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Summary. For the classical, homoscedastic measurement error model, moment reconstruction (Freedman et al., 2004, 2008)
and moment-adjusted imputation (Thomas et al., 2011) are appealing, computationally simple imputation-like methods
for general model fitting. Like classical regression calibration, the idea is to replace the unobserved variable subject to
measurement error with a proxy that can be used in a variety of analyses. Moment reconstruction and moment-adjusted
imputation differ from regression calibration in that they attempt to match multiple features of the latent variable, and also
to match some of the latent variable’s relationships with the response and additional covariates. In this note, we consider a
problem where true exposure is generated by a complex, nonlinear random effects modeling process, and develop analogues
of moment reconstruction and moment-adjusted imputation for this case. This general model includes classical measurement
errors, Berkson measurement errors, mixtures of Berkson and classical errors and problems that are not measurement error
problems, but also cases where the data-generating process for true exposure is a complex, nonlinear random effects modeling
process. The methods are illustrated using the National Institutes of Health–AARP Diet and Health Study where the latent
variable is a dietary pattern score called the Healthy Eating Index-2005. We also show how our general model includes methods
used in radiation epidemiology as a special case. Simulations are used to illustrate the methods.
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1. Introduction
In measurement error modeling, moment reconstruction
(Freedman et al., 2004, 2008) and moment-adjusted imputa-
tion (Thomas et al., 2011, 2013) are appealing, computation-
ally simple imputation-like methods for general model fitting.
Let the outcome be Y , the latent variables of interest be the
vector X, covariates measured without error Z, and let Q
be the mismeasured version of X. Both methods assume the
classical additive error model that Q = X + U, where U is
independent of (Y,X,Z) and is thus homoscedastic, although
Freedman et al. (2008) extend moment reconstruction when Q
has a linear bias that can be estimated and adjusted for, while
moment-adjusted imputation allows for the measurement er-
ror variance to be subject-specific, but it must be known or
well-estimated.

In moment reconstruction, the aim is to create an ob-
servable random variable, X∗ = X∗(Q,Z, Y) with the same
first two moments as those of X given (Y,Z). In moment-
adjusted imputation, the construction also requires that
U = Normal(0, �u), and it aims to create a variable X∗ =
X∗(Q,Z, Y), a function of the observed data Q,Z, and Y , that
has multiple moments that are the same as those of X, and
also the same covariance structure with (Y,Z) as that of X.

A major appeal of moment reconstruction and moment-
adjusted imputation is the promise that once the derived vari-
able X∗ is created, it can be used in all subsequent analyses,
without the need for redoing a measurement error analysis
from scratch each time a different risk model is proposed. In-
deed, Freedman et al. (2004) use the moment-reconstructed
variable in logistic regression, linear discriminant analysis,
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and in constructing a classification tree, simultaneously. Addi-
tionally, for example, if X is scalar and Y is binary, one might
wish to model the effect of X on Y in a logistic regression with
X modeled as linear, via a simple B-spline, or, following the
typical epidemiological convention, as a step function, with ei-
ther predefined or estimated categories. Both moment recon-
struction and moment-adjusted imputation are of course only
approximate methods, but they have been shown to have good
performance in a variety of areas. See, for example, (Freedman
et al., 2004, 2008; Thomas et al., 2011, 2013).

The literature in the measurement error field is vast, with
four books (Fuller, 1987; Gustafson, 2004; Carroll et al., 2006;
Buonaccorsi, 2010). There is also a long history of nutrition
having an impact on the measurement error field (Rosner
et al., 1990; Nusser et al., 1996; Spiegelman et al., 2000;
Carriquiry, 2003; Sugar et al., 2007). There is a smaller
set of papers on measurement error and radiation expo-
sure (Prentice, 1982; Reeves et al., 1998; Pierce et al., 2009;
Kopecky et al., 2011), which has classical measurement errors
and Berkson errors (Reeves et al., 1998; Mallick et al., 2002;
Delaigle et al., 2006; Schennach, 2013).

Our purpose is to extend moment reconstruction and
moment-adjusted imputation from the classical, homoscedas-
tic measurement error model. The problem we study is the
case wherein the crucial predictor Xi arises as follows. For
estimable parameters �, and individual-level random effects
ζ the distribution of which depends on parameters in �, for
a known function G(·), and for a sample with i = 1, ..., n, the
crucial but unobserved true predictor satisfies

Xi = G(Qi,Zi, �, ζi). (1)

The purpose of this note is to develop a method for model
(1) that allows use of moment reconstruction and moment-
adjusted imputation.

As stated, model (1) has no context. We justify it in de-
tail in the context of dietary patterns research, an important
field in nutritional surveillance and epidemiology, see Section
2. However, it is of much broader applicability to problems
in biology, physics, or social science in which individual true
exposures are modeled as a possibly complex function of mis-
measured variables, covariates, and random effects. For ex-
ample, as detailed in Supplementary Material Appendix S.1,
in radiation research (Reeves et al., 1998; Ostrouchov et al.,
2000; Davis et al., 2002; Mallick et al., 2002), it is thought
that calculated doses contain a mixture of Berkson errors
(from physical transport systems modeling) and classical er-
ror (from measuring factors such a milk). If one knows the
mixture percentage, the model in Reeves et al. (1998) and
Mallick et al. (2002) is a special case of (1). If the mixture
percentage is unknown and varies at the individual level, that
too is a special case of (1).

We are motivated by the study of colorectal cancer Y in
the National Institutes of Health–AARP Diet and Health
Study (NIH–AARP) (Schatzkin et al., 2001; Reedy et al.,
2008), with one of the risk predictors being the Healthy Eat-
ing Index-2005 (HEI-2005), (Guenther et al., 2008), a multi-
component index meant to measure adherence to the 2005

USDA Dietary Guidelines for Americans. As described in Sec-
tion 2, the HEI-2005 has a complex, error structure of the type
embodied by (1). Our aim is to derive methods in the same
vein as moment reconstruction and moment-adjusted impu-
tation, but in this very different context.

In Section 2, we give a brief review of the HEI-2005 and
the NIH–AARP study, and show how it fits into the form (1).
Section 3 gives our basic approach, which in effect redefines
the problem as a classical error problem, and describes im-
plementation of moment reconstruction and moment-adjusted
imputation. Section 4 gives a data analysis of the NIH–AARP
study, Section 5 gives simulation results, and Section 6 has
concluding remarks. Supplementary Material contains addi-
tional results and details.

2. The HEI-2005 and the NIH AARP Study

2.1. The NIH–AARP Study

In this section, we describe how model (1) can arise in di-
etary patterns research in the important fields of nutritional
surveillance and epidemiology.

As described in Section 1, our main example is taken from
the National Institutes of Health–AARP Diet and Health
Study (NIH–AARP), with the outcome Y being an indicator
of incident colorectal cancer for logistic regression; for Cox
regression, Y is time until colorectal cancer. We did sepa-
rate analyses for men and women, in the latter case deleting
those with missing menopausal hormone therapy status, none
of whom developed colorectal cancer. In the main study, the
sample sizes were n = 293, 615 for men and n = 198, 245 for
women. There were 2151 men and 959 women who developed
colorectal cancer. The covariates Z used were the same as in
Reedy et al. (2008), consisting of age and dummy variable
categories for education, ethnicity, body mass index, smoking
status, and physical activity. A food frequency questionnaire
(FFQ) Q was obtained from all study participants.

The FFQ is known to be biased for usual nutritional intakes
and also heteroscedastic, so that moment reconstruction and
moment-adjusted imputation are not applicable for it. How-
ever, the NIH–AARP study has a small sub-study, known as
a calibration study, in which 866 men and 854 women com-
pleted two 24-hour recalls (24HR). These recalls are assumed
to be unbiased for usual intake, although heteroscedastic. We
will use this sub-study to model usual intakes, resulting in a
model that is a special case of (1).

2.2. HEI-2005

The Healthy Eating Index-2005 includes ratios of interrelated
dietary components to energy and comprises 12 distinct com-
ponent scores and a total summary score. Intakes of each food
or nutrient, represented by one of the 12 components, are ex-
pressed as a ratio to energy intake, assessed, and ascribed
a score. See Table 1 for a list of these components and the
standards for scoring, and (Guenther et al., 2008) for details.
The 12 HEI-2005 components represent six episodically con-
sumed food groups (total fruit, whole fruit, total vegetables,
dark green and orange vegetables and legumes or DOL, whole
grains, and milk), which are not consumed daily by most,
three daily consumed food groups (total grains, meat and
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Table 1
Description of the HEI-2005 scoring system. Except for saturated fat and SoFAAS, density is obtained by multiplying usual
intake by 1000 and dividing by usual intake of kilo-calories. For saturated fat, density is 9 × 100 usual saturated fat (grams)

divided by usual calories, i.e., the percentage of usual calories coming from usual saturated fat intake. For SoFAAS, the
density is the percentage of usual intake that comes from usual intake of calories, i.e., the division of usual intake of SoFAAS
by usual intake of calories. Here, “DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS” is calories from
solid fats, alcoholic beverages, and added sugars. The total HEI-2005 score is the sum of the individual component scores.

Component Units HEI-2005 score calculation

Total fruit Cups min (5, 5 × (density/.8))
Whole fruit Cups min (5, 5 × (density/.4))
Total vegetables Cups min (5, 5 × (density/1.1))
DOL Cups min (5, 5 × (density/.4))
Total grains Ounces min (5, 5 × (density/3))
Whole grains Ounces min (5, 5 × (density/1.5))
Milk Cups min (10, 10 × (density/1.3))
Meat and beans Ounces min (10, 10 × (density/2.5))
Oil Grams min (10, 10 × (density/12))
Saturated fat % of if density ≥ 15 score = 0

energy else if density ≤ 7 score = 10
else if density > 10 score = 8 − (8 × (density − 10)/5)
else, score = 10 − (2 × (density − 7)/3)

Sodium Milligrams if density ≥ 2000 score = 0
else if density ≤ 700 score = 10
else if density ≥ 1100
score = 8 − {8 × (density − 1100)/(2000 − 1100)}
else score = 10 − {2 × (density − 700)/(1100 − 700)}

SoFAAS % of if density ≥ 50 score = 0
energy else if density ≤ 20 score = 20

else score = 20 − {20 × (density − 20)/(50 − 20)}

beans, and oils), and three other daily consumed dietary com-
ponents (saturated fat, sodium, and calories from solid fats,
alcoholic beverages, and added sugars, or SoFAAS). The cru-
cial statistical aspect of the data is that 24HR-reports for six
episodically consumed food groups are zero-inflated, namely
total fruit, whole fruit, whole grains, total vegetables, DOL,
and milk.

The short-term dietary instruments used, the two 24-hour
recalls, are assumed to be unbiased measures of usual di-
etary intake on the original scale. However, they are not ho-
moscedastic, so that the classical measurement error model
does not hold for them. In any case, as described in Section
2.1, they are not available for the main NIH–AARP study.
In addition, as seen in Table 1, the HEI-2005 total score is a
highly nonlinear function of usual intakes. Kipnis et al. (2009),
see also Zhang et al. (2011), use the assumption of unbiased-
ness of 24HR reports to model true usual intakes of episodi-
cally consumed dietary components. Zhang et al. (2011) show
how the multivariate extension of this model could be speci-
fied for the true HEI-2005 and fit using MCMC.

It is not at all obvious that this problem is a special case of
(1). Both Kipnis et al. (2009) and Zhang et al. (2011) show
that it is, but only implicitly and not in the form of (1). In
Appendix 6, we show this explicitly, although the modeling
details of how the sub-study with the two 24-hour recalls is

used is quite technical, and full details of this modeling process
are described in Zhang et al. (2011).

3. Methods

3.1. Basic Approach

Our basic approach to constructing analogues of moment re-
construction and moment-adjusted imputation is to transform
the data into a form amenable for these methods. We use of
the Box–Cox transformation here, but the method can easily
be adapted to include other transformations to normality, see
Nusser et al. (1996) as one example. Define W as the vector
of FFQ measurements for the total score and energy: it is of
course a function of Q. We require that X and W have the
same number of components px; in our case, px = 2. For a vec-
tor of parameters λ of length px, let g(X, λ) be the component-
wise Box–Cox transformations for 1−Total Score/100 and
Energy/2500, the former because the total score is left skew.
We first assume that there are parameters (λw, λx) such that

g (W, λw) = β0 + βT
1 g (X, λx) + βT

2 Z + U, (2)

where β1 is of full rank and U = Normal (0, �u) is independent
of (Y,X,Z).
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Define Ũ = (
βT

1

)−1
U, is independent of Z and has covari-

ance matrix �ũ. Define X̃ = g(X, λx), so that

Wmr = (
βT

1

)−1 {
g (W, λw) − β0 − βT

2 Z
} = X̃ + Ũ, (3)

Finally, with V = Normal(0, �x) is independent of (Z,U), we
assume that

g(X, λx) = αT
0 + αT

1 Z + V. (4)

With this construction, we now have a scenario where mo-
ment reconstruction and moment-adjusted imputation can be
applied directly, since (3) is a classical measurement error
model. Of course, the classical model (3) is defined on the
transformed scale g(X, λx), so when using it as a linear pre-
dictor, the implicit assumption is that the risk model would
be fit on this transformed scale, which may or not be fit the
data. This is an issue for any transformation of predictors.

3.2. Estimating the Parameters in Section 3.1

Remember that W is a function of Q. We use Appendix
equations (A.5) and (A.6) and equations (2) and (3). Esti-
mation of the transformation parameters (λw, λx) is required.
In general, this would not be possible since we do not observe
(Z,Q,W,X) even on a subset of the data. However, since ζ is
independent of (Z,Q,W), by generating realizations of ζ and
substituting into (A.6), we can generate (Z,Q,W,X�) that
have the same joint distribution as (Z,Q,W,X). Parameter
estimates can therefore be obtained easily from these simu-
lated random variables. In addition, this allows us to check
models (2) and (4).

We outline here how the transformation parameters were
estimated using said pairs. Let α̂0 (λx) and α̂1 (λx) denote the
least squares parameter estimates when performing a linear
regression of covariates g(X�, λx) on Z for a fixed value of
λx. Define residuals V� (λx) = g(X�, λx) − α̂0 (λx) − α̂1 (λx)Z.
Since the distribution of V� is assumed Gaussian for the true
value of λx, the estimated transformation parameter λ̂x is,
component-wise, the value that maximizes the absolute cor-
relation between the percentiles of V� and the percentiles of
the standard Gaussian distribution. A similar procedure is
used to estimate λ̂w, and then the other parameters.

3.3. Moment-Adjusted Imputation

Model (3) is exactly a classical measurement error model, to
which moment-adjusted imputation can be applied. In prin-
ciple, one has to do a bivariate moment-adjusted imputation,
for which programs are not yet available. However, in our con-
text, the HEI-2005 total score is very nearly independent of
energy intake, and thus for simplicity we used the programs
mentioned in Thomas et al. (2011) separately for each vari-
able. A multivariate extension to MAI has recently been con-
sidered by Thomas et al. (2013). The latter would be prefer-
able when strong dependence exists between the variables un-
der consideration.

3.4. Moment Reconstruction

Let {cov(Wmr|Y,Z)}1/2 be the symmetric square root of
cov(Wmr|Y,Z) . Define m(Y,Z) = E(Wmr|Y,Z) and G(Y,Z) =
{cov(Wmr|Y,Z)1/2}−1{cov(X̃|Y,Z)}1/2. Moment reconstruction

now proceeds by substituting the unobserved X̃ by Xmr =

m(Y,Z){I − G(Y,Z)} + WmrG(Y,Z) which has been con-

structed so that the first two conditional moments of X̃ and
Xmr are equal. Of course, to get to this point, the additional
parameters (λw, λx) and (β0, β1, β2, α0, α1) also need to be es-
timated, see Section 3.1. The model of interest is assumed to
be a function of X̃, with the function known up to a vector
of parameters.

In any given example of moment reconstruction, construct-
ing m(Y,Z) and G(Y,Z) is done on a case-by-case basis.
Freedman et al. (2004) show how to do this explicitly if there
are no additional covariates Z, and if Y is binary as in logis-
tic regression. Specifically, m(Y,Z) is the mean of X̃ among

those sharing the same values of Y , and cov(X̃|Y,Z) is the
covariance of Wmr among those sharing the same values of
Y minus cov(Ũ). In the example of Section 4, however, Z is
of dimension >20 and thus this simple device is not appli-
cable. Instead, one can perform linear regressions of X̂�

mr on
Z separately for the cases (Y = 1) and controls (Y = 0), from
which m(Y,Z) is estimated directly, as is cov(Wmr|Z) , and

then cov(Xmr|Y,Z) = cov(Wmr|Y,Z) − cov(Ũ).
In our problem, with many covariates, we used the fol-

lowing device for logistic regression. Using the parameters
estimates found in Section 3.2, define X̂�

mr = g(X�, λ̂x) and

Ŵmr = (β̂
T

1 )−1{g(W, λ̂w) − β̂0 − β̂
T

2 Z}. The estimate m̂(Y,Z)
of m(Y,Z) = E(Wmr|Y,Z) is found by performing separate lin-

ear regressions of X̂�
mr on the covariates Z for both the cases

(Y = 1) and controls (Y = 0). In estimating the covariance

component, we assume that cov (Wmr|Y,Z) = cov(X̃|Y,Z) +
cov(Ũ). We also assume that cov (Wmr|Y,Z) only depends
on Z through m(Y,Z). While we are unable to estimate
cov (Xmr|Y,Z) directly from the data, we are able to find

estimates of both cov (Wmr|Y,Z) and cov(Ũ). Define resid-

uals Ũi,res = (β̂
T

1 )−1{g(Wi, λ̂w) − β̂0 − β̂
T

2 Zi} − g(Xi, λ̂x) and

let �̂̃
u

be the sample covariance matrix of the Ũi,res, the es-

timate of cov(Ũ). The estimate ĉov (Wmr|Y,Z) is found by

calculating X̂�
mr − m̂(Y,Z) in both the cases and controls, and

then finding the covariance matrices corresponding to those
residuals.

3.5. Modified Regression Calibration

Regression calibration is defined as replacing a latent vari-
able by its expectation given the observed covariates. We
do this in the original data scale, as follows. We use the
characterization X = G(Q,Z, �, �ζ, �ξ, ζ) given in (A.6). We
compute E(X|Q,Z) by Monte-Carlo. Set B = 500, and gen-
erate (ζ1,RC, ..., ζB,RC) = Normal(0, �ζ). Let the estimates

of (�, �ζ, �ξ) be (�̂, �̂ζ, �̂ξ). Then, Ê(X|Q,Z) = X̂RC =
B−1

∑B

b=1
G(Q,Z, �̂, �̂ζ, �̂ξ, ζb,RC).

This procedure is completely standard when X = (XT , XE)
enters the risk model linearly. However, when we do regression
of fixed intervals, or use a B-spline basis for usual total score,
a modification is required. In both those cases, X enters the
model linearly through functions {g1(X), g2(X), ..., gK(X)}.
For example, in the quintile analysis, K = 6 and g1(·),...,g5(·)
are the indicators that XT are in the first through fifth quin-
tile, while g6(X) = XE, and similarly for the B-spline analysis.
In such cases, we replace gk(X) by E{gk(X)|Q,Z}.
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4. The NIH AARP Study Analysis

4.1. Overview

The data are described in Section 2.1. We fit the data using
logistic regression: results were very similar for Cox regression,
where, following Thomas et al. (2011), Z was augmented by
case-control status.

� We did five different analyses with three different models.
The analyses were (a) use of the FFQ in the original scale
and ignoring measurement error; (b) regression calibration
(RC) on the original scale as described in Section 3.5; (c)
moment reconstruction (MR); (d) moment-adjusted impu-
tation (MAI); and (e) Monte-Carlo maximum likelihood
(MCML) on the original scale, with the score functions
computed using B = 500 simulations, see Appendix S.2 of
the Supplementary Material for details.

� The three different models were (i) linear logistic regression;
(ii) because there was some hint of curvature in the regres-
sion model when using the FFQ, we also fit a quadratic B-
spline with four basis functions; and (iii) dummy variable
regression for the HEI-2005 total score based on the esti-
mated quintiles of the true total score. For (iii), because all
transformations are monotone, the quintiles in the trans-
formed scale are immediate. For men, the quintile break
points are (50.6, 58.0, 64.0, 70.3), while for women they are
(55.9, 62.9, 68.3, 73.7).

� When evaluating (i) and (ii), we computed the relative risk
when moving from a true total score of 45, representing a
rather poor diet, to a true total score of 75, representing
a good diet. For women, these represent the 5th and 92nd
percentiles of usual intake total score, while they are the
10th and 91st percentiles for men. In addition, these two
values cover most of the range for the FFQ and regression
calibration expectations.
When evaluating (iii), we computed relative risk between
the first and fifth quintile, also representing a change from
a poor diet to a good diet.

The Box–Cox transformation parameters for moment re-
construction and moment-adjusted imputation were 0.66 for
men and 0.40 for women. For energy, they were 0.23 and 0.36,
respectively. Standard errors were estimated using 500 boot-
strap data sets.

4.2. Results

Results for the analysis of the HEI-2005 Total Score are pro-
vided in Table 2. In the Supplementary Material Figures 1
and 2, we display the Bspline fits by the various methods.

Consider first the analysis for men. With one exception, dis-
cussed below, the relative risks are consistent within method.
For the linear risk model and the spline model, moment-
adjusted imputation, regression calibration, and Monte-Carlo
maximum likelihood all have risks about 10% lower than
those estimated by the FFQ, with moment reconstruction be-
tween the first three methods and the FFQ. The only anomaly
arises in the quintile analysis, where Monte-Carlo maximum-
likelihood estimates a relative risk 16% smaller than that of
the FFQ, and about 15% smaller than for moment-adjusted
imputation. The quintile model actually does not fit the data

at all well, and this may reflect that had X been observable, a
quintile analysis would have suggest much more attenuation
of risk when using the FFQ compared to the linear model.

The results for women are interesting. We do not ob-
serve the same phenomenon about the quintile analysis using
Monte-Carlo maximum likelihood as was observed in men.
The spline model does appear more appropriate than a linear
model (Figures 1 and 2 in the Supplementary Material), and
if we look at the spline model results, all the measurement er-
ror corrections suggest a large attenuation of risk when using
the FFQ. Perhaps of most interest is that there is no statisti-
cally significant effect of HEI-2005 on colorectal cancer when
using the FFQ. However, all the measurement error correc-
tion methods are different, with p-values ranging from 0.0 to
5.1%. This may seem paradoxical, since the folklore is that
measurement error can be ignored when testing null effects,
but as discussed in Chapter 10 of Carroll et al. (2006), such
folklore is generally true only if there are no covariates mea-
sured without error that are also correlated with X. In our
case, there are over 20 covariates Z in the risk model, and,
importantly, those covariates are also predictors of X in the
model of Zhang et al. (2011) discussed in Section 6, and in
fact diet composition does depend on the demographic factors
making up Z. We believe it is this phenomenon that leads to
the change from nonstatistical significance to statistical sig-
nificance in the women.

5. Simulation Study

To simulate data that have properties similar to the observed
data, several steps are necessary. First, one needs to simulate
a calibration data set (usual intake). The calibration data
require specification of model parameters (�, �ζ, �ξ), which
are estimated in Zhang et al. (2011). For the purpose of this
simulation, we used these aforementioned estimated values as
the true model parameters. Given simulated usual intake, one
can simulate total score and energy, which are necessary to
calculate the risk function associated with colorectal cancer
and therefore simulate this outcome. In this simulation study,
two different risk functions are considered. Let H(x) = {1 +
exp(−x)}−1 be the logistic distribution function, and

pr (Y = 1|X,Q,Z,U) = H
(
γ0 + XT γ1 + ZT γ2

)
.

The risk functions considered are, respectively, linear (X in-
cludes total score linearly) and a quintile function (X includes
a step function based on the quintiles of total score). It is then
possible to apply the different methods discussed here (MR,
MAI, RC, MCML) to use the intake observations with mea-
surement error present to estimate the relative risk associated
with an increase in total score. When the specified risk func-
tion is linear, both a linear and quintile model are fit, while
when the specified risk function is quintile, only a quintile
model is fit. In each instance, 500 data sets were generated
and the relative risk (RR) was estimated. Table 3 provides a
summary of the average RR from the 500 simulations and the
standard deviation of the estimated RR.

In summary, none of the methods show serious bias, and
moment-adjusted imputation and moment reconstruction are
comparable in performance, although moment-adjusted im-
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Table 2
Logistic regression analysis of the NIH–AARP Diet and Health Study for the HEI-2005 total score in Section 4. There are

five methods considered: (i) moment reconstruction (MR); (ii) moment-adjusted imputation (MAI), (iii) regression
calibration (RC); (iv) the food frequency questionnaire (FFQ); and (v) Monte-Carlo maximum likelihood (MCML): the latter
three were all done in the original data scale. Within each method the predictor either entered linearly (Lin), via quintiles

(Quin), or via a B-spline (Spl). Displayed are the relative risk (Rel. Risk, in bold face), the p-value, and the lower and upper
95% confidence bounds (L 95% and H 95%, respectively) for the relative risk. The relative risk for the linear and spline

analyses was the relative risk for moving from a total score of 45 to a total score of 75, while the relative risk for the quintile
analysis was for the quintiles of the usual HEI-2005 total score. The quintile analysis for regression calibration is not

included because it is known that categorization induces differential measurement error in regression calibration unless the
true risk function is actually a step function of the categories.

Men Women

Rel. Risk p-value L 95% H 95% Rel. Risk p-value L 95% H 95%

MR
Lin 0.699 <0.001 0.614 0.796 0.767 0.005 0.637 0.925
Quin 0.710 <0.001 0.613 0.822 0.790 0.029 0.639 0.976
Spl 0.725 <0.001 0.634 0.830 0.729 0.002 0.600 0.887

MAI
Lin 0.652 <0.001 0.577 0.736 0.712 <0.001 0.595 0.852
Quin 0.656 <0.001 0.570 0.754 0.749 0.006 0.609 0.922
Spl 0.663 <0.001 0.583 0.755 0.706 <0.001 0.583 0.853

RC
Lin 0.651 <0.001 0.555 0.764 0.647 0.004 0.481 0.870
Quin 0.660 <0.001 0.545 0.800 0.761 0.091 0.555 1.044
Spl 0.665 <0.001 0.548 0.779 0.676 0.046 0.500 0.993

FFQ
Lin 0.731 <0.001 0.650 0.822 0.832 0.053 0.691 1.002
Quin 0.723 <0.001 0.630 0.830 0.824 0.070 0.669 1.016
Spl 0.734 <0.001 0.644 0.836 0.899 0.378 0.709 1.140

MCML
Lin 0.654 <0.001 0.558 0.767 0.667 0.006 0.499 0.890
Quin 0.605 <0.001 0.462 0.792 0.728 0.281 0.408 1.296
Spl 0.669 <0.001 0.561 0.796 0.710 0.051 0.504 1.002

putation estimates tend to have smaller standard deviation
among females.

6. Discussion

Moment reconstruction and moment-adjusted imputations, as
well as regression calibration, are methods that, up to now,
have only been applied in the classic measurement error set-
ting. We have shown how to apply these methods for nonclas-
sical measurement error structures in our context in which
exposure is modeled by a complex, nonlinear random effects
modeling process in physics, biology, or social science applica-
tions. While these methods are only approximations, we have
shown that they perform well in the context of the HEI-2005
problem.

In the present setting, our method relied on the availability
of a calibration sample, from which the covariance matrices of
the random effects and measurement error components could
be estimated. This is typical in measurement error problems,
where one has to assume that certain variance components
are known when replicate measurements are not available.

For the colorectal cancer application discussed in this arti-
cle, moment reconstruction and moment-adjusted imputation

performed well for both a quantile model, which is often used
in epidemiological models, as well as a spline model which
allows for some flexibility. The results compared favorably
to a Monte Carlo maximum-likelihood approach. The latter
approximates the exact solution, but is computationally in-
tensive.

The simulations and data analysis shown give the impres-
sion that regression calibration is similar to moment recon-
struction and moment-assisted imputation. This is not always
the case. In Section S.4 of the Supplementary Material, we
give results of a simulation where it is shown that two forms
of regression calibration which uses dummy variables can have
substantial bias. Freedman et al. (2004, 2008) compare mo-
ment reconstruction and ordinary regression calibration and
efficient regression calibration (Spiegelman et al., 2001) in the
classical additive, homoscedastic measurement error model.
They find that moment reconstruction dominates ordinary re-
gression calibration, while if there is a calibration sub-study
that also has the response, then enhanced regression calibra-
tion dominates moment reconstruction when the correlation
between Y and X is modest, but not necessarily otherwise.
Thomas et al. (2011, 2013) do simulations with nondifferen-
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Table 3
Simulation results of logistic regression for 500 simulated data sets. Displayed are the mean relative risks of moving from the

10th to the 90th percentile of the HEI-2005 total score in the linear analysis and from the 1st to the 5th quintile in the
quintile analysis (Rel. Risk) across the simulation, 10 × the standard deviation across the simulations (sd). “Linear” risk

function means the disease status is simulated from a logistic model in which the predictor total score enters linearly.
“Quintile” risk function means the disease status is simulated from a logistic model which contains the dummy variables of
the total score based on quintiles of the total score as predictors. The fit function is “Linear” if the total score enters the
model linearly and is “Quintile” if we compare the relative risk of the 1st and 5th quintiles when fitting the model. The
methods used are moment reconstruction (MR), moment-adjusted imputation (MAI), Monte Carlo maximum likelihood

(MCML), and regression calibration (RC).

Men

Risk function Fit function Truth MR MAI MCML RC

Linear Linear RR 0.682 0.681 0.677 0.685 0.685
10×sd 0.502 0.4810 0.474 0.474

Linear Quintile RR 0.682 0.661 0.654 0.635 0.662
10×sd 0.574 0.554 0.592 0.559

Quintile Quintile RR 0.691 0.711 0.704 0.688 0.696
10×sd 0.624 0.602 0.651 0.599

Women

Risk function Fit function Truth MR MAI MCML RC

Linear Linear RR 0.703 0.711 0.707 0.716 0.715
10×sd 1.058 0.977 1.000 1.000

Linear Quintile RR 0.703 0.691 0.680 0.659 0.688
10×sd 1.273 1.171 1.273 1.206

Quintile Quintile RR 0.712 0.748 0.741 0.708 0.715
10×sd 0.913 0.857 0.891 0.819

tial measurement error and conclude that moment-adjusted
imputation dominates moment reconstruction. However, mo-
ment reconstruction is easily applied if the measurement error
is differential, as it might be in a case-control study.

Finally, model (2) has an interesting feature in that it
can also be thought of as a complex, nonstandard, non-
linear, and heteroscedastic Berkson model. Define Wi∗ =
E{G(Qi,Zi, �, ζi)|Qi,Zi}. Then Xi = Wi + υi, where υi =
G(Qi,Zi, �, ζi) − Wi∗. This looks like a standard Berkson
model, since E(υi|Qi,Zi) = 0, but υi is heteroscedastic. How-
ever, our methods do not rely on thinking about this as a
Berkson model.

7. Supplementary Materials

Web Appendices, and Figures referenced in Sections 1,
3.5, 4.1, 4.2, and 6 are available with this article at the
Biometrics website on Wiley Online Library. The NIH–
AARP Diet and Health Study data are available via a pro-
posal process, see http://dietandhealth.cancer.gov. Fitting
the method of Zhang et al. (2011) to the NIH–AARP cali-
bration data can be done either by an SAS macro available at
http://epi.grants.cancer.gov/diet/usualintakes (click on the
”Read more about the NCI method”), or by Matlab code
available at the Biometrics website as a zip file. The zip file
has three Word files: (i) Read Me Extracting Data Sets.doc,
which gives instruction on how to extract the relevant
data from the NIH–AARP Study, once it is obtained;

(ii) Read Me Calibration Study.doc, which gives instructions
for what to do with the calibration study data; and (iii)
Read Me Primary Study.doc, which lists the programs that
are used and gives their order. However, the data are being
regularly updated, with many more colorectal cancer cases be-
ing found, and so results applied to the most recent data will
not match the results we found with much older data. Sup-
plementary Material includes technical details of fitting the
logistic regression model, figures of Bspline fits, and a simula-
tion where it is shown that two forms of regression calibration
which uses dummy variables can have substantial bias.
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Appendix

Sketch of Technical Arguments

The Model in Zhang et al. (2011)

The purpose of this section is to show that model (1) is justi-
fied for the NIH–AARP Study. Because of space constraints,
we provide only a sketch of that method.

Using the repeated 24HR recall data, for each of the episod-
ically consumed food groups, two variables are defined: (i)
whether a food from that group was consumed; and (ii)
the amount of the food that was reported on the 24HR
recall. For the six daily consumed food groups and nutri-
ents, only one variable indicating the consumption amount
is defined. In addition, the amount of energy that is calcu-
lated from the 24HR recall is of interest. The number of di-
etary variables for each 24HR recall is thus 12 + 6 + 1 = 19,
each collected at two time points. The observed data are Rijk

for the ith person, the jth variable and the kth replicate,
j = 1, . . . , 19 and k = 1, 2. Set Rik = (Ri1k, ..., Ri,19,k)

T, where
(i) Ri,2	−1,k = Indicator of whether dietary component # 	 is
consumed, with 	 = 1, 2, 3, 4, 5, 6; (ii) Ri,2	,k = Amount of food
# 	 consumed. This equals zero, of course, if none of food
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#	 is consumed, with 	 = 1, 2, 3, 4, 5, 6; (iii) Ri,	+6,k = Amount
of nonepisodically consumed food or nutrient #	, with 	 =
7, 8, 9, 10, 11, 12; and (iv) Ri,19,k = Amount of energy con-
sumed as reported by the 24HR recall.

Each of the six episodically consumed foods has two
sets of latent variables, one for consumption and one for
amount, while the six daily consumed foods and nutrients
as well as energy have one latent variable each, for a total
of 19. The latent random variables are ξik = (ξi1k, ..., ξi,19,k) =
Normal(0, �ξ) and ζi = (ζi1, ..., ζi,19) = Normal(0, �ζ), which
are mutually independent. Technically, � is a patterned co-
variance matrix, see Zhang et al. (2011) for details. As before,
Z represents covariates while Q represents the food frequency
questionnaire. In this model, food 	 = 1, ..., 6 being consumed
on day k is equivalent to observing the binary Ri,2	−1,k, where

Ri,2	−1,k = 1 ⇐⇒ Si,2	−1,k = (1,QT
i ,ZT

i )θ2	−1 + ζi,2	−1

+ ξi,2	−1,k > 0. (A.1)

Define the Box–Cox transformation as g(y, λ) = (yλ − 1)/λ for
λ �= 0 and = log(y) if λ = 0. If the food is consumed, we model
the amount reported, Ri,2	,k, as

[gtr(Ri,2	,k, λ	)|Ri,2	−1,k = 1] = Si,2	,k = (1,QT
i ,ZT

i )Tθ2	

+ ζi,2	 + ξi,2	,k, (A.2)

where gtr(y, λ) = √
2{g(y, λ) − μ(λ)}/σ(λ), g(y, λ) is the usual

Box–Cox transformation defined above with transformation
parameter λ, and {μ(λ), σ(λ)} are the sample mean and stan-
dard deviation of g(y, λ), computed from the nonzero food
data. This standardization improves the numerical perfor-
mance of the algorithm without affecting conclusions.

The reported consumption of daily consumed
foods/nutrients plus energy is modeled as

gtr(Ri,	+6,k, λ	) = Si,	+6,k = (1,QT
i ,ZT

i )θ	+6 + ζi,	+6 + ξi,	+6,k,

(A.3)

for 	 = 7, . . . , 13. As seen in (A.2) and (A.3), different trans-
formations λ = (λ1, ..., λ13)

T are allowed to be used for the
different types of dietary components.

Denote the collection of θj as �. Zhang et al. (2011) use
MCMC to estimate (�, �ζ, �ξ). From that, usual intake and
the usual HEI-2005 component score are defined as follows.
Consider the first episodically consumed dietary component,
a food group. Since the 24-hour recalls are unbiased for a
person’s usual intake, the usual intake is the expectation of
the reported intake conditional on the person’s random effects
ζi. Let g−1

tr (·) be the inverse transformation, and let �(·) be the
standard normal distribution function. Then, a person’s usual
intake of the first episodically consumed dietary component
is

Xi1,com = Xi1,com(Qi,Zi, �, �ζ, �ξ, ζi)

= E(Ri2|Qi,Zi, �, �ζ, �ξ, ζi1, ζi2)

= �{(1,QT
i ,ZT

i )θ1 + ζi1}E
[
g−1
tr

{
(1,QT

i ,ZT
i )θ2

+ ζi2 + ξi21, λ1} |ζi] . (A.4)

Some fix-ups are used to make the expectation computable,
but the details are not of interest here. Usual intake for the
other episodically consumed food groups is defined similarly,
and similarly for the daily consumed components, which do
not have the leading term in (A.4).

Thus, for functions GT and GE, the true HEI-2005 total
score, XT , and energy, XE are

XT = GT (Q,Z, �, �ζ, �ξ, ζ);

XE = GE(Q,Z, �, �ζ, �ξ, ζ), (A.5)

where ζ = Normal(0, �ζ) is independent of (Z,Q). Setting
(XT , XE)T = X, we write

X = G(Q,Z, �, �ζ, �ξ, ζ)

= {GT (Q,Z, �, �ζ, �ξ, ζ),GE(Q,Z, �, �ζ, �ξ, ζ)}T,

(A.6)

which is the specific form of (1) for this application.


