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Summary. We consider model selection and estimation in a context where there are competing ordinary differential equation
(ODE) models, and all the models are special cases of a “full” model. We propose a computationally inexpensive approach
that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA)
and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle
model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo
simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation
compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE
parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey
ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE
models.
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1. Introduction
Ordinary differential equation (ODE) models are widely used
to describe complicated dynamical systems in ecology and
many other scientific areas, because ODEs model the rates of
change of the dynamical systems and quantify the underlying
mechanisms of the dynamical systems. Typically, ODEs have
no analytic solution. The ODE solution is not unique unless
we specify the initial condition, which is defined as the value
of the dynamical system at the starting point. After the initial
condition of the dynamical system is specified, ODEs can be
solved using numerical methods such as the Euler method and
the Runge–Kutta method (Stoer and Bulirsch, 2002).

Parameters in these ODE models often have scientific inter-
pretations, but their values are usually unknown. Therefore, it
is necessary to estimate ODE parameters from measurements
of the dynamical systems in the presence of measurement
errors. This is a difficult problem to solve, because the numer-
ical solution of ODEs is computationally challenging when
analytical solution is not available. Several methods have
been proposed to address this problem. For example, the least
squares method is often used to find the optimal estimates of
ODE parameters by fitting the numerical solution of ODEs to
data (Bard, 1974; Biegler, Damiano and Blau, 1986; Williams
and Kalogiratou, 1993). Alternatively, a two-step method
(Ramsay and Silverman, 2005; Brunel, 2008; Chen and Wu,
2008) does not need to solve ODEs numerically, allowing for
very efficient computation. Ramsay et al. (2007) proposed

a parameter cascading method, in which the dynamical
process is estimated with penalized smoothing splines, with
the roughness penalty term defined by ODEs. This method
retains satisfactory numerical performance for ODE param-
eter estimates from finite data samples (Cao, Fussman, and
Ramsay, 2008). Qi and Zhao (2010) showed the consistency
and asymptotic normality of the ODE parameter estimate
using the parameter cascading method. More recently, Hall
and Ma (2014) proposed a kernel based one-step estimation
method.

In practice, based on different understandings of the dy-
namical systems, it is often the case that there are multiple
competing ODE models that can be used to describe the same
dynamical system. For example, as described in more detail
in Section 2, there are several ODEs that have been pro-
posed to model predator-prey dynamical systems, an appli-
cation upon which we focus, although our method is far more
broadly applicable. For example, the molecular mechanism of
a particular organism can be modeled as a complex metabolic
network by using various ODE models based on different un-
derstandings of the structure of the metabolic network (Voit
and Almeida, 2004). In general, there exist full models that
include all the competing ODEs as special cases. Estimators
based on full models by using the parameter cascading or
the two-stage methods are consistent under regularity condi-
tions. However, the resulting estimators may not be efficient,
because some parameters equal, or are very close to, zero.
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Figure 1. The numbers of Canadian lynx (dashed line with o) and snowshoe hares (solid line with +) from 1845 to 1935
recorded by the Hudson Bay company.

Therefore, our main goal is to develop a computationally in-
expensive approach for selecting an appropriate ODE model
without estimating all competing ODE models.

Traditional subset selection methods such as the Akaike
information criterion (AIC) (Akaike, 1974), Bayesian infor-
mation criterion (BIC) (Schwarz, 1978) and corrected AIC
(Hurvich and Tsai, 1989) can be used to select an ODE model;
see, for example, Miao et al. (2009, 2012). But when we need
to examine all possible ODE models, the number of candi-
date models increases exponentially with the dimensionality
of the parameter space. This problem becomes more serious
when selecting ODE models, because the computational cost
of estimating parameters in each ODE model is much higher
in comparison with regular statistical models. Our proposed
method is far less computationally costly than these alterna-
tives.

In this article, we extend the least squares approximation
(LSA) method (Wang and Leng, 2007) for the selection of
ODE models. In LSA, a least squares type function is used
to approximate an original loss function, and then an adap-
tive LASSO (Zou, 2006) type penalty is added to the ap-
proximated function. We call the combined functions the LSA
criterion. Estimators obtained by minimizing the LSA crite-
rion can identify zero and nonzero parameters consistently,
under some regularity conditions. However, the estimators
themselves may not have the oracle property (Fan and Li,
2001), because the technical covariance assumption of Wang
and Leng (2007) may not be satisfied, as explained in Section
4. Thus, we propose to re-estimate parameters in the ODE
model selected by LSA, and then the oracle property can be
achieved.

The rest of the article is organized as follows. As a mo-
tivation of our ODE model selection problem, in Section 2
we introduce a problem of selecting a predator-prey ODE to

model a lynx and hare population dynamical system among
some well-known and biologically interpretable ODE model
candidates. In Section 3, we present the parameter cascading
method for estimating parameters for a given ODE model.
Our ODE model selection method by LSA is developed in
Section 4. Section 5 applies our method to the lynx and hare
example. The finite sample performance of the LSA method
is investigated with Monte Carlo simulations in Section 6. Fi-
nally, we conclude with some remarks in Section 7.

2. Motivation: Selecting Predator-Prey ODE
Models

The Canadian lynx is a type of wild felid, or cat, which is
found in northern forests across almost all of Canada and
Alaska. Canadian lynx feed predominantly on snowshoe hares.
This pair of interacting populations is a classic example of
the predator-prey dynamical system. Figure 1 displays the
numbers of Canadian lynx and snowshoe hares between 1845
and 1935, recorded by the Hudson Bay company (Odum
and Barrett, 2004). It shows the oscillating behavior of both
populations.

The population dynamical system of the interacting
predator and prey species is popularly modeled by ordinary
differential equations. Murdoch, Briggs, and Nisbet (2003)
reviewed some competing predator-prey ODE models. Four
such models are listed below, in which H and P denote the
population sizes of the prey and predator, respectively, and
r, a, e, v, g, b, and z are unknown parameters.

• The Lotka–Volterra model is

dH

dt
= rH − aHP ;

dP

dt
= eHP − vP. (1)
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• The logistic prey model is

dH

dt
= rH(1 − H/g) − aHP ;

dP

dt
= eHP − vP. (2)

• The density-dependent predator death model is

dH

dt
= rH − aHP ;

dP

dt
= eHP − vP − bP2. (3)

• The predator-dependent functional response model is

dH

dt
= rH − aHP/(1 + zP);

dP

dt
= eHP/(1 + zP) − vP. (4)

All four predator-prey ODE models are well studied and
have their own biological interpretations. Our goal is to select
the most appropriate ODE model that describes the popula-
tion dynamical system of Canadian lynx and snowshoe hares
based on the data displayed in Figure 1. Although the four
predator-prey ODE models have various forms, and they are
not nested models, these four ODE models are all special cases
of the ODE model

dH

dt
= rH − aHP − kH2 + az{P/(1 + zP)}HP ;

dP

dt
= eHP − vP − bP2 − ez{P/(1 + zP)}HP. (5)

For instance, when k = z = b = 0, the ODE model (5) reduces
to the Lotka–Volterra model (1); when z = b = 0, the ODE
model (5) reduces to the logistic prey model (2); when k = z =
0, the ODE model (5) reduces to the density-dependent preda-
tor death model (3); and when k = b = 0, the ODE model (5)
reduces to the predator-dependent functional response model
(4). We call the ODE model (5) the full model in this article
because each of four ODE models (1)–(4) are special cases of
it. There are seven unknown parameters r, a, k, z, e, v, and b

in the full model.

3. Estimating ODE Parameters

Consider a dynamical system, X(t), of dimension p, which
can be modeled with a general ODE

dX(t)

dt
= f {X(t)|θ}, (6)

where f (·) is a p-dimensional function. The d-dimensional pa-
rameter vector θ = (θ1, . . . , θd)

T may possibly have some zero
elements. Let Yi, i = 1, . . . , n, be the measurements of the
dynamical system in the presence of measurement errors, so

that

Yi = X(ti) + εi, (7)

where εi are independent and identically distributed measure-
ment errors with mean 0 and covariance matrix � = σ2Ip.

Our proposed ODE model selection method does not de-
pend on the ODE parameter estimation method, as long as
the ODE parameter estimate is root-n consistent and asymp-
totically normal. In this article, for specificity, the parameter
cascading method (Ramsay et al., 2007) is chosen to estimate
ODE parameters.

The parameter cascading method estimates the dynamical
process X(t) as a linear combination of basis functions, so
that

X(t) =
{

J1∑
j=1

φj1(t)cj1, . . . ,

Jp∑
j=1

φjp(t)cjp

}T

= {
φ1(t)

Tc1, . . . ,φp(t)
Tcp

}T = �(t)c, (8)

where φu(t) = {φ1u(t), . . . , φJuu(t)}T is a vector of basis func-
tions for the uth component of X(t), cu = (c1u, . . . , cJuu)

T

is the corresponding vector of basis coefficients, c =
(cT

1 , . . . , cT
p )T, and �(t) = diag{φ1(t)

T, . . . ,φp(t)
T}. We use

B-spline basis functions because of their compact support
property (de Boor, 2001); precisely, they are non-zero only in
short subintervals. This feature ensures their ability to pro-
vide only local adjustments and greatly increases the com-
putational efficiency by using sparse matrix computations in
Matlab (Matlab, 2013). The number of basis functions must
be large enough to adequately represent X(t). This number
can be systematically increased from a chosen starting value
in any desired fashion until the estimated X̂(t) adequately
approximates some numerical solutions of the ODE using the
smoothing splines method; see Chapter 5 in Ramsay and Sil-
verman (2005). As a rule of thumb, we find it adequate to
use cubic B-spline basis functions with one knot put at each
data: we use this approach in our application and simulation
studies.

The parameter cascading method estimates the basis co-
efficient c and the ODE parameter θ in two nested levels of
optimization. In the inner level of optimization, the basis co-
efficient c can be estimated, for any given ODE parameter θ,
by minimizing

J(c|θ) =
n∑

i=1

{Yi − X(ti)}T{Yi − X(ti)}

+ λ

∫
[X′(t) − f {X(t)|θ}]T[X′(t) − f {X(t)|θ}]dt,

(9)

where the smoothing parameter λ controls the trade-off be-
tween fitting the data and fidelity to the ODE model. The
integral term in (9) also serves as the penalty on the rough-
ness of the fitted curve, X(t), because X(t) has to be smooth
enough to ensure the derivative, X′(t), is close to f {X(t)|θ}.
In fact, in the special case when f {X(t)|θ} ≡ 0, the criterion
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(9) is used in the smoothing spline method (Ramsay and Sil-
verman, 2005). The integral in (9) usually has no closed-form
expression, but it can be conveniently evaluated with numeri-
cal quadrature methods. The composite Simpson’s rule is used
in our research, which provides an adequate approximation to
the exact integral (Burden and Douglas, 2000). We choose λ

using the algorithm in Section 2 of Qi and Zhao (2010).
The estimate for the basis coefficient, ĉ, can be treated as

an implicit function of θ and expressed as ĉ(θ). Hence, the

estimated dynamical process, X̂(t), can also be treated as an
implicit function of θ, so that

X̂(t|θ) = �(t)ĉ(θ). (10)

In the outer level of optimization, the ODE parameter θ is
estimated by minimizing

G(θ) =
n∑

i=1

{Yi − X̂(ti|θ)}T{Yi − X̂(ti|θ)}. (11)

The optimization is implemented with the Gauss–Newton al-
gorithm, which is a modification of the Newton algorithm and
has the advantage of not requiring the computation of the
Hessian matrix, improving computational efficiency. It nev-
ertheless has the disadvantage that the algorithm can only
be used to minimize functions in the form of sum of squared
functions. Starting with the initial estimate, θ(0), the Gauss–
Newton algorithm proceeds with the iterations

θ(j+1) = θ(j) −
{(

dr

dθ

)T(
dr

dθ

)}−1(
dr

dθ

)T

r,

where r is a vector of length np by stacking Yi − X̂(ti|θ) to-
gether, and uses the chain rule

dr

dθ
= ∂r

∂θ
+

(
dĉ

dθ

)T
∂r

∂ĉ
.

When the variances of the components of the measurement er-
ror εi are different, that is, � = diag(σ2

1 , ..., σ2
p), it is necessary

to change the first term of {Yi − X(ti)}T{Yi − X(ti)} of (9) to

{Yi − X(ti)}TW{Yi − X(ti)} and change {Yi − X̂(ti|θ)}T{Yi −
X̂(ti|θ)} of (11) to {Yi − X̂(ti|θ)}TW{Yi − X̂(ti|θ)}, where W
is a diagonal matrix, depending on �, and is typically �−1.

4. Model Selection by Least Squares
Approximation

Let θ0 = (θ0,1, . . . , θ0,d)
T be the true value of θ and θ̂full =

(̂θfull,1, . . . , θ̂full,d)
T be the estimate of θ under the full model

using the parameter cascading method of Section 3. Qi and
Zhao (2010) show that under some regularity conditions,

√
n(̂θfull − θ0) → Normal(0, �), (12)

as n → ∞, where � is the variance–covariance matrix of the
limiting distribution. Let �̂ be the estimate of �, which may
be obtained according to Appendix A.3 of Ramsay et al.
(2007).

The least squares approximation (LSA) method is used to
select ODE models. Specifically, we minimize the LSA crite-
rion with an adaptive LASSO-type penalty, which is defined

as follows

Q(θ|ρ) = (θ − θ̂full)
T�̂

−1
(θ − θ̂full) + ρ

d∑
j=1

|̂θfull,j|−γ |θj|,

(13)

where ρ is a tuning parameter, and γ is a prespecified pos-
itive number. The least angle regression (LARS) algorithm
proposed by Efron et al. (2004) can be used to find the entire
solution path in minimizing Q(θ|ρ).

Let θ̂LSA(ρ) = {̂θLSA,1(ρ), . . . , θ̂LSA,d(ρ)}T denote the pa-
rameter value which minimizes Q(θ|ρ), A = {j : θj �= 0}, and

Â(ρ) = {j : θ̂LSA,j(ρ) �= 0}. The following theorem shows the

selection consistency of θ̂LSA(ρ).

Theorem 1. As n → ∞, if n1/2ρ → 0, n(1+γ)/2ρ → ∞,
and �̂ converges to a positive definite matrix �∗ in probability,
then

Pr{Â(ρ) = A} → 1. (14)

The proof of Theorem 1 is provided in the supplementary file.
From Fan and Li (2001), an estimation procedure δ is called

to have the oracle property if the nonzero coefficient set Âδ,
determined by δ, and the estimated coefficient θ̂δ have the
following properties:

a. It identifies the right subset model: Pr(Âδ = A) → 1 as
n → ∞,

b. It has the optimal estimation rate:
√

n(̂θ
δ,̂Aδ

− θA) →
Normal(0, �A) in distribution as n → ∞, where θA con-

sists of all nonzero components of θ, θ̂
δ,̂Aδ

is its estima-

tor by the procedure δ, and �A is the corresponding
variance–covariance matrix when all the nonzero com-
ponents of θ are known.

Although θ̂LSA(ρ) has selection consistency, it may not have
the oracle property, because the covariance assumption of
Wang and Leng (2007) is not satisfied, which is explained
as follows. Let � denote the variance–covariance matrix of
the limiting distribution of the ODE parameter estimates for
the full model. Let � = �−1, and �(s) be the sub-matrix of �

associated with the sub-model s. Let �s denote the variance–
covariance matrix of the limiting distribution of the ODE pa-
rameter estimates for the sub-model s, and �s = �−1

s . The
covariance assumption of Wang and Leng (2007) is �s = �(s).
The expression of �, given by Formula (5.24) of Qi and
Zhao (2010), has a sandwich form, and thus �s �= �(s) gener-
ally. Therefore, the covariance assumption of Wang and Leng
(2007) is not satisfied here.

However, we can further estimate parameters under the se-
lected ODE model by using the parameter cascading method
introduced in Section 3. Formula (14) means that the model
selected by minimizing LSA criterion is the true model with
probability approaching to one when n → ∞. When estimat-
ing ODE parameters under the true model using the parame-
ter cascading method, the ODE parameter estimates has the
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Figure 2. ODE model selection path obtained with the least squares approximation method. The y-axis indicates whether
the ODE parameter estimates are zero or not. The x-axis is the number of nonzero parameter estimates. The dashed line
indicates the ODE model selected by BIC.

optimal estimation rate (Qi and Zhao 2010). Therefore, the
resulting ODE parameter estimates have the oracle property.

As proposed by Wang and Leng (2007), we set γ = 1 and
choose the tuning parameter ρ by minimizing the BIC crite-
rion

BIC(ρ) =
{

θ̂LSA(ρ) − θ̂full

}T

�̂
−1

{
θ̂LSA(ρ) − θ̂full

}
+ log(n)gρ/n, (15)

gρ is the number of nonzero parameters in θ̂LSA(ρ). According

to whether the resulting model Â(ρ) is overfitted, underfitted
or the true model, we partition (0, ∞) into the following three
mutually exclusive regions:

Rover = {ρ ∈ (0, ∞) : A ⊂ Â(ρ)},
Runder = {ρ ∈ (0, ∞) : A � Â(ρ)},

and

Rtrue = {ρ ∈ (0, ∞) : A = Â(ρ)}.
Let ρ∗ = n−2/3. Then ρ∗ satisfies the conditions of Theorem 1.
So

Pr{Â(ρ∗) = A} → 1, (16)

as n → ∞. Then we obtain the following theorem.

Theorem 2. As n → ∞, if �̂ converges to a positive defi-
nite matrix �∗ in probability, then

Pr{ inf
ρ∈Runder∪Rover

BIC(ρ) > BIC(ρ∗)} → 1. (17)

The proof of Theorem 2 is provided in the supplementary file.

The results (16) and (17) imply that any ρ failing to iden-
tify the true model cannot be selected with probability ap-
proaching to one, that is, the BIC is consistent in selecting
the tuning parameter and thus the ODE model. The compu-
tation for selecting the tuning parameter is also very efficient,
because the LARS algorithm is used to find the solution path
in minimizing Q(θ|ρ), and we only need to compare BIC val-
ues of solutions in the solution path of LARS.

5. Application

The populations of the Canadian lynx and snowshoe hares
may be modeled with any of the five predator-prey ODE mod-
els introduced in Section 2. We apply the least squares approx-
imation method to select one ODE model using the observed
populations of two species. Figure 1 displays the numbers of
Canadian lynx and snowshoe hares between 1845 and 1935.

We estimate the ODE parameters in the full predator-prey
ODE model (5) using the parameter cascading method, which

is denoted as θ̂full. In the parameter cascading method, we
choose the cubic B-spline basis functions with one knot put in
each data point. Then we minimize the least squares approx-
imation criterion (13) to estimate the ODE parameters θ0.
Because the least squares approximation (LSA) criterion (13)
contains the adaptive LASSO-type penalty, some of the ODE
parameter estimates may be zero, so that the full predator-
prey ODE model (5) may be reduced to one of the four sim-
plified ODE models, as discussed in Section 2.

Figure 2 displays the ODE model selection path obtained
by minimizing the LSA criterion (13). Because the values of
ODE parameter estimates have different orders of magnitude,
the y-axis in Figure 2 does not indicate the estimated parame-
ter values that appear in commonly-used solution path plots.
Instead, it only indicates whether the ODE parameter esti-
mates are zero or not. Figure 2 shows that estimates for the
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Table 1
The estimates, standard errors, and p-values for the four

parameters in the selected ODE Model (1) with the
parameter cascading method from the real data

r̂ â ê v̂

Estimate 94.748 4.135 1.331 50.430
Standard error 35.767 1.561 0.686 25.986
p-value 0.008 0.008 0.052 0.052

ODE parameters change from zero to nonzero in the order
v, e, a, r, z, b, k.

BIC defined in (15) chooses the model with four non-zero
parameters, which are r, a, e, and v. The full ODE model (5) is
then reduced to the ODE model (1). Table 1 displays the esti-
mates for the four non-zero ODE parameters, their standard
errors, and p-values. It shows that the estimates for r and a

are statistically significant at the 0.01 significance level, and
the p-values for the estimates of e and v are also very close to
0.05.

6. Simulations

6.1. Simulation of Coefficient Estimation

In this subsection, the finite sample performance of the pro-
posed LSA method is investigated via Monte Carlo simula-
tions, which are also compared with the estimation based on
the full and true models.

The simulated data are generated by adding random mea-
surement errors to the numeric solution of the ODE model

(5). ODE (5) is solved by setting the true initial values
H(0) = 20 and P(0) = 30, and the true parameter values
(r, a, k, z, e, v, b) = (3.0, 0.4, 0.0, 0.0, 0.3, 2.0, 0.0), which means
that the true ODE model is the simplified model (1). The
random measurement errors are generated based on the bi-
variate normal distribution with mean (0, 0)T, and variance–
covariance matrix � = σ2I2, where I2 is an identity matrix of
size 2. The finite sample performance of the proposed LSA
is investigated in four scenarios by varying σ = 0.02, 0.05 and
the sample size n = 50, 100. We run 1000 simulation replica-
tions in each scenario. The ODE parameters are estimated
with the parameter cascading method by using the cubic
B-spline basis functions with one knot put in each data point.

We summarize the simulation results in Table 2. The finite
sample performance of the parameter estimates are evaluated
by calculating the squared error

∑d

j=1
(̂θj − θ0j)

2 and the ab-

solute error
∑d

j=1
|̂θj − θ0j|, where θ0j is the true value of the

jth parameter. It is seen that our method performs much bet-
ter than the parameter estimation based on the full model.
Specifically, when σ = 0.02, the LSA method selects the true
model in all 1000 simulation replications, and the medians
and means of the squared error and the absolute error of pa-
rameter estimates using the LSA method and true model are
exactly the same. When σ = 0.05, the percentages of LSA se-
lecting the true model are also very high, being 94.7% and
99.9% for n = 50 and n = 100, respectively. Figures 3 and 4
shows boxplots of the squared errors and the absolute errors
of parameter estimates in the 1000 simulation replications.

In this simulation, we have also tried using the AIC and
BIC methods proposed by Miao et al. (2009). However, we
found that these two methods were very time consuming for

Table 2
The means, medians, and standard deviations (SD) of the squared error

∑d

j=1
(̂θj − θ0j)

2 and the absolute error∑d

j=1
|̂θj − θ0j| of the parameter estimates by using the full model, LSA method, and true model. The third row shows the

percentage of the simulation replications that the LSA method chooses the correct model.

SD of measurement errors σ = 0.02 σ = 0.05

Sample size 50 100 50 100

Percentages of LSA selecting the correct model 100.0% 100.0% 94.7% 99.9%

Full model 0.131 0.074 0.848 0.458
Mean LSA 0.019 0.010 0.583 0.074

True model 0.019 0.010 0.118 0.065
Full model 0.061 0.036 0.370 0.219

Squared error Median LSA 0.009 0.005 0.063 0.029
True model 0.009 0.005 0.057 0.029
Full model 0.181 0.099 1.346 0.624

SD LSA 0.026 0.015 1.999 0.298
True model 0.026 0.015 0.163 0.094
Full model 0.330 0.249 0.827 0.619

Mean LSA 0.116 0.085 0.431 0.214
True model 0.116 0.085 0.289 0.212
Full model 0.279 0.215 0.692 0.537

Absolute error Median LSA 0.101 0.071 0.262 0.176
True model 0.101 0.071 0.249 0.176
Full model 0.237 0.175 0.625 0.438

SD LSA 0.084 0.064 0.662 0.183
True model 0.084 0.064 0.209 0.160
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Figure 3. Boxplots for the sum squared error
∑d

j=1
(̂θj −

θ0j)
2 of the parameter estimates by using the full model

(“FM”), the LSA method, and the true model (“TM”) in
1000 simulation replications when varying the sample size
n = 50, 100, and the standard deviation of data noise σ =
0.02, 0.05.

two reasons. The first reason is that the full ODE model has 7
unknown parameters, so there are 27 = 128 candidate models
that need to be estimated to calculate AIC and BIC values.
The second reason is that Miao et al. (2009) suggested using
numerical solutions of the ODE model with estimated param-
eter values for calculating AIC and BIC values. However, the
parameters are estimated very poorly (they are far away from
the true values) in some candidate ODE models, and as a re-
sult, it may take a long time to solve the corresponding ODE
model numerically.
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Figure 4. Boxplots for the sum absolute errors
∑d

j=1
|̂θj −

θ0j| of the parameter estimates by using the full model
(“FM”), the LSA method, and the true model (“TM”) in
1000 simulation replications when varying the sample size
n = 50, 100, and the standard deviation of data noise σ =
0.02, 0.05.

6.2. Simulation of Coverage Probability

Although the estimate �̂, proposed by Ramsay et al. (2007),
is used in the literature (Cao et al., 2008; Cao, Wang, and Xu,
2011), few studies have explicitly examined its performance

by simulation. Since �̂ plays an important role in the LSA
criterion (13), we conduct simulation experiments to evaluate

the performance of the estimate �̂.
The simulated data are generated by adding random mea-

surement errors to the numerical solution of the ODE model
(1). The ODE model (1) is numerically solved by setting the
true parameters (r, a, e, v) = (0.3, 0.1, 0.4, 0.02) and the initial
values H(0) = 20 and P(0) = 30. The random measurement
errors are generated based on the bivariate normal distribu-
tion with the mean (0, 0)T and the variance–covariance ma-
trix � = σ2I2, where I2 is an identity matrix of size 2. In our
simulation studies, we investigate four scenarios by varying
σ = 0.02, 0.05 and the sample size n = 50, 100. We run 500
simulation replications in each scenario. The parameters in
the ODE model (1) are estimated with the parameter cascad-
ing method by using the cubic B-spline basis functions with
one knot put in each data point.

We use the estimated variance–covariance matrix �̂ to con-
struct the 100(1 − α)% confidence interval for the jth param-

eter θj as [̂θj − zα/2�̂
1/2
jj , θ̂j + zα/2�̂

1/2
jj ], where �̂jj is the jth di-

agonal element of �̂, and zα/2 is the 100(1 − α/2)% quantile of
the standard normal distribution. We then calculate the cov-
erage probabilities of the 100(1 − α)% confidence interval as

CP(θj) =
500∑
t=1

I(θ0j ∈ [̂θj − zα/2�̂
1/2
jj , θ̂j + zα/2�̂

1/2
jj ]),

where I(·) is an indicator function, and θ0j is the true value of
θj. Table 3 displays the coverage probabilities of the 90% and
95% confidence intervals for the four parameters in the ODE
model (1) when the standard deviation of the measurement
errors σ = 0.02, 0.05 and the sample size n = 50, 100. It shows
that all coverage probabilities are close to their nominal
levels. When the sample size n increases or the variance
of measurement errors decreases, the coverage probabilities
generally become closer to their nominal levels.

7. Concluding Remarks

We have focused on predator-prey modeling, largely because
there are well-known competing models in that field and also
because we have an interesting data set to work with. How-
ever, our LSA method is completely general: it needs merely
that there be competing ODE models and a general model
that includes all of them.

As remarked in Section 1, the computational cost of the use
of LSA is much lower than that of subset selection methods.
This is because (a) we need not estimate many candidate ODE
models; and (b) the LARS algorithm can be used to find the
entire solution path in minimizing the LSA criterion.

An alternative is to directly add the adaptive LASSO type
penalty to the original loss function (11). Such a method,
while appealing, is likely to be extremely computationally
challenging, and much more computationally expensive than
LSA.
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Table 3
The coverage probabilities of the 90% and 95% confidence intervals for the four parameters in the ODE model (1) when the

standard deviation of measurement errors σ = 0.02, 0.05 and the sample size n = 50, 100

90% 95%

r a e v r a e v

σ = 0.02 n = 50 0.876 0.870 0.906 0.888 0.936 0.932 0.950 0.942
n = 100 0.902 0.906 0.884 0.896 0.942 0.944 0.948 0.948

σ = 0.05 n = 50 0.864 0.862 0.870 0.858 0.926 0.922 0.926 0.920
n = 100 0.902 0.884 0.878 0.876 0.958 0.950 0.946 0.924

8. Supplementary Materials

Proofs of theorems referenced in Section 4 and the R and
Matlab code are available with this paper at the Biometrics
website on Wiley Online Library.
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