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SUMMARY

An important use of measurement error models is to correct regression models for bias due to covariate
measurement error. Most measurement error models assume that the observed error-prone covariate (W ) is
a linear function of the unobserved true covariate (X ) plus other covariates (Z ) in the regression model. In
this paper, we consider models for W that include interactions between X and Z . We derive the conditional
distribution of X given W and Z and use it to extend the method of regression calibration to this class of
measurement error models. We apply the model to dietary data and test whether self-reported dietary intake
includes an interaction between true intake and body mass index. We also perform simulations to compare
the model to simpler approximate calibration models.

Keywords: Interactions; Measurement error; Mixed models; Nonlinear mixed models; Nutritional epidemiology.

1. INTRODUCTION

One of the important uses of measurement error models is to correct estimated regression parameters for
bias due to covariate measurement error. In this setting, we have a response variable Y , covariates X and Z ,
and a surrogate W , which is a measurement of X that includes error. We have a “risk” model that specifies
the conditional distribution of Y given (X, Z ) and a measurement error model that specifies the conditional
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278 D. MIDTHUNE AND OTHERS

distribution of W given (X, Z ). The problem is to estimate the parameters in the risk model when Y , W,

and Z (but not X ) are observed.
There is a large body of literature on methods to address this problem for linear (Fuller, 1987) and

nonlinear (Carroll and others, 2006; Buonaccorsi, 2010) risk models, including methods based on max-
imum likelihood, regression calibration (Prentice, 1982; Carroll and Stefanski, 1990), conditional scores
(Stenfanski and Carroll, 1987), moment reconstruction (Freedman and others, 2004), and multiple impu-
tation (Cole and others, 2006). In addition, many authors have considered the problem of correcting for
measurement error when the risk model includes interaction terms. Fuller (1987) gives an example of a
linear risk model that includes an interaction between X and Z , while Carroll and others (2006) show how
to use conditional scores estimation for linear and logistic regression models with interactions. Huang and
others (2005) consider interactions in the special case that Z is categorical, while Murad and Freedman
(2007) consider the case when the risk model includes an interaction between two continuous covariates
that are both measured with error.

In contrast, there has been relatively little attention paid to the case when the measurement error model
(rather than risk model) includes interaction terms. Prentice and others (2002) proposed a model for W
that includes interactions between scalar X and a vector of covariates Z ,

W = β0 + β1 X + βT
2 Z + βT

3 Z X + e, (1.1)

where e is random error with E(e | X, Z) = 0. They proposed the model for self-reported dietary intake
data, noting there was evidence that measurement error in self-reported intake may depend on personal
characteristics such as body mass, age, and social desirability factors. Equation (1.1) models the mean of
W as a linear regression on X , Z , and Z X ; in theory, more complex relationships could be posited.

Sugar and others (2007) developed methods for correcting parameter estimates in logistic regression
under measurement error model (1.1), but restricted their attention to the case when Z is a vector of categor-
ical variables. This allowed them to partition the data into subsets in which Z is constant, so that within the
kth subset the measurement error model simplifies to W = βk0 + βk1 X + e. In their paper, they extended
the methods of regression calibration and conditional scores estimation to this class of measurement error
models.

Neuhouser and others (2002) also considered model (1.1), this time allowing Z to be continuous. They
claimed that under model (1.1), and under normality assumptions for (X , e) given Z , the conditional
expectation of X given W and Z is given by

E(X | W, Z) = λ0 + λ1W + λT
2 Z + λT

3 Z W. (1.2)

They used (1.2) to develop calibration equations for total energy intake, protein intake and percent
energy from protein that included a potential interaction between self-reported intake from a food fre-
quency questionnaire (FFQ) (W ) and body mass index (BMI) (Z ).

In this paper, we derive the conditional distribution of X given W and continuous Z under model
(1.1), and show that E(X | W, Z) is in general different from, and more complex than, (1.2). We also
extend regression calibration to this class of models. In Section 2, we consider the case when X and W
are scalars, while in Section 3, we extend the model to multivariate X and W . In Section 4, we investigate
how interactions in (1.1) affect estimation of risk parameters in linear risk models. In Section 5, we fit
the model to dietary intake data in the Observing Protein and Energy Nutrition (OPEN) study (Subar and
others, 2003) and look for evidence of an interaction between true intake and BMI. In Section 6, we perform
simulations to compare the performance of regression calibration under model (1.1) to simpler approximate
calibration models such as (1.2). We conclude with a short discussion that includes consideration of some
alternative approaches.

 at N
ational Institutes of H

ealth L
ibrary on M

arch 4, 2016
http://biostatistics.oxfordjournals.org/

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/
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2. MEASUREMENT ERROR MODEL WITH SCALAR X AND W

2.1 Model and main results

For the i th subject in a study, let Yi be a response variable, Xi be the exposure of interest, and Zi be a
q × 1 vector of covariates. We want to estimate the parameters in a generalized linear model relating Yi to
Xi and Zi , which we call the risk model,

E(Yi | Xi , Zi ) = h(δ0 + δ1 Xi + δT
2 Zi ), (2.1)

where h(x) is the inverse link function, δ0 and δ1 are scalars, and δ2 is a q × 1 vector of regression coeffi-
cients. For example, if Yi is binary, h(x) could be the logistic distribution function. We do not observe Xi

but instead observe Wi , which is a measure of Xi that includes error. We assume the following measure-
ment error model for Wi :

Wi = β0 + β1 Xi + βT
2 Zi + βT

3 Zi Xi + ei , (2.2)

where random error ei is normally distributed with mean zero and variance σ 2
e , and ei is independent of

Xi and Zi . Model (2.2) is a special case of (1.1) in which ei has a normal distribution. We need to specify
the distribution of ei to be able to define the conditional distribution of Wi and Xi given Zi .

Our goal is to use regression calibration to correct estimated regression parameters in the risk model
for bias due to measurement error in Wi . In regression calibration, one substitutes the predicted covari-
ate E(Xi | Wi , Zi ) for unknown Xi in risk model (2.1) and then fits the resulting risk model. Under the
assumption that Wi has nondifferential error (i.e. that Wi and Yi are conditionally independent given Xi

and Zi ), regression calibration provides consistent risk estimates for linear risk models and nearly consis-
tent estimates for many generalized linear risk models (Carroll and others, 2006). Because of its simplicity
and wide applicability, regression calibration is one of the most widely used measurement error correction
methods.

To estimate E(Xi | Wi , Zi ), we will need, in addition to model (2.2), a model for the conditional distri-
bution of Xi given Zi . We will assume that

Xi = γ0 + γ T
1 Zi + ui , (2.3)

where ui is normally distributed with mean zero and variance σ 2
u and ui is independent of Zi and ei .

The following result is proved in Appendix A.1 in supplementary material available at Biostatistics
online.

PROPOSITION 1 Under models (2.2) and (2.3), with ei and ui independent and normally distributed with
zero means and variances σ 2

e and σ 2
u , respectively, the conditional distribution of Xi given Wi and Zi is

normal with mean

E(Xi | Wi , Zi ) = γ0 + γ T
1 Zi + γ2(Zi ){Wi − E(Wi | Zi )}, (2.4)

and variance

var(Xi | Wi , Zi ) = σ 2
u {1 − ρ2(Zi )},
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280 D. MIDTHUNE AND OTHERS

where

E(Wi | Zi ) = β0 + β1γ0 + (β2 + γ1β1 + β3γ0)
T Zi + ZT

i β3γ
T
1 Zi ,

γ2(Zi ) = cov(Xi , Wi | Zi )

var(Wi | Zi )
= (β1 + βT

3 Zi )σ
2
u

(β1 + βT
3 Zi )2σ 2

u + σ 2
e

,

ρ2(Zi ) = corr2(Xi , Wi | Zi ) = (β1 + βT
3 Zi )

2σ 2
u

(β1 + βT
3 Zi )2σ 2

u + σ 2
e

.

Observe that the conditional variance of Xi is a function of Zi .
When used in regression calibration, (2.4) is sometimes called a calibration model or calibration

equation. The conditional distribution of Xi given Wi and Zi can also be used in other correction methods
such as maximum likelihood and conditional scores. Equations (1.2) and (2.4) are not equivalent unless
β3 = 0, so that a measurement error model with an interaction in Xi and Zi leads to a calibration model
with functions of Wi and Zi that are more complex than a simple interaction model.

If Xi is observed on a subset of the subjects, then models (2.2) and (2.3) can be fitted and used to
calculate the predicted values in (2.4). Otherwise, one needs to observe repeated measures of an unbiased
reference measure R̃i = (Ri1, . . . , Ri Ji )

T, where Ji is the number of repeated measurements for the i th
subject, and Ji > 1 for at least a subset of the subjects. We assume that

Ri j = Xi + ξi j , (2.5)

where within-person errors ξi j are independent of each other and of (Xi , ei , ui ), and are normally
distributed with zero mean and variance σ 2

ξ . Typically, references Ri j are more expensive to measure than

Wi , so that W , Z , and Y are measured in the main study, while W , Z , and R̃i are measured in a smaller
calibration study.

In Appendix A.2 in supplementary material available at Biostatistics online, we show that the parameters
in (2.2), (2.3), and (2.5) are identifiable. In Appendix A.3, we show how to use a nonlinear mixed effects
modeling program to estimate the parameters in (2.2), (2.3), and (2.5) when Wi , Zi , and R̃i are observed
in a calibration substudy.

In practice, the interaction term in model (2.2) can lead to multicollinearity and large standard errors
(s.e.) for the estimated regression coefficients. To avoid this, some authors suggest centering the covari-
ates by replacing Xi and Zi with Xi − μX and Zi − μZ in (2.2) (Afshartous and Preston, 2011). This
reparameterization changes the interpretation of the regression coefficients in (2.2) but does not affect
the parameter estimates for risk model (2.1), although one needs to keep in mind that (2.4) is now the
conditional expectation of Xi − μX .

2.2 An alternative model

It is worth considering at this point the kind of measurement error model that would lead to calibration
model (1.2). Let

Xi = λ0 + λ1Wi + λT
2 Zi + λT

3 Zi Wi + u∗
i , (2.6)

Wi = γ0∗ + γ T
1∗ Zi + e∗

i , (2.7)

where u∗
i and e∗

i are normal with mean zero and are independent of each other and of Wi and Zi . Using
similar reasoning as that described in Section 2.1, one can show that the conditional distribution of Wi
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given Xi and Zi is normal with mean

E(Wi | Xi , Zi ) = γ0∗ + γ T
1∗ Zi + γ2∗(Zi ){Xi − E(Xi |Zi )},

and variance

var(Wi | Xi , Zi ) = σ 2
e∗ {1 − ρ2

∗(Zi )},
where

γ2∗(Zi ) = (λ1 + λT
3 Zi )σ

2
e∗

(λ1 + λT
3 Zi )2σ 2

e∗ + σ 2
u∗

, ρ2
∗(Zi ) = (λ1 + λT

3 Zi )
2σ 2

e∗

(λ1 + λT
3 Zi )2σ 2

e∗ + σ 2
u∗

.

In general, therefore, the measurement error model and regression calibration model cannot simulta-
neously be linear regressions with simple interaction terms.

3. MULTIVARIATE MEASUREMENT ERROR MODEL

In this section, we extend the measurement error model introduced in Section 2 to the case when X and W
are vectors. Let Xi be a p × 1 vector of unobserved covariates, Wi be the corresponding vector of observed
covariates that are measured with error, and Zi be a q × 1 vector of covariates that are measured without
error. We assume a measurement error model that allows interactions between Xi and Zi ,

Wi = B0 + B1 Xi + B2 Zi + B3(Zi ⊗ Xi ) + ei , (3.1)

where B0 is a p × 1 vector of intercepts, B1 a p × p matrix of regression coefficients, B2 a p × q matrix
of coefficients, B3 a p × pq matrix of interaction terms, and ⊗ is the Kronecker product. To include
only a subset of the possible interactions, one can set the other components of B3 equal to zero. Within-
person error ei is a multivariate normal random vector with zero mean and covariance matrix 	e, and ei

is independent of Xi and Zi .
As in the scalar case in Section 2, we also need to assume a model for the conditional distribution of

Xi given Zi . We will assume that

Xi = 
0 + 
1 Zi + ui , (3.2)

where 
0 is a p × 1 vector of intercepts, 
1 a p × q matrix of regression coefficients, ui a multivariate
normal random vector with zero mean and covariance matrix 	u , and ui is independent of Zi and ei . As
in Section 2, in order to fit model (3.1) and (3.2) one would need to observe Xi or repeat observations of
an unbiased reference measure on a subset of the subjects.

The following result is proved in Appendix A.4 in supplementary material available at Biostatistics
online.

PROPOSITION 2 Under models (3.1) and (3.2), with ei and ui independent and normally distributed with
zero means and covariance matrices 	e and 	u , respectively, the conditional distribution of Xi given Wi

and Zi is multivariate normal with mean

E(Xi | Wi , Zi ) = 
0 + 
1 Zi + 
2(Zi ){Wi − E(Wi | Zi )},

and covariance matrix

cov(Xi | Wi , Zi ) = 	u − 	u K T(Zi ){K (Zi )	u K T(Zi ) + 	e}−1 K (Zi )	u,
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282 D. MIDTHUNE AND OTHERS

where E(Wi | Zi ) = B0 + B1 
0 + (B2 + B1 
1) Zi + B3 {Zi ⊗ (
0 + 
1 Zi )}, K (Zi ) = B1 + B3

(Zi ⊗ Ip), and 
2(Zi ) = cov(Xi , Wi | Zi )cov(Wi | Zi )
−1 = 	u K T(Zi ){K (Zi )	u K T(Zi ) + 	e}−1.

As in the scalar case, the calibration model is more complex than a linear regression with a simple
interaction term.

4. LINEAR RISK MODELS

Regression calibration is known to produce consistent estimates when the risk model is linear regression
and the calibration model is correctly specified. In Sections 2 and 3, we showed that measurement error
models with interaction terms lead to complex calibration models. In this section, we investigate whether
simpler approximate calibration models can produce consistent estimates in linear risk models when the
true measurement error model includes interactions. For simplicity, we consider the case when Xi and Zi

are both scalar. The risk model is given by the linear regression of Yi on Vi ,

Yi = δ0 + δTVi + ηi , (4.1)

where Vi is a vector of covariates, δ = cov−1(Vi )cov(Vi , Yi ) is the vector of regression coefficients, and ηi

is random error that is uncorrelated with Vi and has mean zero and constant variance. We are interested
in two cases: Vi = (Xi , Zi )

T, a risk model without an interaction term; and Vi = (Xi , Zi , Zi Xi )
T, a risk

model that includes an interaction.
Let Qi be a vector of observed covariates. The best linear approximation (in the mean square sense) of

the true regression of Xi on Qi is
Xi = λ0 + λT Qi + u∗

i , (4.2)

where λ = cov−1(Qi )cov(Qi , Xi ). Again, we are interested in two cases: Qi = (Wi , Zi )
T and

Qi = (Wi , Zi , Zi Wi )
T. Let Xci = λ0 + λT Qi , and let Vci = (Xci , Zi )

T if Vi = (Xi , Zi )
T or Vci =

(Xci , Zi , Zi Xci )
T if Vi = (Xi , Zi , Zi Xi )

T. The approximate risk model based on calibration model (4.2) is

Yi = δc0 + δT
c Vci + ηci . (4.3)

If W has nondifferential measurement error, then

δc = cov−1(Vci )cov(Vci , Yi ) = cov−1(Vci )cov(Vci , δ
TVi ) = cov−1(Vci )cov(Vci , Vi )δ.

This implies that regression calibration based on approximate model (4.2) leads to consistent estimation
of (nonzero) δ if and only if cov(Vci , Vi ) = cov(Vci ).

The following result is proved in Appendix A.5 in supplementary material available at Biostatistics
online.

PROPOSITION 3 Under models (2.2) and (2.3), with (Xi , Zi ) bivariate normally distributed, and ei nor-
mally distributed with mean zero and independent of (Xi , Zi ), the following are true:

(i) If Vi = (Xi , Zi ), then cov(Vci , Vi ) = cov(Vci ).
(ii) If Vi = (Xi , Zi , Zi Xi ), then cov(Vci , Vi ) = cov(Vci ) if and only if β3 = 0.

Proposition 3 implies that the estimated regression parameters in a linear risk model based on
approximate calibration model (4.2) will be consistent if the risk model does not include an interaction
with unobserved covariate Xi , but will be inconsistent if the risk model includes such an interaction
unless the regression coefficient for the interaction term in measurement error model (2.2) equals zero.
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Table 1. Estimated regression coefficients for measurement error models with and without
interaction between true dietary intake and BMI; OPEN study

Covariates in measurement error model

Nutrient Gender Model X (s.e.) Z (s.e.) X Z (s.e.) AIC p-value

Energy Male 1 0.66 (0.19) −0.46 (0.19) – 73.1
2 0.65 (0.19) −0.52 (0.19) 1.23 (0.88) 73.2 0.17

Female 1 0.14 (0.23) 0.19 (0.16) – 70.9
2 0.15 (0.23) 0.20 (0.17) −0.13 (0.80) 72.9 0.86

Protein Male 1 0.82 (0.18) −0.45 (0.19) – 209.6
2 0.81 (0.18) −0.51 (0.20) 1.87 (0.80) 206.0 0.02

Female 1 0.85 (0.28) −0.19 (0.19) – 285.7
2 0.84 (0.28) −0.22 (0.19) 0.61 (0.74) 287.0 0.40

Model 1 is without interaction, and Model 2 is with interaction. AIC = −2(log-likelihood − number of
parameters) (smaller is better). The p-value is for the likelihood-ratio test comparing models 1 and 2.

For linear risk models that include interactions, we refer to cov−1(Vci )cov(Vci , Vi ) as the “bias matrix” for
the approximate model.

5. THE OPEN STUDY

In this section, we evaluate measurement error in self-reported dietary intake in the OPEN study and look
for evidence of an interaction between true intake and BMI. The design of the OPEN study is described
in Subar and others (2003). Briefly, 484 subjects (261 men, 223 women) were recruited into the study and
asked to complete two self-report dietary instruments: an FFQ and a 24-h dietary recall. Two biomarker
measures of dietary intake were also collected: 24-h urinary nitrogen for protein intake and doubly labeled
water for total energy intake. These biomarkers have been shown in feeding studies to provide approxi-
mately unbiased measures of true intake (Bingham and Cummings, 1985; Schoeller, 1988). The urinary
nitrogen biomarker was measured twice for each individual, about 10 days apart. The doubly labeled water
biomarker was measured once for each individual, and was measured a second time two weeks later in a
small subset of 25 individuals.

Kipnis and others (2003) evaluated the measurement error structure of FFQ-reported intakes of energy
and protein in OPEN, using the biomarkers as reference measures and a measurement error model that
did not include interactions. In the present analysis, we allow for an interaction between true intake and
BMI. Let W be log-transformed FFQ-reported intake of energy or protein, R be the corresponding log-
transformed biomarker measurements, and Z be the logarithm of BMI. As an initial step, we center W ,
R, and Z by subtracting their means; this is done to avoid multicollinearity in models with interaction
terms, as discussed in Section 2. We then calculate maximum likelihood estimates of the parameters in
model (2.2) using the SAS NLMIXED procedure (see Appendix A.3 in supplementary material available
at Biostatistics online for details). The model can also be fitted using the nlme package in R. We fit two
versions of the model; model 1 assumes no interaction (β3 = 0), while model 2 allows for the interaction.

Table 1 presents the results of the analysis, including likelihood-ratio tests of model 1 vs. model 2. Men
and women were analyzed separately. For energy intake, there is no evidence of an interaction between X
and Z , while for protein intake, there is evidence of an interaction in males (p = 0.02), but not in females
(p = 0.4). The standard errors (s.e.) for the interaction terms in Table 1 are rather large, indicating only a
limited power to detect interactions in studies of this size.
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Table 2. Estimated regression coefficients for calibration models with and without
interaction between reported dietary intake and BMI; OPEN study

Covariates in calibration model

Nutrient Gender Model W (s.e.) Z (s.e.) WZ (s.e.) AIC p-value

Energy Male 1 0.08 (0.02) 0.56 (0.06) – 73.1
2 0.08 (0.02) 0.56 (0.06) −0.03 (0.15) 75.0 0.75

Female 1 0.02 (0.03) 0.43 (0.05) – 70.9
2 0.02 (0.03) 0.44 (0.05) −0.17 (0.14) 71.4 0.22

Protein Male 1 0.16 (0.03) 0.56 (0.09) – 209.6
2 0.16 (0.03) 0.53 (0.09) 0.22 (0.23) 210.7 0.34

Female 1 0.14 (0.04) 0.41 (0.08) – 285.7
2 0.14 (0.04) 0.41 (0.08) 0.14 (0.19) 287.2 0.44

Model 1 is without interaction, and Model 2 is with interaction. AIC = −2(log-likelihood − number of
parameters) (smaller is better). The p-value is for the likelihood-ratio test comparing models 1 and 2.

As a comparison, we also fitted calibration model (1.2). Typically, the parameters in model (1.2) are
estimated by ordinary least squares; in order to facilitate comparison with the previous model, we estimated
them by maximum likelihood based on equations (2.6) and (2.7). The results are shown in Table 2. We
found no evidence of an interaction for energy or protein in males or females. For protein in men, the
difference in the Akaike Information Criterion (AIC) for model 2 in Tables 1 and 2 is 4.7, indicating that
the measurement error model with interaction fits better than the calibration model with interaction (the
two models have the same number of parameters). For protein in women and energy in men and women,
the difference in AIC is < 2.

In Section 4, we showed that using approximate calibration model (1.2) when the true measurement
error model is (2.2) leads in general to biased estimation in linear risk models that include interactions.
For protein intake in men, the estimated bias matrix for calibration model (1.2) is

B =
⎡
⎣

1.03 0 0
−0.01 1 −0.01
−0.24 0 0.95

⎤
⎦ .

The bias matrix is used to estimate bias in linear risk models with interactions when regression calibra-
tion is based on the approximate model. For example, true risk parameters δ = (1, 1, 1)T would on average
be estimated as δc = Bδ = (1.03, 0.98, 0.71)T. In this example, the bias is only moderate, but in other sit-
uations it could more substantial. For example, the estimated regression coefficient of the interaction term
for protein in men is β3 = 1.87, with 95% confidence interval = (0.29, 3.45); if β3 had been larger, say
β3 = 3.45, while the other parameters remained the same, the bias matrix would have been

B =
⎡
⎣

1.09 0 0.01
−0.04 1 −0.01
−0.49 0 0.87

⎤
⎦ ,

and δ = (1, 1, 1)T would have been estimated as δc = (1.10, 0.94, 0.38)T.
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Table 3. True measurement error parameters for the simulations

Case β1 β2 β3

1 0.8 −0.5 0
2 0.8 −0.5 2
3 0.4 −0.5 4
4 0.4 −0.5 −4
5 0.4 −4 4
6 0.4 −4 −4

6. SIMULATION STUDY

In Section 4, we investigated the consistency of regression calibration estimates for linear risk models when
an approximate calibration model is used. In this section, we use simulations to investigate the performance
of regression calibration for a nonlinear risk model under measurement error model (2.2), and compare
calibration model (2.4) to simpler approximate calibration models.

6.1 Description of simulations

In the simulated data, Zi is generated from a normal distribution with mean zero and standard deviation
0.25, Wi , Xi , and Ri j are generated from models (2.2), (2.3), and (2.5), and Yi is a binary response that is
related to Xi and Zi . We consider two risk models,

pr(Yi = 1 | Xi , Zi ) = H(δ0 + δ1 Xi + δ2 Zi ), (6.1)

pr(Yi = 1 | Xi , Zi ) = H(δ0 + δ1 Xi + δ2 Zi + δ3 Zi Xi ), (6.2)

where H(x) is the logistic distribution function. Risk model (6.1) includes no interaction terms, while
model (6.2) includes an interaction between Xi and Zi . Since an interaction in the measurement error
model does not imply an interaction in the risk model (or vice versa), both cases are of interest. In all
simulations, we set δ1 = δ2 = 1, and set δ0 = −2.2, so that the overall probability pr(Yi = 1) ≈ 0.1. In the
simulations for risk model (6.2), we set δ3 = 1.

Simulations are based on the estimated measurement error parameters for protein in men in the OPEN
study. In all simulations, we set γ0 = 0, γ1 = 0.5, σe = 0.5, σu = 0.25, σξ = 0.25, and β0 = 0. Parameters
β1, β2, and β3 vary by simulation, as shown in Table 3. For each simulation, we simulate a main study
of 100 000 subjects with observed covariates Wi and Zi and binary response Yi , and a calibration study
of 1000 subjects with observed covariates Wi and Zi and repeat measurements of unbiased reference
measure Ri j , j = 1, 2. The relative sample sizes of the main and calibration studies are typical of the large
prospective cohorts used in nutritional epidemiology. The Women’s Health Initiative (WHI) Observational
Study, for example, is a cohort of 93 000 women with a calibration study of 450 women (Zheng and others,
2014). The calibration study is used to estimate the parameters in a calibration model, which can then be
used to predict true intake for subjects in the main study. Simulation results are based upon 1000 simulated
data sets.

We compare three calibration models for use with regression calibration:
Calibration Model 1: Equation (2.4), based on true measurement error model (2.2).
Calibration Model 2: Equation (4.2), with Qi = (Wi , Zi , Zi Wi )

T.
Calibration Model 3: Equation (4.2), with Qi = (Wi , Zi )

T.
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6.2 Simulation results

We simulated cases 1–6 described in Table 3. Simulation results for risk model (6.1), which does not
include an interaction, are presented in Table 4 and are summarized as follows:

• In case 1, where the true measurement error model has no interaction (β3 = 0), the three calibration
models performed very similarly, giving unbiased estimates of the risk parameters, and having nearly
the same standard deviations.

• In case 2, the true measurement error model includes an interaction similar to that seen in OPEN
(β3 = 2); again, the three calibration models performed similarly, although model 3 resulted in a
small bias.

• In cases 3 and 4, the interaction term in the measurement error model (|β3| = 4) is large compared
with β1. In these cases, calibration models 1 and 2 continued to perform well, but model 3 resulted
in substantial bias and large standard deviations.

• In cases 5 and 6, both β2 and β3 are large compared with β1. In these cases, calibration model 2
resulted in moderate bias, while model 1 had little or no bias.

• In all six cases, the estimated parameters in measurement error model (2.2) were approximately
unbiased (results not shown).

In Section 4, we showed that calibration models 2 and 3 lead to consistent estimation of risk parameters
in linear risk models that do not include interactions. These simulations indicate that the same is not true
for nonlinear risk models.

Simulation results for risk model (6.2), which includes an interaction, are presented in Table 5. The
results for main effects δ1 and δ2 are qualitatively similar to those in Table 4, and we limit our remarks
to the results for interaction term δ3. For case 1, the three calibration models performed similarly, with
little or no bias and similar standard deviations. For cases 2–6, calibration model 1 resulted in a small
underestimation of the interaction term δ3, with bias ranging from 5% to 8%, while calibration models 2
and 3 resulted in more substantial, sometimes severe, bias.

In these simulations, we compared regression calibration using the true calibration model to simple
approximate models that approximated the conditional expectation E(Xi | Wi , Zi ) as a linear function of
Wi , Zi , and Zi Wi (model 2), or of Wi and Zi (model 3). Calibration model 3 was too simple and led to
biased estimates if β3 was large compared with β1. Model 2 performed better, but led to biased estimates
when both β2 and β3 were large or the risk model included an interaction with unobserved covariate X .
A notable feature of calibration model 1 is that it appears to be as efficient as model 3 even when the true
measurement error model includes no interaction terms (case 1 in Tables 4 and 5).

For simplicity, we simulated the data so that Xi , Wi , and Zi all had mean zero. In general, one might
want to center risk model (6.2) by replacing Xi and Zi with Xi − μX and Zi − μZ . Otherwise, any bias
in the estimate of δ3 would cause a bias in the estimated regression coefficients for Xi and Zi .

7. DISCUSSION

We have shown that measurement error models with interactions lead to calibration models that are much
more complex than simple interaction models, and have extended regression calibration to this class of
models. For linear risk models, we showed that regression calibration using approximate model (4.2) when
the true measurement error model is (2.2) can lead to biased estimation of the risk parameters if the risk
model includes interactions. For nonlinear risk models, we showed through simulations that regression
calibration using (4.2) can lead to bias, even if the risk model does not include interactions. More generally,
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Table 4. Simulation results when risk model does not have an interaction term; simulated means and
standard deviations of estimated risk model parameters

Case Calibration model Parameter δ1 = 1.0 Parameter δ2 = 1.0

Mean (s.e.) Std dev Mean (s.e.) Std dev

1 1 1.00 (0.01) 0.15 0.99 (0.01) 0.09
2 1.00 (0.01) 0.16 0.99 (0.01) 0.09
3 1.01 (0.01) 0.15 0.99 (0.01) 0.09

2 1 1.00 (0.01) 0.12 0.98 (0.01) 0.08
2 0.97 (0.01) 0.14 0.98 (0.01) 0.09
3 1.13 (0.01) 0.17 0.90 (0.01) 0.10

3 1 1.00 (0.01) 0.11 0.99 (0.01) 0.07
2 0.93 (0.01) 0.15 1.01 (0.01) 0.09
3 1.71 (0.02) 0.60 0.60 (0.01) 0.31

4 1 0.99 (0.01) 0.12 1.00 (0.01) 0.08
2 0.97 (0.01) 0.17 1.00 (0.01) 0.10
3 0.33 (0.01) 0.30 1.33 (0.01) 0.16

5 1 1.00 (0.01) 0.11 0.98 (0.01) 0.07
2 1.27 (0.01) 0.25 0.91 (0.01) 0.13
3 1.75 (0.02) 0.63 0.58 (0.01) 0.32

6 1 0.99 (0.01) 0.12 1.00 (0.01) 0.08
2 0.68 (0.01) 0.19 1.12 (0.01) 0.12
3 0.34 (0.01) 0.35 1.33 (0.01) 0.19

The risk model is (6.1). “Case” refers to settings 1–6 in Table 3. Models: 1 = measurement error model with interaction;
2 = approximate calibration model with interaction; 3 = approximate calibration model without interaction.

the simulation results show the importance of choosing an appropriate calibration model. Simple linear
approximations of the conditional expectation of X given W and Z are not always appropriate.

As discussed in Section 2.1, models (2.2) and (2.3) are not identifiable unless true covariate X or an
unbiased reference instrument R is observed on a subset of study subjects. In our example, we used repli-
cate measurements of a reference instrument to fit the measurement error model. If replicate measurements
are not available, one could use a single application of a reference instrument if the within-individual vari-
ance of the instrument is known from previous studies.

We assumed a relatively simple measurement error model that may itself be inadequate in some situa-
tions. Possible extensions could include interactions between two or more covariates measured with error
or, more generally, polynomials of covariates measured with and without error, although we do not know
how stable such models might be, or even if they would be identifiable. Alternatively, one could consider
nonparametric approaches such as interaction splines (Chen, 1993) or local estimating equations (Carroll
and others, 1998). For example, Jiang and others (2003) used local estimating equations to estimate the
conditional expectation of true protein intake (X ) given observed intake (W ) as a nonparametric func-
tion of BMI (Z ). Such nonparametric procedures may protect against bias due to misspecification of the
measurement error model, but at the expense of added variability in the estimators.

Wang (2012) proposed an estimator that treats W as an instrumental variable and is consistent under a
very general measurement error model for W . A limitation of his estimator is that it requires one to fit the
risk model in the calibration study. This may not be practical in the kind of study we consider here, where
the disease risk is small and the size of the calibration study is very small compared with the main study.
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Table 5. Simulation results when risk model has an interaction term; simulated means and
standard deviations of estimated risk model parameters

Case Calibration model Parameter δ1 = 1.0 Parameter δ2 = 1.0 Parameter δ3 = 1.0

Mean (s.e.) Std dev Mean (s.e.) Std dev Mean (s.e.) Std dev

1 1 1.00 (0.01) 0.16 1.03 (0.01) 0.10 0.97 (0.01) 0.22
2 1.00 (0.01) 0.16 1.03 (0.01) 0.10 0.97 (0.01) 0.24
3 1.00 (0.01) 0.16 1.03 (0.01) 0.10 0.97 (0.01) 0.22

2 1 1.01 (0.01) 0.14 1.01 (0.01) 0.09 0.95 (0.01) 0.21
2 1.13 (0.01) 0.16 0.96 (0.01) 0.10 0.41 (0.01) 0.21
3 1.25 (0.01) 0.19 0.86 (0.01) 0.11 0.92 (0.01) 0.21

3 1 1.01 (0.01) 0.12 1.01 (0.01) 0.08 0.92 (0.01) 0.20
2 1.19 (0.01) 0.21 0.96 (0.01) 0.11 0.21 (0.01) 0.20
3 2.42 (0.03) 0.87 0.28 (0.01) 0.44 0.74 (0.01) 0.26

4 1 0.99 (0.01) 0.12 1.04 (0.01) 0.08 0.92 (0.01) 0.19
2 0.99 (0.01) 0.17 1.05 (0.01) 0.10 0.45 (0.01) 0.19
3 −0.64 (0.01) 0.33 1.90 (0.01) 0.17 0.17 (0.01) 0.32

5 1 1.01 (0.01) 0.12 1.01 (0.01) 0.08 0.94 (0.01) 0.20
2 1.47 (0.01) 0.34 0.86 (0.01) 0.18 1.78 (0.01) 0.27
3 2.48 (0.03) 0.89 0.25 (0.01) 0.45 0.73 (0.01) 0.26

6 1 0.99 (0.01) 0.12 1.04 (0.01) 0.08 0.93 (0.01) 0.18
2 0.80 (0.01) 0.33 1.16 (0.01) 0.18 0.01 (0.01) 0.25
3 −0.66 (0.01) 0.38 1.91 (0.01) 0.19 0.17 (0.01) 0.31

The risk model is (6.2). “Case” refers to settings 1 − 6 in Table 3. Models: 1 = measurement error model with interac-
tion; 2 = approximate calibration model with interaction; 3 = approximate calibration model without interaction.

The WHI Observational Study, for example, includes 93 000 women in the main study, but only 450 in the
calibration study. In an analysis of energy intake and disease risk in this cohort, Zheng and others (2014)
reported 348 incident ovarian cancers out of 65 347 women analyzed; the number of ovarian cancers in the
calibration study was not reported, but is presumably around 450 × (348/65 347) = 2.4.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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