (see Lund et al., 2012;
McCarthy et al., 2012).

� No constraints are imposed on the elements of the weight
matrix A. The marginal correlation between two variables
Xij and Xlj has the sign of the dot product of their respective
row vectors in the weight matrix A, i.e., Ai·AT

l· .
� Similar quantities are obtained from the data set Y by

replacing μθ, A, and σ2
θ with μλ, B, and σ2

λ respectively.

The covariance and correlation between θij and λkj, for any
sample j are also obtained as

cov(θij, λkj) = Ai·BT
k· ,

corr(θij, λkj) = Ai·BT
k·√

Ai·AT
i· + σ2

θ

√
Bk·BT

k· + σ2
θ

,

cov(θij, λkm) = 0 for j �= m,

corr(θij, λkm) = 0 for j �= m. (5)

Since our problem originated from the need to assess depen-
dencies between two Next-Gen data, we focus our discussion
on the model proposed in (2). Inference in model (2) reduces
to estimating the correlation/covariance matrix of the natu-
ral parameters. However, model (2) allows for two forms for
covariance (correlation) estimation. The first one, in equa-
tion (4), is based on the marginal correlation. The second
approach is based on the correlation between natural param-
eters of the Poisson distribution in Equation (5). As discussed
in Section 1, the marginal correlation approach can result in
correlation estimates constrained to a much narrower interval
than the (−1, 1) interval (see Whitt, 1976; Shin and Pasupa-
thy, 2007; Yahv and Shmueli, 2011), especially in the presence
of low count data. In this manuscript, we demonstrate that
the correlation estimates based on the natural parameters
perform better in capturing the dependency between two
Next-Gen data sets when compared to the marginal corre-
lation approach.
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2.2. Identifiability

In model (2), the covariance matrix in equation (3) is iden-
tified up to a sign and a rotation. To see this, consider a
rotation matrix R where RRT = I. For any choices of matrix
A, then AAT = ARRTAT = A∗(A∗)T. Various approaches
have been proposed to make the model identifiable and here
we adopt the method proposed by Geweke and Zhou (1996).
We impose a lower triangular structure for the matrices A
and B and further impose that the elements of the diagonal
are non-negative to remove the identifiability related to the
sign. We now turn to the choice of d. Given the constraints
imposed on the elements of A and B, we only need to estimate
pd − d(d − 1)/2 + p as compared to p(p + 1)/2 parameters
that are needed to estimate the covariance matrix of the data
X. Also, we only need to estimate qd − d(d − 1)/2 parameters
compared to the q(q + 1)/2 + q when estimating the covari-
ance matrix of the data Y. By imposing that pd − d(d −
1)/2 + p ≤ p(p + 1)/2 and qd − d(d − 1)/2 ≤ q(q + 1)/2, we
can derive an upper bound for the values of parameter d given
values of p and q. In reality, the bound on the possible values
of d will not matter much since the relevant values of d will
tend to be small as pointed out by Lopes and West (2004).

2.3. Prior Specification

Estimation of the parameters of model (2) is done using
a Bayesian approach. We consider the following automatic
relevance determination priors (Mackay, 1994) as conjugate
priors for the elements of the weight matrices A and B as

aij ∼ Normal(aij | 0, τ−1
j ) if i < j;

ajj ∼ Normal(aij | 0, τ−1
j )1(ajj > 0) if i = j;

bkj ∼ Normal(bkj | 0, τ−1
j ) if k < j;

bjj ∼ Normal(bkj | 0, τ−1
j )1(bjj > 0) if i = j, (6)

and τj | a0, b0 ∼ Gamma(a0, b0), where i = 1, · · · , p, j =
1, · · · , d, and k = 1, · · · , q. Note that 1 is an indicator func-
tion and for an event A, 1(A) = 1 if A is true and 0 otherwise.
The hierarchical prior in (6) assumes that each column of the
weight matrices A and B has the same prior. This allows
for the sharing of information across data sets and also does
an automatic column size selection of the matrices A and
B (Mackay, 1994; Bishop, 2007). The sharing of information
provides more stable estimates of the elements of the weight
matrices A and B by artificially inflating the amount of infor-
mation used to obtain a parameter estimate (Congdon, 2006).
This is desirable, especially in a small sample size relative
to the number of variable settings. The hyper-parameters a0

and b0 are assumed known. We also assume default conjugate
priors for the remaining parameters in the model as

μθ | νx ∼ ∏p

i=1
Normal(0, κxi

),

μλ | νy ∼ ∏q

k=1
Normal(0, κyk

),

σ2
θ | νθ, s

2
θ ∼ Inv-χ2(νθ, s

2
θ ), σ2

λ | νλ, s
2
λ ∼ Inv-χ2(νλ, s

2
λ);

(7)

where μθ = (μθ1 , · · · , μθp
)T and μλ = (μλ1 , · · · , μλq

)T. The
parameters κx, κy, s2θ , s2λ , νθ, and νλ are assumed to be known.

The combined priors (6) and (7) induce a prior distribution
for the individual correlation parameters defined in (5).

2.4. Posterior Sampling

Inference in a Bayesian analysis is based on the posterior dis-
tribution. Given model (2), priors in (6) and (7), the posterior
distribution is proportional to:

P(θ, λ,A,B,Z, σ2
θ , σ2

λ |Data)∝�(Data | θ, λ,A,B,Z, σ2
θ , σ2

λ )

×
d∏

i=1

{
τ

p/2
i exp(−.5τiA

T
·i A·i) × τ

q/2
i exp(−.5τiB

T
·i B·i)τ

a0−1
i

× exp(−τi/b0)
}

× {∏N

j=1
exp(−.5ZT

j Zj)
}

exp
{−νθs

2
θ /(2σ2

θ )
}

σ
−2(1+νθ/2)
θ

×exp
{−νλs

2
λ/(2σ2

λ )
}

σ
−2(1+νλ/2)
λ . (8)

The posterior distribution in (8) is difficult to directly simu-
late from. However, the choice of conjugate priors allows us
to derive the full conditional posterior distributions for all
model parameters. A Gibbs sampler is then used to update
the parameters in a Markov chain Monte Carlo (MCMC).
We derive the explicit form of the full conditional posterior
for the model parameters in Web Appendix A. Our R code
implementation exploits the package Rstan for fast computa-
tion.

3. Results

3.1. Simulation

We investigate the properties of the correlation estimates
compared to other standard correlation approaches, under
various assumed correlation matrices on the natural param-
eters. We assume that δxj = δyj = 1, for j = 1, · · · , N. We
simulated 50 data sets assuming for each data set p = 10,
q = 30, and N = 50 subjects. We consider five correlation
matrices for the natural parameters: (i) the identity cor-
relation matrix (d = 0); (ii) a correlation matrix obtained
assuming d = 5 for a given value of the weight matrices A
and B using (3); (iii) a correlation matrix for the case where
d = 10 also assuming equation (3); (d) an arbitrary correla-
tion matrix with a specific dependence structure where the
first two variables in the data set X are only strongly posi-
tively correlated with the variables 2–6 in Y (d = NA(Pos))
through their natural parameters with correlation of .862;
and (e) an arbitrary correlation matrix with a specific depen-
dence structure where the first two variables in the data set
X are only strongly negatively correlated with the variables
2–6 in Y (d = NA(Neg)) through their natural parameters
with correlation of −.862. We then fit model (2) to each
of the N = 50 simulated data assuming various values of d,
compute the posterior mean covariance/correlation matrix.
We also compute the Frobenius and Stein losses for each of
the estimated correlation matrices, where the Frobenius loss
incurred by estimating the matrix V by U, both p × p matri-
ces, is defined as

∑
i,j

(Uij − Vij)
2 and the Stein loss is defined

as diag(V−1U) − det(V−1U) − p.
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Table 1
Summary of the Stein losses when estimating the true

correlation structure for the natural parameters. Here, d true
is the value of d assumed for the true correlation matrix; d∗

represents the value of d assumed by PCAN when fitting the
model. Here d = 0 (identity matrix); d = 5 (correlation

matrix obtained assuming d = 5); d = 10(correlation matrix
obtained assuming d = 10); d = NA (arbitrary correlation

matrix). Here Pearson is the sample correlation;
Pearson(log) is the Pearson correlation based on the log of
the counts after we added 1 to all the values and Spearman
denotes the Spearman correlation estimator. Numbers in

parentheses are standard errors.

d d* PCAN Pearson Pearson (Log) Spearman

0 10 2.46 41.19 44.50 47.78
(0.21) (4.10) (6.14) (7.06)

5 10 12.72 66.40 41.39 27.25
(4.44) (4.34) (4.27) (2.52)

10 10 24.48 108.77 36.53 27.79
(1.97) (6.12) (3.9) (2.61)

NA(POS) 10 34.09 65.15 64.04 64.66
(.97) (6.14) (6.30) (6.11)

NA(NEG) 10 34.75 65.15 65.80 64.90
(1.40) (6.14) (4.61) (4.63)

Web Table 1 summaries the results of the simulation. As
is clear from the terminology, smaller losses are preferred.
There is a very obvious feature in these results, namely that
assuming d larger than the truth leads to smaller losses, while
choosing d smaller than the truth leads to large losses. Assum-
ing d = 10 is clearly overall the safest course of action in this
simulation.

We estimate correlations using other standard correlation
estimation approaches. Since N > p + q, standard correlation
estimates are valid and can be used to obtain estimates of the
underlying correlation matrix. We consider: (i) the Pearson
(sample based) correlation based on the raw data; (ii) the
Pearson correlation based on the log transformed of the data
after we add 1 to the observed counts; and (c) the Spearman
correlation. The three correlation estimation approaches were
applied to each of the 50 data sets simulated as previously
described. We report the summary of the Stein loss incurred
in estimating the true correlation matrices using the three
standard approaches, see Table 1.

The PCAN approach, assuming d = 10, yields smaller Stein
losses estimates compared to the default approaches consid-
ered overall. However, we note that the sample correlation
approach yields the largest error in each case considered. The
Spearman correlation approach seems to perform similarly
to the PCAN approach when the true correlation matrix is
obtained from equation 3; for arbitrary correlation matrix,
however, all the default correlation estimation approaches
tend to perform similarly, judging by the Stein loss. From the
Frobenius norm, we also observe that the Pearson correlation
gives the largest error in each scenario. However, the errors
estimates for the Pearson(log) and the Spearman approach

seem very similar to the error estimates under the PCAN
approach, except when the true correlation is the identity
matrix (d = 0). We report the results of the Frobenius lost in
Web Table 1.

In addition to estimating the loss incurred in estimating
the true underlying correlation, we also look at the plot of the
first two loading factors on each of the variables. We expect
that variables active (important) in describing the correlation
across data sets will tend to have higher loading compared
to non-important variables. We also take a look at the first
two canonical vectors when using the traditional canonical
correlation analysis approach. To compute the canonical vec-
tors, we consider the R packages of González et al. (2008)
for extended canonical correlation analysis and Witten et al.
(2009) for penalized canonical correlation analysis to obtain
estimates of the canonical vectors over the simulated data
sets. For data simulated assuming the identity correlation
matrix for the natural parameters, we obtain the plot of the
estimated first and second canonical vectors along with their
approximated individual 95% confidence bands for the PCAN
and the extended canonical correlation analysis approaches in
Figures 1 and 2. The same plot for the penalized canonical
correlation analysis approach is reported Web Figure 1. The
estimated means of the canonical vectors and factor loadings
are zero or very close to zero, which is consistent with the
fact that the true correlation matrix between all variables is
the identity. Both the PCAN and the canonical correlation
approaches are in agreement. This suggests that no correla-
tion at the natural parameters level also translates into no
correlation between the counts.

Now, we assume a true correlation matrix with a defined
structure as above (d = NA(Pos)). Because the true correla-
tion matrix depicts strong positive correlation (.862) between
the first two variables (natural parameters) in the data matrix
X and the variables 2–6 in the data matrix Y and 0 elsewhere,
we expect to observe non-zero or significantly large coeffi-
cients/loadings associated with these variables compared to
other variables (or features). We show the plots of the esti-
mated loading factors (Figure 3) and the plots of the canonical
coefficients for both canonical correlation approaches (Web
Figures 2 and 3).

The canonical weights estimated from the extended
canonical correlation analysis approach yields large but non-
significant coefficients on the true active variables. The PCAN
and penalized canonical correlation analysis methods, how-
ever, yield very similar results and assign significant large
coefficients to the correct (active) variables. Assuming now
that the true correlation matrix also depicts strong negative
correlation (−.862) between the first two variables (natural
parameters) in the data matrix X and the variables 2–6
in the data matrix Y and 0 elsewhere (d = NA(Neg)), we
expect larger weights for these variables. The PCAN approach
assigns larger weights to the variables driving the dependency
between both data sets, although these weights are not signif-
icant (see Web Figure 4). However, estimates of the canonical
weights obtained using the extended canonical correlation
analysis approach give very similar results as in the case of
d = NA(Pos), but the weights tend to be much closer to zero,
similar to the case of the identity matrix (d = 0) (see Fig-
ure 1 and Web Figure 5). This suggests that strong negative
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Figure 1. Plot of the estimated mean (solid line) of the canonical weights coefficients for each feature/variable along with
their 95% confidence interval. Estimates are obtained using the extended canonical correlation analysis approach. The data are
simulated assuming an identity correlation matrix for the natural parameters. X(50 × 10) and Y(50 × 20) are both simulated
matrices of counts.

correlation at the natural parameters levels does not neces-
sarily translates into strong negative correlation between the
observed counts as they tend to be shrunken to zero, when cor-
relation is computed using the standard approaches. We noted
that the penalized canonical approach identifies the true vari-
ables in all cases (see Web Figure 6), but performance tend
to decrease as we increase the number of variables and hold
the sample size fixed.

As stated before, model (1) can be extended to many dis-
tributions member of the exponential family. In addition to
the case of Poisson distribution, we also considered the case
of Binomial data sets, with the logit link function. We com-
pare the results of the correlation estimates using PCAN
against correlation estimates obtained from the Pearson and
Spearman approaches based on the logit (or log odd) of the
estimated proportion of successes. The results are reported in
Web Tables 2 and 3. Overall, we found that PCAN performs
better than the Pearson and Spearman methods.

3.2. Case Study

Here, we analyze the squamous cell lung cancer data described
in Section 1.

We considered N = 150 matched miRNA and the mRNA
samples for our analysis. Here, we are interested in uncovering
a potential relationship between lowly expressed mRNA and
a given subset of miRNA. We select p = 50 miRNAs and q =
66 mRNAs. Of the 66 mRNA selected, 23 represent mRNAs
with the lowest expression average across the 150 samples
(average number of read counts between 1 and 2) and the
remaining 43 were selected from a set of reported up/down-
regulated mRNAs in squamous cell lung carcinoma (Shi et al.,
2011). To estimate the dependency between both miRNA and
mRNA, we used model (2). The values of δxj and δyj were
computed using the calcNormFactors function in the edgeR
package in R (Robinson et al., 2010) and were estimated equal
to 1. This suggested that the mRNA and miRNA samples
were sequenced at relatively similar depth (total number of
reads).

We fit model (2) assuming the priors provided in the Web
Appendix B to the data for values of d = 2, 5, 10. We ran
three separate MCMC chains with different starting values
for 20, 000 iterations, and monitored them for proper mixing.
We discarded 10, 000 iterations as burn-in and inference was
based on the 30, 000 remaining iterations. We then estimate
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Figure 2. Plot of the estimated posterior mean (solid line) of the loadings on each natural parameters along with their 95%
credible intervals. Estimates are obtained using the PCAN approach. The data are simulated assuming an identity correlation
matrix for the natural parameters. X(50 × 10) and Y(50 × 20) are both simulated matrices of counts.

each element of the correlations between the miRNA and the
mRNA, along with the bounds of the 95% credible intervals.
We display, as a heat map, the posterior mean estimates of
each correlation estimates in Figure 4.

The posterior correlation mean heat map identifies inter-
esting groups of miRNA–mRNA interaction. We have for
example, miR-205-5p are negatively correlated with the genes
SLCO2A1, PECAM1, PTPRB, STARD8, which were found
to be down-related mRNA (genes) in squamous cell lung
carcinoma (see Shi et al., 2011); suggesting that SLCO2A1,
PECAM1, PTPRB, STARD8 could be potential direct tar-
gets of miRNA-205-5p. These genes targets were subsequently
validated using targetHub (http://app1.bioinformatics.
mdanderson.org/tarhub/ design/basic/index.html). In
addition, these correlations estimates are also found to be
significant at the 5% level (see Web Table 5). We also gen-
erate a heat map depicting correlation estimates found to be
significant (see Web Figure 6.) Approximately 47% of the cor-
relation estimates are significant, and just 41(or 1%) of these

correlation are greater than .34 in absolute value. Focusing
on the correlations with point estimates above .34 in absolute
value obtained from the PCAN approach (see Web Table 5),
we observed that the pairs involving both miR-205 and
miR-375 show up with genes found to be down-regulated in
squamous cell lung cancer. We also note that for each of these
mRNAs, both correlations with miR-205-5p and miR-375 are
high with almost perfect opposite signs. This is consistent
with literature suggesting that hsa-miR-205-5p produced a
high diagnostic accuracy between squamous cell (SQ) and
adenocarcinoma (AC) and are reported to be highly expressed
in squamous cell lung cancer when compared to normal cells
(Wei et al., 2014). Also, We also found the largest negative
correlation is −.62 (PGC and miR-205-5p), which is consistent
with the fact that of all the downregulated mRNAs selected
PGC was reported as having the largest fold change, although
PGC has not been predicted as a target of miR-205-5p. In
addition, Huang et al. (2012) reported that miR-205-5p was
found to be up regulated when miR-375 was down regulated

http://app1.bioinformatics.mdanderson.org/tarhub/_design/basic/index.html
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Figure 3. Plot of the estimated posterior mean (solid line) of the loadings on each natural parameters along with their
95% credible intervals. Estimates are obtained using the PCAN approach. The data are simulated assuming a correlation
matrix with known structure for the natural parameters (NA(Pos)). X(50 × 10) and Y(50 × 20) are both simulated matrices
of counts.

in the squamous cell, also explaining why both miR-205-
5p and miR-375 show up with almost perfect opposite
signs.

We also estimate the correlation using two other
approaches: (i) Pearson/Spearman correlation based on the
raw counts; (ii) Pearson/Spearman correlation based on the
log2 transform of the counts, after adding one. The correlation
estimates are computed and we report the p-value of the test,
after correcting for multiple comparisons. The computation is
done using the R function corr.test, available in the R package
psych (Revelle, 2015). We use as cut-off 5% for the corrected
p-values and correlation estimates above .34 in absolute value
(see Web Tables 6-9). Figure 5 shows the venndiagram depict-
ing the overlap between the pairs miRNA–mRNA correlation
idenfied by all three approaches. We observe that there is
a no pairs or very few pairs jointly identified by all three
approaches. However, we obtain a single pair (PECAM1 -
hsa-miR-205-5p) jointly identified by all three approaches
when the Pearson and Spearman correlation are based on the

log2 transformation of the data (see Figure 5b). It is worth
restating here that we have a particular interest in estima-
tion of negative correlation between miRNA and mRNA, as
they may indicate that the mRNA is a target of the miRNA.
Figure 5c,d show the venndiagram of significant negative cor-
relations obtained by all three approaches. Although there is a
greater overlap between the Pearson and Spearman approach,
most of the pairs identified were not predicted by targetHub.
In fact, the standard approach tend to miss few miRNA and
mRNA pairs that are predicted by targetHub (i.e., miR-217
- TP63, miR-205-5p - SLC02A1, miR-205-5p - PTPRB) but
these pairs were identified by PCAN as significant negative
correlations. The pairs miRNA and mRNA, common to all
three approaches, have similar estimates and are between −.37
and −.35.

In genomics, normalized counts are sometimes preferred
when compared to raw counts and various normalization
approaches have been proposed; see e.g., (Dillies et al., 2013)
for a discussion of the current normalization approaches in
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Figure 4. Heatmap of the posterior mean (d = 2) correlation estimates between the miRNA and mRNA. Lightest color
represents correlation estimates between −0.2 and 0.2. Darker color represents correlation estimates less than −0.2. Darkest
color represents correlation estimates greater than 0.2. This figure appears in color in the electronic version of this article.

RNAseq data. We consider the Reads Per Kilobase per Million
Mapped reads (RPKM) approached proposed by (Mortazavi
et al., 2008). We compute the normalized RPKM values for
both miRNA and mRNAs and based the estimation of corre-
lation (Pearson/Spearman) on their RPKM and log2 of the
RPKM values. We repeat the same procedure as for the cor-
relation computed based on the raw counts. We report the
significant Pearson/Spearman correlation estimates based on
RPKM and log2 RPKM values in Web Tables 10–13. Pear-
son/Spearman correlations based on the RPKM/log2 RPKM
yields many significant pairs when compared to the same cor-
relation based on the raw counts. This is not too surprising
since the RPKM expression values follow by a log2 trans-
formation tend to make the distribution of the expressions
value closer to symmetric distribution (see, e.g., Rahmatallah
et al., 2014. We observe a greater overlap between the PCAN
approach and the Pearson/Spearman correlation based on the
RPMK/log2 RPKM values (see Web Figure 7). We obtain an
even greater overlap when we lower our cutoff point from .34
to say .24. However, PCAN tended to estimate low, although
not significantly, correlations for some of the common miRNA
and mRNA pairs identified, which all tended to involve the

miRNA hsa-miR-205-5p. This is consistent with the behav-
ior of PCAN which tend to focus on few important miRNA
and mRNA and shrink the correlation of the remaining
pairs to zero. Unlike the Spearman/Pearson correlation esti-
mates, estimation of the correlations between miRNAs and
mRNAs affect the estimates of correlations between miRNA
and mRNA in the PCAN approach. For example, miR-205-5p
and miR-375 pair is found to be significantly negatively cor-
related in all approaches (correlation estimates around −.37);
and PCAN also finds both miR-205-5p and miR-375 to be
associated with the same mRNAs with almost opposite cor-
relation. For example, we have PGC - miRNA-205-5p and
PGC - miRNA-375 with correlation estimates, respectively
−.62 and −.69. The Pearson/Spearman approach identify the
pair PGC - miRNA-375 (.59) but not the pair PGC - miRNA-
205-5p (−.15). All of these illustrate the difference between
the PCAN and the standard approaches.

4. Discussion and Conclusions

We have proposed a new probabilistic model for the estima-
tion of the correlations based on two non-normal data sets,
with emphasis on Next-Gen data. Next-Gen data sets are
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Figure 5. Venn diagram summarizing the significant miRNA and mRNA correlation estimates identified under the PCAN,
and Pearson/Spearman approaches based both on the raw data and the log2 transformation of the data as described in the
case study section.

counts data, with often very low counts, for which standard
approaches of computing correlation lead to small correlation
estimates. In this article, we propose considering correlation
as describing the dependency between natural parameters
of the data generating model, rather than the correlation
between the counts. Correlation estimated based on the
dependence between the natural parameters are preferred
compared to the correlation based on the raw counts for
the following reasons. In the case of count data with low
counts, weak correlation estimates obtained at the natural
parameters level are directly associated with weak correla-
tions estimates based directly on the counts data sets. This
explains the clear agreement between the extended canonical
correlation analysis approach and the PCAN approach when
the true underlining correlation is the identity (see Figure 1
and 2). However, strong (negative) correlations at the natu-
ral parameters level do not necessarily translate into strong
correlation between the observed counts. This explains the
discrepancy between the extended canonical correlation anal-
ysis method and PCAN when identifying active variables on
Figure 3 and Web Figure 2. We also found that strong corre-
lation estimates based on the raw counts are also associated
with strong correlation at the natural parameters. Finally,
because PCAN considers the estimation of dependency within
and between two data sets as a joint task, the results obtained
by PCAN tend to be more interpretable when compared to
other standard correlation estimation approaches.

5. Supplementary Materials

Web Appendices, Tables, Figures referenced in Sections 2–
3, and the R code implementing our approach are available
with this article at the Biometrics website on Wiley Online
Library.
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