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Selecting the Number of Principal Components
in Functional Data

Yehua LI, Naisyin WANG, and Raymond J. CARROLL

Functional principal component analysis (FPCA) has become the most widely used dimension reduction tool for functional data analysis.
We consider functional data measured at random, subject-specific time points, contaminated with measurement error, allowing for both
sparse and dense functional data, and propose novel information criteria to select the number of principal component in such data. We
propose a Bayesian information criterion based on marginal modeling that can consistently select the number of principal components for
both sparse and dense functional data. For dense functional data, we also develop an Akaike information criterion based on the expected
Kullback–Leibler information under a Gaussian assumption. In connecting with the time series literature, we also consider a class of
information criteria proposed for factor analysis of multivariate time series and show that they are still consistent for dense functional data,
if a prescribed undersmoothing scheme is undertaken in the FPCA algorithm. We perform intensive simulation studies and show that the
proposed information criteria vastly outperform existing methods for this type of data. Surprisingly, our empirical evidence shows that our
information criteria proposed for dense functional data also perform well for sparse functional data. An empirical example using colon
carcinogenesis data is also provided to illustrate the results. Supplementary materials for this article are available online.
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1. INTRODUCTION

Advances in technology have made functional data (Ramsay
and Silverman 2005) increasingly available in many scientific
fields, such as many longitudinal data in medical, biological
research, electroencephalography, and functional magnetic res-
onance imaging data. There is tremendous research interest in
functional data analysis (FDA) for the past decade. Among the
newly developed methodology, functional principal component
analysis (FPCA) has become the most widely used dimension
reduction tool for FDA. There is some existing work on select-
ing the number of functional principal components, but to the
best of our knowledge, none of them were rigorously studied
either theoretically or empirically. In this article, we consider
functional data that are observed at random, subject-specific ob-
servation times, allowing for both sparse and dense functional
data. We propose novel information criteria to select the num-
ber of principal components, and investigate their theoretical
and empirical performance.

There are two main streams of methods for FPCA: kernel-
based FPCA methods including Yao, Müller, and Wang (2005a)
and Hall, Müller, and Wang (2006) and spline-based methods
including Rice and Silverman (1991), James and Hastie (2001),
and Zhou, Huang, and Carroll (2008). Some applications of
FPCA include functional generalized linear models (Müller and
Studtmüller 2005; Yao, Müller and Wang 2005b; Cai and Hall
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2006; Li, Wang, and Carroll 2010) and functional sliced inverse
regression (Li and Hsing 2010a).

At this point, the kernel-based FPCA methods are better un-
derstood in terms of theoretical properties. This is due to the
work of Hall and Hosseini-Nasab (2006), who proved various
asymptotic expansions of the estimated eigenvalues and eigen-
function for dense functional data, and by Hall, Müller, and
Wang (2006) who provided the optimal convergence rate of
FPCA in sparse functional data. An important result of Hall,
Müller, and Wang (2006) was that, although FPCA is ap-
plied to the covariance function estimated by a two-dimensional
smoother, when the bandwidths were properly tuned, estimat-
ing the eigenvalues is a semiparametric problem and enjoys a
root n convergence rate, and estimating the eigenfunctions is
a nonparametric problem with the convergence rate of a one-
dimensional smoother.

In the work on FDA mentioned above, functional data were
classified as (a) dense functional data where the curves are
densely sampled so that passing a smoother on each curve can
effectively recover the true sample curves (Hall, Müller, and
Wang 2006) and (b) sparse functional data where the number
of observations per curve is bounded by a finite number and
pooling all subjects together is required to obtain consistent
estimates of the principal components (Yao, Müller, and Wang
2005a; Hall, Müller, and Wang 2006). There has been a gap in
methodologies for dealing with these two types of data. Hall,
Müller, and Wang (2006) showed that when the number of
observations per curve diverges to ∞ with a rate of at least
n1/4, the presmoothing approach is justifiable and the errors in
smoothing each individual curve are asymptotically negligible.
However, in reality it is hard to decide when the observations
are dense enough. In some longitudinal studies, it is possible
that we have dense observations on some subjects and sparse
observations on the others. In view of these difficulties, Li and
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Hsing (2010b) studied all types of functional data in a unified
framework, and derived a strong uniform convergence rate for
FPCA, where the number of observations per curve can be of
any rate relative to the sample size.

A common finding in the aforementioned work is that higher-
order principal components are much harder to estimate and
harder to interpret. Because seeking sparse representation of
the data is at the core of modern statistics, it is reasonable in
many situations to model the high-order principal components
as noise. Therefore, selecting the number of principal compo-
nents is an important model selection problem in almost all
practical contexts of FDA. Yao, Müller, and Wang (2005a) pro-
posed an Akaike information criterion (AIC) criterion for se-
lecting the number of principal components in sparse functional
data. However, so far there is no theoretical justification for
this approach, and whether this criterion also works for dense
functional data or the types of data in the gray zone between
sparse and dense functional data remains unknown. Hall and
Vial (2006) included theoretical discussion about the difficulty
of selecting the number of principal components using a hy-
pothesis testing approach. The bootstrap approach proposed by
Hall and Vial provides a confidence lower bound v̂q for the “un-
confounded noise variance,” and can provide some guidance in
selecting the number of principal components. However, their
approach is not a real model selection criterion, and one needs
to watch the decreasing trend of v̂q and decide the cut point sub-
jectively. The minimum description length (MDL) method by
Poskitt and Sengarapillai (2013) is similar to Yao’s AIC in that
each principal component is counted as one parameter, although
of course the criteria are numerically different. We emphasize
that, in reality, each principal component consists of one vari-
ance parameter and one nonparametric function. A main point
of our article is to justify how much penalty is needed in a model
selection criterion, when selecting the number of nonparametric
components in the data.

We approach this problem from three directions, with all
approaches built upon the foundation of information criteria. In
the marginal modeling approach, we focus on the decay rate of
the estimated eigenvalues and develop a Bayesian information
criterion (BIC)-based selection method. The advantages of this
approach include that it only uses existing outcomes from FPCA,
namely, the estimated eigenvalues and the residual variance,
and that it is consistent for all types of functional data. As an
alternative, we find that, with some additional assumptions, a
modified AIC based on conditional likelihood could produce
superior numerical outcomes. A referee pointed out to us that
when the data are observed densely on a regular grid, where no
kernel smoothing is necessary, there is some existing work in the
econometrics literature based on a factor analysis model (Bai
and Ng 2002) to select the number of principal components. We
study this class of information criteria in our setting and find out
that they are still consistent if a specific undersmoothing scheme
is carried out in the FPCA method. In addition, we also provide
some discussion for the case that the true number of principal
components diverges to infinity.

The remainder of the article is organized as follows. In Sec-
tion 2, we describe the data structure and the FPCA algorithm.
In Sections 3.1 and 3.2, we propose and study the new marginal
BIC and conditional AIC criteria, and we investigate the

information criteria by Bai and Ng in Section 3.3. The pro-
posed information criteria are tested by simulation studies in
Section 4, and applied to an empirical example in Section 5.
Some concluding remarks are given in Section 6, where we
also provide discussion for the case that the true number of
principal components diverges. All proofs are provided in the
supplementary material.

2. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

2.1 Data Structure and Model Assumptions

Let X(t) be the functional data defined on a fixed interval
T = [a, b], with mean function μ(t) and covariance function
R(s, t) = cov{X(s), X(t)}. Suppose the covariance function has
the eigen-decomposition R(s, t) = ∑∞

j=1ωjψj (s)ψj (t), where
the ωj are the nonnegative eigenvalues of R(·, ·), which, without
loss of generality, satisfy ω1 ≥ ω2 ≥ · · · > 0, and the ψj are the
corresponding eigenfunctions.

Although, in theory, the spectral decomposition of the covari-
ance function consists of infinite number of terms, to motivate
practically useful information criteria, it is sensible to assume
that there is a finite-dimensional true model. Due to the nature of
spectral decomposition, the higher-order terms are less reliably
assessed and their estimates tend to have high variation. Conse-
quently, even though one could assume that there are an infinite
number of components, unless the data size is very large, sen-
sible variable selection criteria will still select a relatively small
number of components—the first several that can be reasonably
assessed. This phenomenon is reflected by the numerical out-
comes reported in Table S.7 of the supplementary material, in
which a much-improved performance of BIC is observed when
the sample size increases to 2000. The performance of BIC is
mostly determined by the accuracy of detecting nonzero eigen-
values and that this detection can be difficult for higher-order
terms. For the rest of the article, except for Section 6.2, we
assume that the spectral decomposition of R ends at a finite
p terms, that is, ωj = 0 for j > p. Then the Karhunen–Loève
expansion of X(t) is

X(t) − μ(t) =
p∑

j=1

ξjψj (t), (1)

where ξj = ∫
ψj (t){X(t) − μ(t)}dt has mean zero, with

cov(ξj , ξj ′ ) = I (j = j ′)ωj . Let p0 be the true value of p.
Suppose we sample from n independent sample trajectories,

Xi(·), i = 1, . . . , n. It often happens that the observations
contain additional random errors and instead we observe

Wij = Xi(tij) + Uij, j = 1, . . . , mi, (2)

where Uij are independent zero-mean errors, with var{Ui(t)} =
σ 2

u , and the Uij are also independent of Xi(·). Here, the (tij) are
random, subject-specific observation times. Suppose tij has a
continuous density f1(t) with support T . We adopt the frame-
work in Li and Hsing (2010b) so that mi can be of any rate
relative to n. The only assumption on mi is that all mi ≥ 2, so
that we can estimate the within-curve covariance matrix. In other
words, we allow mi to be bounded by a finite number as in sparse
functional data, or diverging to ∞ as in dense functional data.
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2.2 Functional Principal Component Analysis

The functions μ(·) and R(·, ·) can be estimated by local
polynomial regression, and then ψk(·), ωk , and σ 2

u can be
estimated using the FPCA method proposed in Yao, Müller,
and Wang (2005a) and Hall, Müller, and Wang (2006). We
now briefly describe the method. We first estimate μ(·) by a
local linear regression, μ̂(t) = â0, where (̂a0, â1) = argmina0,a1

n−1∑n
i=1m

−1
i

∑mi

j=1{Wij − a0 − a1(tij − t)}2K{(tij − t)/hμ},
K(·) is a symmetric density function, and hμ is the band-
width for estimating μ. Define CXX(s, t) = E{X(s)X(t)} and
Mi = (mi − 1)mi . We denote the bandwidth for estimating
CXX(·, ·) by hC and let ĈXX(s, t) = b̂0, where (̂b0, b̂1, b̂2)
minimizes

n−1
n∑

i=1

M−1
i

mi∑
j=1

∑
k �=j

{WijWik − b0 − b1(tij − s) − b2(tik − t)}2

×K

(
tij − s

hC

)
K

(
tik − t

hC

)
.

Then R̂(s, t) = ĈXX(s, t) − μ̂(s)μ̂(t). In addition, (ωk) and
{ψk(·)} can be estimated from an eigenvalue decomposition
of R̂(·, ·) by discretization of the smoothed covariance func-
tion, see Rice and Silverman (1991) and Capra and Müller
(1997). Let σ 2

w(t) = var{W (t)} = R(t, t) + σ 2
u and σ̂ 2

w(t) =
ĉ0 − μ̂2(t), where, with a given bandwidth, hσ , (̂c0, ĉ1) min-
imizes n−1 ∑n

i=1 m−1
i

∑mi

j=1{W 2
ij − c0 − c1(tij − t)}2K{(tij −

t)/hσ }. One possible estimator if σ 2
u is

σ̃ 2
u,I = (b − a)−1

∫ b

a

{
σ̂ 2

w(t) − R̂(t, t)
}
dt. (3)

Define ω̂k and ψ̂k(·) to be the kth eigenvalue and eigenfunction
of R̂(s, t), respectively. Rates of convergence results for μ̂(·),
R̂(·), σ̂ 2

w(·), σ̃ 2
u,I, and ψ̂k(·) are described in the supplementary

material, Section S.1.

3. METHODOLOGY

3.1 Marginal Bayesian Information Criterion

In a traditional regression setting with sample size n, param-
eter size p, and normally distributed errors of mean zero and
variance σ 2

u , BIC is commonly defined as

log(σ 2) + plog(n)/n.

Considering the model Equations (1) and (2), linking the
current setup for each subject, and then marginalizing over all
subjects, we consider a generalized BIC criterion of the structure
of

log
(
σ̂ 2

u

) + Pn(p), (4)

where σ̂ 2
u is an estimate of σ 2

u by marginally pooling error
information from all subjects and Pn(p) is a penalty term. Even
though the concept behind our criterion has been motivated by
the traditional BIC in regression setting, there are some marked
differences. For example, the ξj in model (1) are random. As a
result, marginally, there are not np parameters. Further, unlike
the traditional regression problems, we do not need to estimate/
predict ξj . Consequently, the number of parameters in a marginal
analysis is not determined by the degrees of freedom of these

unknown ξj . Inspired by standard BIC, we let the penalty be of
the form Pn(p) = Cn,pp and then determine the rate of Cn,p.

Let σ̂ 2
u,[p] be the estimator of σ̂ 2

u based on the residuals after
taking into account of the first p principal components. Define

R[p](s, t) =
p∑

j=1

ωjψj (s)ψj (t),

R̂[p](s, t) =
p∑

j=1

ω̂j ψ̂j (s)ψ̂j (t).

If p is the true number of principal components, then R[p](s, t) =
R(s, t). Since

∫ b

a
ψ̂2

k (t)dt = 1 for all k, we can estimate σ 2
u by

σ̂ 2
[p],marg = 1

b − a

∫ {
σ̂ 2

w(t) − R̂[p](t, t)
}
dt

= 1

b − a

∫
σ̂ 2

w(t)dt − 1

b − a

p∑
k=1

ω̂k. (5)

Replacing σ̂ 2
u by σ̂ 2

[p],marg in (4), the new BIC criterion is given
by

BIC(p) = log
(
σ̂ 2

[p],marg

) + Pn(p). (6)

That is, instead of estimating σ̂ 2
u,[p] from the estimated resid-

uals, we will estimate it from a “marginal” approach by pooling
all subjects together. This way, we avoid estimating the princi-
pal component scores and dealing with the estimation errors in
them.

Denote ‖ · ‖ as the L2 functional norm, and define γnk =
(n−1∑n

i=1 m−k
i )−1, which is the kth harmonic mean of the mi’s.

When mi = m for all i, we have that γn1 = m and γn2 = m2.
For any bandwidth h, define

δn1(h) = [{1 + (hγn1)−1}/n]1/2,

δn2(h) = [{1 + (hγn1)−1 + (h2γn2)−1}/n]1/2.

We make the following assumptions.

(C.1) The observations time tij ∼ f1(t), (tij, tij′) ∼ f2(t1, t2),
where f1 and f2 are continuous density functions
with bounds 0 < mT ≤ f1(t1), f2(t1, t2) ≤ MT < ∞
for all t1, t2 ∈ T . Both f1 and f2 are differentiable
with bounded (partial) derivatives.

(C.2) The kernel function K(·) is a symmetric probability
density function on [−1, 1], and is of bounded variation
on [−1, 1]. Denote ν2 = ∫ 1

−1 t2K(t)dt .
(C.3) μ(·) is twice differentiable and its second derivative is

bounded on [a, b].
(C.4) All second-order partial derivatives of R(s, t) exist and

are bounded on [a, b]2.
(C.5) There exists C > 4 such that E(|Uij|C) +

E{supt∈[a,b] |X(t)|C} < ∞.
(C.6) hμ, hC, hσ , δn1(hμ), δn2(hC), δn1(hσ ) → 0 as n → ∞.
(C.7) We have ω1 > ω2 > · · · > ωp0 > 0 and ωk = 0 for all

k > p0.

Let p̂ be the minimizer of BIC(p). The following theorem
gives a sufficient condition for p̂ to be consistent to p0.
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Theorem 1. Make assumptions (C.1)–(C.7). Recall that
Pn(p) is the penalty defined in (6), and define δ∗

n = h2
μ +

δn1(hμ) + h2
C + δn2(hC). Suppose the following conditions hold

(i) for any p < p0, pr[limsupn→∞{Pn(p0) − Pn(p)} ≤
0] = 1;

(ii) for any p > p0, pr[Pn(p) > Pn(p0), lim supn→∞ δ∗
n/

{Pn(p) − Pn(p0)} = 0] = 1.

Then limn→∞ pr(p̂ = p0) = 1.

By Theorem 1, there is a large range of penalties that can result
in a consistent BIC criterion. For example, let N = ∑

i mi and
recall that the penalty term Pn(p) = Cn,pp. If we let Cn,p ∼
log(N )δ∗

n, it is easy to verify that the conditions in Theorem 1
are satisfied.

We now derive a databased version of Pn(p) that satisfies
conditions (i) and (ii). By Lemma S.1.1 in the supplementary
material, δ∗

n is actually the L2 convergence rate of R̂(·, ·), which
by Lemma S.1.3 in the supplementary material is also the bound
for the null eigenvalues, {ω̂k; k > p0}. In reality, ‖R̂ − R‖ not
only depends on δ∗

n but also on unknown constants depending on
the true function R(·, ·) and the distribution of W. To make the
information criterion data-adaptive, we propose the following
penalty:

Pn,adapt(p) = log(N )p‖R̂ − R̂[p]‖/σ̃ 2
u,I. (7)

Justification for (7) is given in the supplementary material,
Section S.2.

3.2 Akaike Information Criterion Based
on Conditional Likelihood

The marginal BIC criterion can be computed by using out-
comes from FPCA directly and it is consistent. However, its
performances heavily rely on the precision in estimating ωj ,
particularly when j is near the true number of principle compo-
nents, p0. It is known that the estimation of ωj can deteriorate
when j increases. In this subsection, we propose an alternative
approach that, by having some additional conditions, allows
us to take advantage of the use of likelihood. We consider the
principal component scores as random effects, and proposed a
new AIC criterion based on the conditional likelihood and esti-
mated principal component scores. Such an approach is referred
as conditional AIC in linear mixed models, see Claeskens and
Hjort (2008). In an alternative context, Hurvich, Simonoff, and
Tsai (1998) proposed an AIC criterion for choosing the smooth-
ing parameters in nonparametric smoothing. The FPCA method
is to project the discrete longitudinal trajectories on some non-
parametric functions (i.e., the eigenfunctions), and can thus be
considered as simultaneously smoothing n curves. The AIC in
the FPCA context is connected to that for the nonparametric
smoothing problem, but the way of counting the effective num-
ber of parameters in the model will be different. Therefore, the
penalty in our AIC will also be very different from that of the
nonparametric smoothing problem.

Define WWWi = (Wi1, . . . ,Wi,mi
)T,μμμi ={μ(ti1), . . . , μ(ti,mi

)}T,
and ψψψik = {ψk(ti1), . . . , ψk(ti,mi

)}T. Under the assumption that
there are p nonzero eigenvalues, denote Xi,[p](t) = μ(t) +∑p

j=1 ξipψj (t) and XXXi,[p] = {Xi,[p](ti1), . . . , Xi,[p](ti,mi
)}T =

μμμi + 	i,[p]ξξξ i,[p], where 	i,[p] = (ψψψi1, . . . ,ψψψip) and ξξξ i,[p] =

(ξi1, . . . , ξip)T. Under a Gaussian assumption, the conditional
log-likelihood of the observed data {WWWi} given the principal
component scores is

Ln,cond
(
p,XXX[p], σ

2
u

)
=

n∑
i=1

{− (mi/2)log
(
2πσ 2

u

) − (
2σ 2

u

)−1 ‖WWWi − XXXi,[p]‖2
}

= −(N/2)log
(
2πσ 2

u

) − (
2σ 2

u

)−1

×
n∑

i=1

‖WWWi − μμμi − 	i,[p]ξξξ i,[p]‖2, (8)

where N = ∑
i mi and XXX[p] = (XXXT

1,[p], . . . ,XXX
T
n,[p])

T.
Following the method proposed by Yao, Müller, and Wang

(2005a), we estimate the trajectories by

X̂i,[p](t) = μ̂(t) +
p∑

j=1

ξ̂ijψ̂j (t), (9)

where μ̂(·) and ψ̂j (·) are the estimators described in Section
2. The estimated principal component scores, ξ̂ij, are given by
the principal component analysis through the conditional ex-
pectation (PACE) estimator by Yao, Müller, and Wang (2005a).
Under the Gaussian model, the best linear unbiased predic-
tor (BLUP) for ξξξ i,[p] is ξ̃ξξ i,[p] = �[p]	

T
i,[p]�

−1
i,[p](WWWi − μμμi),

where �[p] = diag(ω1, . . . , ωp), �i,[p] = i,[p] + σ 2
u Imi

,
and i,[p] = 	i,[p]�[p]	

T
i,[p]. To estimate ξ̃ξξ i,[p], the PACE

estimator requires a pilot estimator of σ 2
u , for which we can use

the integral estimator σ̃ 2
u,I defined in (3). The PACE estimator

is given by

ξ̂ξξ i,[p] = �̂[p]	̂
T
i,[p]�̂

−1
i,[p](WWWi − μ̂μμi), (10)

where μ̂μμi , �̂[p], and 	̂i,[p] are the estimates us-
ing the FPCA method described in Section 2, and
�̂i,[p] = 	̂i,[p]�̂[p]	̂

T
i,[p] + σ̃ 2

u,II .
To choose p, Yao, Müller, and Wang (2005a) proposed the

pseudo-AIC

AICYao(p) = Ln,cond
(
p,X̂XX[p], σ̃

2
u,I

) + p, (11)

where X̂XX[p] is the estimated value ofXXX[p] by interpolating the es-
timated trajectories defined in (9) on the subject-specific times.
By adding a penalty p to the estimated conditional likelihood,
Yao et al. essentially counted each principal component as one
parameter.

To motivate our own AIC criterion, we consider dense func-
tional data satisfying

mi � m → ∞ for all i, sup
i

|mi − m|/m → 0. (12)

We follow the spirit of the derivation of Hurvich and Tsai (1989),
and define the Kullback–Leibler information to be

�(p,X̃XX[p], σ̃
2) = EF {−2Ln,cond(p,X̃XX[p], σ̃

2)}, (13)

for any fixed X̃XX[p] and σ̃ 2, where F is the true normal dis-
tribution given the true curves {Xi(·), i = 1, . . . , n}. Using
similar derivations as in Hurvich and Tsai (1989), for any
fixed parameters X̃XX[p] = {X̃XXi,[p] = μ̃μμi + 	̃i,[p]̃ξξξ i,[p]}ni=1 and σ̃ 2,
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we have

�(p,X̃XX[p], σ̃
2)

= N log(2πσ̃ 2) + 1

σ̃ 2

n∑
i=1

EF ‖UUUi + XXXi − X̃XXi,[p]‖

= N log(2πσ̃ 2) + N
σ 2

u

σ̃ 2
+ 1

σ̃ 2

n∑
i=1

‖(μμμi − μ̃μμi)

+	i,[p0]ξξξ i,[p0] − 	̃i,[p]̃ξξξ i,[p]‖2. (14)

By substituting in the FPCA and PACE estimators, the estimated
variance under the model with p principal components is given
by

σ̂ 2
[p] = N−1

n∑
i=1

‖WWWi − μ̂μμi − 	̂i,[p]̂ξξξ i,[p]‖2

= N−1
n∑

i=1

∥∥(
I − ̂i,[p]�̂

−1
i,[p]

)
(WWWi − μ̂μμi)

∥∥2

= N−1
n∑

i=1

∥∥σ̃ 2
u,I�̂

−1
i,[p](WWWi − μ̂μμi)

∥∥2
.

Then the Kullback–Leibler information for these estimators is

�
(
p, X̂[p], σ̂

2
[p]

) = N log
(
σ̂ 2

[p]

) + An(p), (15)

where An(p) = Nσ 2
u /σ̂ 2

[p] + σ̂−2
[p]

∑n
i=1 ‖μμμi − μ̂μμi + 	i,[p0]

ξξξ i,[p0] − 	̂i,[p]̂ξξξ i,[p]‖2.
To derive the new AIC criterion, we need the following the-

oretical results to evaluate the expected Kullback–Leibler in-
formation. As discussed in Hurvich, Simonoff, and Tsai (1998,
p. 275), in derivation of AIC, one needs to assume that the true
model is included in the family of candidate models, and any
model bias is ignored. For example, Hurvich, Simonoff, and
Tsai (1998) ignored the smoothing bias when developing AIC
for nonparametric regressions. Following the same argument,
we will ignore all the biases in μ̂(·) and ψ̂k(·), and only take into
account the variation in the estimators.

Proposition 1. Under assumptions (C.1)–(C.7), condition
(12) and the additional assumption that n(hμ + hC) → ∞,
σ̂ 2

[p0]/σ
2
u = N−1∑n

i=1

∑mi

j=p0+1Xij + Rn, where the Xij are
independent χ2

1 random variables and Rn = Op{δ2
n1(hμ) +

δ2
n1(hC)} + op(nN−1). As a result, σ̂[p0] → σ 2

u in probability
as n → ∞

The next proposition gives the asymptotic expansion for
E{An(p0)}.

Proposition 2. Under the same conditions as in Proposition
1, E{An(p0)} = N + 2np0 + o(n).

Thus, the expected Kullback–Leibler information is EF {�
(p0, X̂[p0], σ̂

2
[p0])} = EF {N log(̃σ 2

[p0])} + N + 2np0 + o(n). This
justifies defining AIC as

AIC(p) = N log
(
σ̂ 2

[p]

) + N + 2np. (16)

When mi → ∞ and p is fixed, an intuitive interpretation for the
proposed AIC in (16) is to consider FPCA as a linear regression
on the observed data WWWi − μμμi against covariates (ψψψi1, . . . ,ψψψip)
for subject i, and consider the principal component scores as the
subject-specific coefficients. By pooling n independent curves

together and by adding up the individual AIC, we have a total
of np regression parameters, and the AIC in (16) coincides
with that of a simple linear regression. The biggest difference
between our AIC and that of Yao et al. in (11) is the way we
count the number of parameters in the model.

3.3 Consistent Information Criteria

As pointed out by a referee, FPCA is closely related to factor
models in econometrics, where there are some existing informa-
tion criteria to choose the number of factors consistently (Bai
and Ng 2002). We stress that the data considered in the econo-
metrics literature are multivariate time series data observed on
regular time points, while we consider irregularly spaced func-
tional data. The estimator and criteria proposed by Bai and Ng
were based on matrix projections, while our FPCA method relies
heavily on kernel smoothing and operator theory. As a result,
deriving consistent model selection criteria for our problem is
technically much more involved.

Inspired by Bai and Ng (2002), we consider two classes of
information criteria:

PC(p) = σ̂ 2
[p] + pgn, (17)

IC(p) = log
(
σ̂ 2

[p]

) + pgn, (18)

where σ̂ 2
[p] is the error variance estimator used in our AIC (15)

and gn is a penalty. The estimator σ̂ 2
[p] in Bai and Ng (2002)

was a mean squared error based on a simple regression, while
our estimator is based on the PACE method involving kernel
smoothing and BLUP.

For any p ≤ p0, denote ψψψ [p](t) = (ψ1, . . . , ψp)T(t),
ψψψ [p+1:p0] = (ψp+1, . . . , ψp0 )T(t), and define the inner product
matrices J1,p = ∫

ψψψ [p](t)ψψψ
T
[p](t)f1(t)dt , J2,p = ∫

ψψψ [p+1:p0](t)

ψψψT
[p+1:p0](t) f1(t)dt , and J12,p = ∫

ψψψ [p](t)ψψψ
T
[p+1:p0](t)f1(t)dt .

Put �[p+1:p0] = diag(ωp+1, . . . , ωp0 ), and

τp = tr
{(
J2,p − J T

12,pJ −1
1,pJ12,p

)
�[p+1:p0]

}
. (19)

Theorem 2. Suppose τp defined in (19) exists and is pos-
itive for all 0 ≤ p < p0. Let p̂ be the minimizer of the in-
formation criteria defined in (17) or (18) among 0 ≤ p ≤
pmax with pmax > p0 being a fixed search limit, and define
�n = h2

μ + h2
C + h2

σ + δn1(hμ) + δn2(hC) + δ2
n1(hσ ). Under the

assumptions (C.1)–(C.7) and condition (12), limn→∞ pr(p̂ =
p0) = 1 if the penalty function gn satisfies (i) gn

p−→ 0 and (ii)

gn/(n/N + �2
n)

p−→ ∞.

In the factor analysis context, the penalty term in the infor-
mation criteria proposed by Bai and Ng (2002) converges to 0
with a rate slower than C−2

n , where Cn = min(m1/2, n1/2) trans-
lating to our notation. Their rate shows a sense of symmetry
in the roles of m and n. Indeed, when the curves are observed
on a regular grid, the data can be arranged into an n × m ma-
trix WWW , the factor analysis can be carried out by a singular
value decomposition of WWW , and hence the roles of m and n are
symmetric. For the random design that we consider, we ap-
ply nonparametric smoothing along t, not among the subjects.
Therefore, m and n play different roles in our rate. Not only
does the smoothing make our derivation much more involved,
but also the fact that the within-subject covariance matrices are
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defined on subject-specific time points poses many theoretical
challenges. Our proof uses many techniques from perturbation
theory of random operators and matrices.

The following corollary shows that when the bandwidths are
chosen properly, penalties similar to those in Bai and Ng (2002)
can still lead to consistent information criteria.

Corollary 1. Suppose all conditions in Theorem 2 hold, and
hμ � max(n,m)−c1 , hC � max(n,m)−c2 , hσ � max(n,m)−c3 ,
where 1/4 ≤ c1, c2 ≤ 1, 1/4 ≤ c3 ≤ 3/2. Then p̂ that mini-

mizes PC(p) or IC(p) is consistent if (i) gn
p−→ 0 and (ii)

C2
ngn

p−→ ∞, where Cn = min(n1/2,m1/2) as defined in Bai
and Ng (2002).

Bai and Ng (2002) proposed the following information crite-
ria that satisfy the conditions in Corollary 1,

PCp1(p) = σ̂ 2
[p] + pσ̂ 2

pilot

(
n + m

nm

)
log

(
nm

n + m

)
,

PCp2(p) = σ̂ 2
[p] + pσ̂ 2

pilot

(
n + m

nm

)
log

(
C2

n

)
,

PCp3(p) = σ̂ 2
[p] + pσ̂ 2

pilot

{
log

(
C2

n

)
C2

n

}
,

ICp1(p) = log
(
σ̂ 2

[p]

) + p

(
n + m

nm

)
log

(
nm

n + m

)
,

ICp2(p) = log
(
σ̂ 2

[p]

) + p

(
n + m

nm

)
log

(
C2

n

)
,

ICp3(p) = log
(
σ̂ 2

[p]

) + p

{
log

(
C2

n

)
C2

n

}
, (20)

where σ̂ 2
pilot is a pilot estimator for σ 2

u . In our setting, we can
use σ̃ 2

u,I defined at (3) in place of σ̂ 2
pilot, and replace m by either

the arithmetic or the harmonic mean of mi’s. Under the under-
smoothing choices of bandwidths described in Corollary 1, all
information criteria in (20) are consistent. One can easily see
the similarity between the ICp criteria and the AIC proposed
in (16). In general, the ICp criteria impose greater penalties to
overfitting than AIC. By comparing AIC with the conditions in
Theorem 2 and other consistent criteria we developed, we can
see that the penalty term in AIC is a little bit small and that ex-
plains the nonvanishing chance of overfitting witnessed in our
simulation studies, see Section 4.

4. SIMULATION STUDIES

4.1 Empirical Performance of the Proposed Criteria

To illustrate the finite sample performance of the proposed
methods, we performed various simulation studies. Let T =
[0, 1], and suppose that the data are generated from the models
(1) and (2). Let the observation time points Tij ∼ Uniform [0, 1],
mi = m for all i and Uij ∼ Normal(0, σ 2

u ).
We consider the following five scenarios.
Scenario I. Here, the true mean function is μ(t) = 5(t −

0.6)2, the number of principal components is p0 = 3, the
true eigenvalues are (ω1, ω2, ω3) = (0.6, 0.3, 0.1), the variance
of the error is σ 2

u = 0.2, and the eigenfunctions are ψ1(t) =
1, ψ2(t) = √

2 sin(2πt), ψ3(t) = √
2 cos(2πt). The principal

component scores are generated from independent normal dis-
tributions, that is, ξij ∼ Normal(0, ωj ). Here ω3 < σ 2

u .

Scenario II. The data are generated in the same way as
in Scenario I, except that we replace the third eigenfunc-
tion by a rougher function ψ ′

3(t) = √
2 cos(4πt) so that the

covariance function is less smooth, and we let the prin-
cipal component scores follow a skewed Gaussian mixture
model. Specifically, ξij has 1/3 probability of following a
Normal(2

√
ωj/3, ωj/3) distribution, and 2/3 probability of fol-

lowing Normal(−√
ωj/3, ωj ), for j = 1, 2, 3.

Scenario III. Set μ(t) = 12.5(t − 0.5)2 − 1.25, φ1(t) =
1, φ2(t) = √

2 cos(2πt), φ3(t) = √
2 sin(4πt), and (ω1, ω2,

ω3, σ
2) = (4.0, 2.0, 1.0, 0.5). The principal component scores

are generated from a Gaussian distribution. Here ω3 > σ 2
u .

Scenario IV. The mean function, eigenvalues, eigenfunction,
and noise level are set to be the same as in Scenario III, but the
ξij’s are generated from a Gaussian mixture model similar to
that in Scenario II.

Scenario V. In this simulation, we set p0 = 6, the true eigen-
values are (4.0, 3.5, 3.0, 2.5, 2.0, 1.5) and σ 2

u = 0.5. We assume
that the principal component scores are normal random variables
and let the eigenfunctions be

ψ1(t) = 1; ψ2k(t) =
√

2 sin(2kπt), for k = 1, 2, 3;

ψ2k+1(t) =
√

2 cos(2kπt), for k = 1, 2.

In each simulation, we generated n = 200 trajectories from
the models above, and compared the cases with m = 5, 10,

and 50. The cases m = 5 and m = 50 may be viewed as
representing sparse and dense functional data, respectively,
whereas m = 10 represents scenarios between the two ex-
tremes. For each m, we apply the FPCA procedure to esti-
mate {μ(·), R(·, ·), ωk, ψk(·), σ 2

w(t)}, then use the proposed in-
formation criteria to choose p. The simulation was then repeated
200 times for each scenario.

The performance of the estimators depends on the choice
of bandwidths for μ(t), C(s, t), and σ 2

w(t), and the optimal
bandwidths vary with n and m. We picked the bandwidths
that are slightly smaller than those minimizing the integrated
mean squared error of the corresponding functions, since un-
dersmoothing in FPCA was also advocated by Hall, Müller, and
Wang (2006) and Li and Hsing (2010b).

We consider Yao’s AIC, MDL by Poskitt and Sengarapil-
lai (2013), the proposed BIC and AIC in (6) and(16), and
the criteria by Bai and Ng in (20). Yao’s AIC is calcu-
lated using the publicly available PACE package (http://anson.
ucdavis.edu/mueller/data/pace.html), where all bandwidths are
data driven and selected by generalized cross-validation (GCV).
The empirical distribution of p̂ under Scenarios I–IV is sum-
marized in Tables 1–3. Since the true number of principal com-
ponents p0 is different in Scenario V, the distribution of p̂ is
summarized in a separate Table 4.

The proposed BIC method is based on the convergence rate
results on the eigenvalues, and does not rely much on the dis-
tributional assumptions for X and U. From Tables 1–3, we see
that BIC picks the correct number of principal components with
high percentage in almost all scenarios, except for the cases
where the data are sparse, that is, m = 5. This phenomena is as
expected, because it is harder to pick up the correct number of
signals from sparse and noisy data.
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Table 1. When m = 5, displayed are the distributions of the number
of selected principal components p̂ for all methods and across
Scenarios I–IV. The true number of principal components is 3

Scenario Method p̂ ≤ 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ ≥ 5

I AICPACE 0.000 0.008 0.000 0.121 0.870
AIC 0.000 0.405 0.580 0.010 0.005
BIC 0.155 0.335 0.380 0.115 0.015
PCp1 0.005 0.565 0.410 0.010 0.010
ICp1 0.000 0.215 0.735 0.045 0.005

II AICPACE 0.000 0.000 0.005 0.125 0.870
AIC 0.000 0.205 0.630 0.155 0.010
BIC 0.230 0.395 0.245 0.110 0.020
PCp1 0.000 0.000 0.375 0.440 0.185
ICp1 0.000 0.140 0.605 0.210 0.045

III AICPACE 0.000 0.025 0.005 0.130 0.840
AIC 0.000 0.035 0.720 0.170 0.075
BIC 0.335 0.260 0.325 0.080 0.000
PCp1 0.000 0.220 0.640 0.075 0.065
ICp1 0.000 0.005 0.590 0.280 0.125

IV AICPACE 0.000 0.015 0.015 0.145 0.825
AIC 0.000 0.020 0.710 0.185 0.085
BIC 0.315 0.180 0.410 0.070 0.025
PCp1 0.000 0.160 0.640 0.095 0.105
ICp1 0.000 0.015 0.560 0.260 0.165

Compared to BIC, the performance of the proposed AIC
method is even more impressive. Although BIC is designed
to be a consistent model selector, the AIC method selects the
right number of principal component with a higher percentage
in most of the cases we considered. This is partially because
AIC makes more use of the information from the likelihood.
Even though the data are non-Gaussian in Scenario II and IV,

Table 2. When m = 10, displayed are the distributions of the number
of selected principal components p̂ for all methods and across
Scenarios I–IV. The true number of principal components is 3

Scenario Method p̂ ≤ 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ ≥ 5

I AICPACE 0.000 0.000 0.000 0.000 1.000
AIC 0.000 0.005 0.980 0.015 0.000
BIC 0.000 0.040 0.670 0.255 0.035
PCp1 0.000 0.040 0.955 0.000 0.005
ICp1 0.000 0.005 0.985 0.010 0.000

II AICPACE 0.000 0.000 0.000 0.005 0.995
AIC 0.000 0.000 0.710 0.260 0.030
BIC 0.000 0.170 0.665 0.135 0.030
PCp1 0.000 0.000 0.570 0.355 0.075
ICp1 0.000 0.000 0.805 0.185 0.010

III AICPACE 0.000 0.015 0.000 0.000 0.985
AIC 0.000 0.000 0.580 0.400 0.020
BIC 0.005 0.035 0.770 0.145 0.045
PCp1 0.000 0.000 0.965 0.030 0.005
ICp1 0.000 0.000 0.665 0.320 0.015

IV AICPACE 0.000 0.000 0.000 0.000 1.000
AIC 0.000 0.000 0.830 0.150 0.020
BIC 0.010 0.005 0.775 0.190 0.020
PCp1 0.000 0.000 0.920 0.045 0.035
ICp1 0.000 0.000 0.900 0.085 0.015

Table 3. For m = 50, displayed are the distributions of the number of
selected principal components p̂ for all methods and across Scenarios

I–IV. The true number of principal components is 3

Scenario Method p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ ≥ 5

I AICPACE 0.000 0.000 0.000 0.000 1.000
AIC 0.000 0.000 1.000 0.000 0.000
BIC 0.000 0.000 0.830 0.150 0.020
PCp1 0.000 0.000 1.000 0.000 0.000
ICp1 0.000 0.000 1.000 0.000 0.000

II AICPACE 0.000 0.000 0.000 0.000 1.000
AIC 0.000 0.000 0.630 0.320 0.050
BIC 0.000 0.000 0.795 0.185 0.020
PCp1 0.000 0.000 0.955 0.045 0.000
ICp1 0.000 0.000 0.945 0.055 0.000

III AICPACE 0.000 0.000 0.000 0.000 1.000
AIC 0.000 0.000 1.000 0.000 0.000
BIC 0.000 0.000 0.775 0.200 0.025
PCp1 0.000 0.000 1.000 0.000 0.000
ICp1 0.000 0.000 1.000 0.000 0.000

IV AICPACE 0.000 0.000 0.000 0.000 1.000
AIC 0.000 0.000 0.945 0.055 0.000
BIC 0.000 0.000 0.835 0.140 0.025
PCp1 0.000 0.000 1.000 0.000 0.000
ICp1 0.000 0.000 1.000 0.000 0.000

the AIC still performs better than the BIC, and it shows that both
the PACE method and the AIC method are quite robust against
mild violation of the Gaussian assumption. Even though the
motivation and theoretical development for the AIC method de-
scribed in Section 3.2 are for dense functional data, it performs
surprisingly well for sparse data, such as the case m = 5.

There are six criteria in (20), and we find that the PCp’s and
the ICp’s tend to perform similarly. To save journal space, we
only provide the results for PCp1 and ICp1, and the results for the
remaining criteria in (20) can be find in the expanded versions
of Tables 1–4 in the supplementary material. As we can see,

Table 4. Distributions of the number of selected principal components
p̂ for Scenario V. The true number of principal components is 6

Scenario Method p̂ ≤ 4 p̂ = 5 p̂ = 6 p̂ = 7 p̂ ≥ 8

m = 5 AICPACE 0.005 0.005 0.705 0.245 0.040
AIC 0.165 0.330 0.470 0.035 0.000
BIC 0.835 0.020 0.090 0.050 0.005
PCp1 0.580 0.345 0.070 0.005 0.000
ICp1 0.060 0.335 0.545 0.060 0.000

m = 10 AICPACE 0.005 0.000 0.065 0.475 0.455
AIC 0.000 0.000 0.570 0.280 0.15
BIC 0.250 0.030 0.525 0.165 0.030
PCp1 0.000 0.145 0.775 0.020 0.060
ICp1 0.000 0.000 0.705 0.185 0.110

m = 50 AICPACE 0.000 0.065 0.000 0.000 0.935
AIC 0.000 0.000 0.260 0.405 0.335
BIC 0.005 0.000 0.590 0.325 0.080
PCp1 0.000 0.000 0.980 0.010 0.010
ICp1 0.000 0.000 0.965 0.035 0.000
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these criteria behave similar to the AIC, and they tend to do
better only in a few occasions when AIC overestimates p.

For almost all scenarios considered, Yao’s AIC hardly ever
picks the correct model, with the exception of Scenario V, m =
5, which will be discussed in more detail below. When the true
number of principal components is 3, Yao’s AIC will normally
chose a number greater than 5. This phenomenon becomes more
severe when the data are dense. For example, when m = 50,
Yao’s AIC almost always pick the maximum order considered,
which is 15 in our simulations. The behavior of the MDL by
Poskitt and Sengarapillai (2013) is similar to Yao’s AIC, and
hence these results are only provided in Tables S.2– S.5 in the
supplementary material.

Scenario V, Table 4 is specially designed to check the per-
formance of the proposed information criteria under the situ-
ations where we have a relatively large number of principal
components. The proposed criteria worked reasonably well for
m = 10 and 50, and performed much better than Yao’s AIC.
The case of m = 5 under Scenario V is the only case in all of
our simulations that Yao’s AIC picks the correct model more
often than our criteria. With a closer look at the results, we
find an explanation. The true covariance function under Sce-
nario V is quite rough, and the GCV criterion in the PACE
package chose a large bandwidth so that the local fluctua-
tions on the true covariance surface are smoothed out. In other
words, high-frequency signals are smoothed out and treated
as noise. In a typical run, the PACE estimates for the eigen-
values are (4.1736, 2.1350, 1.6697, 1.0009, 0.3978, 0.0476),
which are far from the truth, (4.0, 3.5, 3.0, 2.5, 2.0, 1.5), and
the estimated error variance is 6.519 in contrast to the truth
σ 2

u = 0.5. It is the combination of seriously underestimating
the high-order eigenvalues and small penalty in AIC that makes
Yao’s criterion pick the correct number of principal components.
Switching to our undersmoothing bandwidths, these estimates
are improved but then Yao’s AIC will choose much larger values
for p. This case also highlights the difficulty of FPCA when p is
large but the data are sparse. Unless we have a very large sample
size, estimation of these principal components is very difficult,
and comparing the model selection procedures in such a case
would not be meaningful.

4.2 Further Simulations

The supplementary material, Section S.4 contains further sim-
ulations, including (a) expanded results with other model selec-
tors in Tables S.2– S.5; (b) an examination of the sensitivity of
the results to the bandwidth (supplementary Table S.6); (c) the
behavior of BIC with much larger sample size (supplementary
Table S.7); and (d) results when the value of m is not constant,
that is, mi �= m for all i (supplementary Table S.8).

5. DATA ANALYSIS

The colon carcinogenesis data in our study have been
analyzed in Li, Wang, and Carroll (2010), Li et al. (2007), and
Baladandayuthapani et al. (2008). The biomarker of interest
in this experiment is p27, which is a protein that inhibits cell
cycle. We have 12 rats injected with carcinogen and sacrificed
24 hr after the injection. Beneath the colon tissue of the rats,
there are pore structures called “colonic crypts.” A crypt

typically contains 25–30 cells, lined up from the bottom to
the top. The stem cells are at the bottom of the crypt, where
daughter cells are generated. These daughter cells move toward
the top as they mature. We sampled about 20 crypts from each
of the 12 rats. The p27 expression level was measured for
each cell within the sampled crypts. As previously noted in the
literature (Morris et al. 2001, 2003), the p27 measurements,
indexed by the relative cell location within the crypt, are natural
functional data. We have m = 25–30 observations (cells) on
each function. As in the previous analyses, we consider p27
in the logarithmic scale. By pooling data from the 12 rats, we
have a total of n = 249 crypts (functions). In the literature, it
has been noted that there is spatial correlation among the crypts
within the same rat (Li et al. 2007; Baladandayuthapani et al.
2008). In this experiment, we sampled crypts sufficiently far
apart so that the spatial correlations are negligible, and thus we
can assume that the crypts are independent.

We perform the FPCA procedure as described in Section
2, with the bandwidths chosen by leave one curve out cross-
validation. The estimated covariance function is given in the top
panel of Figure 1. The estimated variance of measurement error
by integration is σ̃u,I = 0.103. In contrast, the top three eigenval-
ues are 0.8711, 0.0197, and 0.0053. Let kn = max{k; ω̂k > 0},
then the percentage of variation explained by the kth principal
component is estimated by ω̂k/(

∑kn

j=1 ω̂j ). The percentage of
variation explained by the first seven principal components is
(0.966, 0.022, 0.006, 0.003, 0.002, 0.001, 0.000).

We apply the proposed AIC, adaptive BIC, the Bai and Ng
criteria (20), and Yao’s AIC to the data. All of the proposed
methods lead to p = 3 principal components, for which the
corresponding eigenfunctions are shown in the middle panel
of Figure 1. As we can see, the first principal component is a
constant over time, and the second and third eigenfunctions are
essentially linear and quadratic functions. Eigenfunctions 4–7
are shown in the bottom panel of Figure 1, and they are basically
noises and are hard to interpret. We therefore can see that the
variation among different crypts can be explained by random
quadratic polynomials. Yao’s AIC, on the other hand, picked
a much large number of principal components, with p = 9.
This is because a much smaller penalty is used in Yao’s AIC
criterion. We have repeated the data analysis using other choices
of bandwidths, and the results are the same.

6. SUMMARY

6.1 Basic Summary

Choosing the number of principal components is a crucial
step in FDA. There have been some data-driven procedures pro-
posed in the literature that can be used to choose the number of
principal components, but these procedures have not been stud-
ied theoretically nor were they tested numerically as extensively
as in this article.

To promote practically useful model selection criteria, we
have assumed that there exists a finite-dimensional true model.
We found that the consistency of the model selection criteria
depends on both the sample size n and the number of repeated
measurements m on each curve. We proposed a marginal BIC
criterion that is consistent for both dense and sparse functional
data, which means m can be of any rate relative to n. In the
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Figure 1. Functional principal component analysis for the colon carcinogenesis p27 data. Top panel: estimated covariance function; middle
panel: the first three eigenfunctions; and lower panel: eigenfunctions 4–7.
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framework of dense functional data, where both n and m diverge
to infinity, we proposed a conditional AIC, which is motivated by
an asymptotic study of the expected Kullback–Leibler distance
under Gaussian assumption.

Following the standard approach of Hurvich, Simonoff, and
Tsai (1998), we ignored smoothing biases in developing AIC.
Our intensive simulation studies also confirm that bias plays a
very small role in model selection. In our simulations in Section
4.2, we tried a wide range of bandwidths and thus increase or de-
crease the biases in the estimators, but the performance of AIC
is almost the same. Intuitively, the models under different num-
bers of principal components are nested, for a fixed bandwidth
the smoothing bias exists in all models that we compare, and
therefore variation is a more decisive factor in model selection.

In view of the connection of FPCA with factor analysis in mul-
tivariate time series data, we revisited the information criteria
proposed by Bai and Ng (2002). Even though our setting is fun-
damentally different, since we assumed that the observational
times are random, and the FPCA estimators depend heavily
on nonparametric smoothing and are much more complex than
those in Bai and Ng, we show essentially similar information
criteria can be constructed. Using perturbation theory of random
operators and matrices, and under an undersmoothing scheme
prescribed in Section 3.3, we showed that these information
criteria are consistent when both n and m go to infinity.

6.2 Discussion of the Case p0 → ∞
Some processes considered as functional data are intrinsically

infinite dimensional. In those cases, the assumption of p0 being
finite is a finite sample approximation. As the sample size n
increases, we can afford to include more principal components
in the model and data analysis. It is helpful to consider that
the true dimension p0n increases to infinity as a function of n.
This setting was considered in the estimation of a functional
linear model (Cai and Hall 2006). To the best of our knowledge,
no information criteria have been previously studied under this
setting.

While allowing p0n → ∞, the convergence rates for μ̂(t)
and R̂(s, t) remain the same as those given in Lemma S.1.1 in
the supplementary material, but the convergence rates for ψ̂j (t)
are affected by the spacing of the true eigenvalues. Following
condition (4.2) in Cai and Hall (2006), we assume that for some
positive constants C and α,

C−1j−α ≤ ωj ≤ Cj−α, ωj − ωj+1 ≥ C−1j−1−α,

j = 1, . . . , p0n. (21)

To ensure that
∑p0n

j ωj < ∞, we assume that α > 1. Define the
distances between the eigenvalues, δj = mink≤j (ωk − ωk+1),
which is no less than C−1j−1−α under condition (21). By the
asymptotic expansion of ψ̂j (t), see (2.8) in Hall and Hosseini-
Nasab (2006), one can show that the convergence rate of ψ̂j is
δ−1
j times those in Lemma S.1.2 in the supplementary material,

that is,

ψ̂j (t) − ψj (t) = Op

[
jα+1 × {

h2
μ + δn1(hμ) + h2

C + δn1(hC)

+ δ2
n2(hC)

}]
, j = 1, . . . , p0n.

Assume that n,m, p0n → ∞, pα+1
0n �n → 0, and pα+3

0n /

min(n,m) → 0. Following the proof of Theorem 2, while

taking into account the increasing estimation error in ψ̂j (t) as j
increases and the increasing dimensionality of the design matrix
	i , we can show that

σ̂ 2
[p] =

⎧⎪⎨
⎪⎩

σ 2
u + τp + Op(pm−1 + N−1/2)
+ op

(
τp + pα+3�2

n

)
, for p < p0n;

σ̂ 2
[p0n] + Op

(
m−1 + pα+3

0n �2
n

)
, for p ≥ p0n,

(22)

where τp � tr(�[p+1:p0n]) is analogous to (19) and �n is as de-
fined in Theorem 2. Since the eigenvalues are decaying to 0, the
size of the signal τp � p−α as p increases to p0n. To have some
hope of choosing p0n correctly, we need τp to be greater than the
size of the estimation error, which implies that p2α+3

0n �2
n → 0.

Now, consider the class of information criteria in Sec-
tion 3.3. Suppose that p0n increases slowly enough so that
p2α+3

0n / min(n,m) → 0, and that the penalty term satisfies
τp/(pgn) → ∞ for p < p0n and pgn/(m−1 + pα+3�2

n) → ∞
for p > p0n. Then we can show that the p̂ that minimizes PC(p)
or IC(p) is consistent. These conditions translate to

pα+1
0n gn → 0, gn/

(
p−1

0n m−1 + pα+2
0n �2

n

) → ∞. (23)

If p0n = {min(m, n)}β , where 0 < β < 1/(2α + 3), one can see
that the criteria in (20) do not satisfy the conditions in (23)
automatically and hence are not guaranteed to be consistent. An
information criterion satisfying condition (23) requires a priori
knowledge of the decay rate of the eigenvalues. Developing a
data-adaptive information criterion that does not require such a
priori knowledge is a challenging topic for future research.

7. SUPPLEMENTARY MATERIALS

The online supplementary material contains the technical
proofs and additional simulation results.

[Received December 2011. Revised December 2012.]
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