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Summary. Spatial data have become increasingly common in epidemiology and public health research thanks to advances
in GIS (Geographic Information Systems) technology. In health research, for example, it is common for epidemiologists to
incorporate geographically indexed data into their studies. In practice, however, the spatially defined covariates are often
measured with error. Naive estimators of regression coefficients are attenuated if measurement error is ignored. Moreover,
the classical measurement error theory is inapplicable in the context of spatial modeling because of the presence of spatial
correlation among the observations. We propose a semiparametric regression approach to obtain bias-corrected estimates of
regression parameters and derive their large sample properties. We evaluate the performance of the proposed method through
simulation studies and illustrate using data on Ischemic Heart Disease (IHD). Both simulation and practical application
demonstrate that the proposed method can be effective in practice.
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1. Introduction
With the rapid growth of Geographic Information Systems
(GIS), it is now common for epidemiologists to incorporate
spatially indexed data into their studies (Elliott and Warten-
berg, 2004). Analysis of such data, however, is complicated by
correlations among neighboring observations. Although there
are well-known statistical methods to adjust for spatial corre-
lation, relatively little has been done in the context of spatial
modeling when the covariate of interest is measured with er-
ror. In the case study that motivates this study, Australian
researchers explored the relationship between the SEIFA in-
dex (an area-based measure of socio-economic status pro-
duced by the Australian Bureau of Statistics) and acute hos-
pitalization for Ischemic Heart Disease (IHD) in New South
Wales, Australia (Burden et al., 2005). Multivariate regression
models suggest a significantly negative association between
SEIFA and IHD, implying that heart disease rates increase
with social disadvantages. However, the strength of associa-
tion might be attenuated due to the fact that the SEIFA in-
dex is constructed using principal component analysis, there-
fore, is highly likely to be measured with error (Huque et al.,
2014).

Many articles have appeared in the literature over the years
on covariate measurement error in the context of independent
data (Fuller, 1987; Carroll et al., 2006). However, relatively
few have addressed the specific context of spatial modeling.
Bernadinelli et al. (1997) and Xia and Carlin (1998) presented

a spatio-temporal analysis of spatially correlated data with er-
rors in covariates, in the context of disease mapping. They em-
pirically studied several alternative measurement error models
using a Gibbs algorithm. Li et al. (2009) derived asymptotic
bias expressions for estimated regression coefficients in the
context of a spatial linear mixed model. They showed that the
regression estimates obtained from naive use of an error-prone
covariate are attenuated, while variance component estimates
are inflated.

Recently, Huque et al. (2014) confirmed the findings of
Li et al. (2009) showing that the amount of attenuation
depends on the degree of spatial correlation in both the
covariate of interest and the assumed random error from the
regression model and derived expressions for the bias when
measurement error is ignored. They proposed two different
strategies for obtaining consistent estimates: (i) correcting
the estimate using an estimated attenuation factor; and
(ii) using an appropriate transformation of the error-prone
covariate. They showed that both bias correction methods
work reasonably well, however, the standard error is under-
estimated in the case when measurement error variances are
estimated from the data. Moreover, their approach is fully
parametric. Indeed, Ruppert et al. (2009) argued that penal-
ized splines are the most effective method for correcting the
covariate measurement error in case of independent data. So
it is of natural interest to extent the spatial regression model
with measurement error to a semiparametric framework.
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In this article, we propose a joint modeling approach to as-
sess the relationship between a covariate with measurement
error and a spatially correlated outcome in a semiparamet-
ric regression context. Our approach contrasts with what is
commonly assumed in the measurement error context, namely
that some form of validation data are available. Underlying
our approach is the critical assumption that the true, but
unobserved covariate is smooth and that any random fluctua-
tions from this smooth surface represent measurement error.
This assumption makes our model identifiable by representing
the unknown true covariate with a linear combination of spline
basis functions (Yu and Ruppert, 2002; Xun et al., 2013). We
use penalized least squares which makes the estimation of pa-
rameters and inference straightforward. We develop asymp-
totic theory for the estimated parameters and provide both
model-based and simulation-based standard error estimates.
Our simulation results reveal that the proposed method works
well in obtaining consistent estimates of the true regression co-
efficient in the presence of measurement error. Our approach is
computationally efficient and stable and can be implemented
using standard nonlinear least squares software.

The structure of the article is as follows: Section 2 describes
our model formulation, estimation, and inference procedures.
Section 3 presents the data-generation process and results
from the simulation study. In Section 4, we present an appli-
cation of the proposed method to data on Ischemic Heart Dis-
ease (IHD). We conclude with general discussion in Section 5.
The Web Appendix (http:www.tibs.org/biometrics) gives
detailed proofs, as needed.

2. Model

Suppose that Xi represents the true covariate of interest mea-
sured at geographical location, Si ∈ R2, i = 1, ..., n and sup-
pose that Xi is related to an outcome Yi, according to a spatial
linear model:

Yi = β0 + β1Xi + G1(Si) + εi, (1)

where ε = (ε1, ....εn)
T ∼ N(0, σ2

ε ) and {G1(Si) : Si ∈ R2} is an
unknown function that captures the spatial correlation, for
now kept arbitrary. Further assume that εi and G1(Si) are in-
dependent of each other and of the true covariate Xi (Cressie,
1993). In practice, the outcome might also be related to other
covariates and it is straight forward to extent model (1) to in-
clude these. However, for simplicity, we only consider a single
covariate in model (1).

In the presence of measurement error, measurements on the
true covariate X are not observed directly, instead an error-
contaminated version is available. Let Wi be the observed
covariate for location Si ∈ R2, i = 1, ..., n, related to the true
covariate Xi according to a classical measurement error model:

Wi = Xi + Ui, (2)

where Ui ∼ N (0, σ2
u ). Note that a consistent estimate of the

true regression coefficient β1 can be obtained if either the
measurement error variance is known or can be estimated
using a validation data set on the true covariate (X) without
measurement error (Carroll et al., 2006). However, in the

spatial epidemiology setting such validation data are rela-
tively rare. We develop an alternative approach assuming
that the true covariate X is smooth and can be modeled by
a second smooth function, G2(Si).

Many different choices of smoothers have been discussed
in the literature, including locally weighted running line
smoothers (loess), Kernel smoothers or splines (Hastie and
Tibshirani, 1990). In general, techniques based on regression
splines are robust in approximating the true underling smooth
functions and are relatively straight forward from a computa-
tional perspective, but have rigorous mathematical properties
(Ruppert et al., 2003; Wood, 2006). In this article, we also
adopt such a technique, specifically, cubic thin plate splines
(Wood, 2006).

Within this framework, the unknown smooth functions,
Gj(Si), for j = 1, 2 are represented by linear combination of
thin plate spline basis functions, i.e., Gj(Si) = BT

j (Si)θj. Here,
B1(Si) and B2(Si) are two sets of thin plate splines basis func-
tions with dimensions (q1 + 3) × 1 and (q2 + 3) × 1, respec-
tively, where q1 and q2 are the corresponding number of knots
and θ1 and θ2 are vectors of corresponding basis coefficients.

Under the above specifications model (1) and (2) can be
rewritten as

Yi = BT
2 (Si)θ2β1 + BT

1 (Si)θ1 + εi; (3)

Wi = BT
2 (Si)θ2 + Ui. (4)

Since these equations are linear with respect to a set of un-
known parameters, we use penalized least squares techniques
for estimation (Yu and Ruppert, 2002; Xun et al., 2013). In
this method, the data, (Y, W), are fitted to two different sets
of spline basis functions B1(Si) and B2(Si) by least squares
where parameters are estimated by minimizing the usual sum
of squares plus roughness penalties. That is, we minimize

J(β, θ1)=n−1
∑n

i=1
{Yi − BT

2 (Si)θ2β1 − BT
1 (Si)θ1}2 + δ1θ

T
1 D1θ1;

(5)

J(θ2) = n−1
∑n

i=1
{Wi − BT

2 (Si)θ2}2 + δ2θ
T
2 D2θ2, (6)

where the terms δ1θ
T
1 D1θ1 and δ2θ

T
2 D2θ2 are roughness penal-

ties associated with models (3) and (4). These involve un-
known regression coefficients θj, j = 1,2, penalty parameters
δj and penalty matrices Dj of dimension (qj + 3) × (qj + 3).
The penalty matrices map the spline basis functions to the
data, whereas the penalty parameters control the amount
of smoothing (Ruppert et al., 2003; Wood, 2006). Given
knot locations {x∗

j(i) : 1, 2, ..., qj}, penalty matrices have ze-
roes everywhere except in its lower right qj × qj block with
Dj(ik) = ‖x∗

j(i) − x∗
j(k)‖2 log ‖x∗

j(i) − x∗
j(k)‖, for i, k ≤ qj.

Note that the intercept term β0 in the model (1) is set
to 0 in (3), because it is not identifiable in the presence of
a nonparametric function G1(·). Even so, the parameters of
these models are not completely identifiable without some
additional assumptions outlined in the next section.

2.1. Identifiability

From the above models (3) and (4), it is evident that if B1(·) ≡
B2(·), then these models are not identifiable because in this
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case (3) becomes

Yi = BT
2 (Si)(θ2β1 + θ1) + εi.

Thus, we can identify only θ2 and θ2β1 + θ1, and cannot sep-
arate out β1 and θ1. To make these models identifiable, we
assume that the asymptotic variability, �1 and �2 of two sets
of basis functions B1(.) and B2(.), respectively, is different.
The asymptotic variability �j for j = 1, 2, are the limiting
values of �nj, where

�nj = {n−1
∑n

i=1
Bj(Si)B

T
j (Si) − δjDj}−1. (7)

In practice, this requirement can be easily achieved by ensur-
ing that the numbers of knots q1 and q2 are unequal.

2.2. Parameter Estimation

In addition to the assumption that �1 �= �2, we also assume
that the penalty parameters are small relative to the sam-
ple size, i.e., n1/2δj → 0 for j = 1, 2. This means that with
large sample sizes, the estimated regression coefficients ob-
tained using penalized least squares will be close to the OLS
estimates. Thus, minimizing the penalized sum of squares (6)
and solving for θ2, we have

θ̂2 = �n2n
−1

∑n

i=1
B2(Si)Wi, (8)

where �n2 is defined in equation (7). A detailed derivation

of θ̂2 along with it’s asymptotic distribution is given in Web
Appendix A.1. Similarly, we can estimate θ1 and β1 by mini-
mizing the corresponding penalized sum of squares (5). This
yields (see the Web Appendix A.2 and A.3)

θ̂1 = Vn − Rnθ̂2β̂1 (9)

β̂1 = n−1
∑n

i=1
Yi{BT

2 (Si) − BT
1 (Si)Rn }̂θ2

θ̂T
2 (Tn − RT

n �−1
n1 Rn)̂θ2

, (10)

where

Vn = �n1n
−1

∑n

i=1
B1(Si)Yi;

Rn = �n1n
−1

∑n

i=1
B1(Si)B

T
2 (Si);

Tn = n−1
∑n

i=1
B2(Si)B

T
2 (Si).

Although the above estimator of β1 was estimated using pseu-
dolikelihood, it is consistent for β1. In the next section, we will
establish the asymptotic properties of the estimator.

2.3. Asymptotic Theory

Asymptotic theory for the estimators β̂1 is based on treating
the spatial locations Si ∈ R2 as fixed constants. Following Yu
and Ruppert (2002), if δj → 0 as n → ∞, then the bias also
tends to 0 and consistency can be established. Asymptotic
normality is established by the following theorem, whose proof
appears in Web Appendix A.4.

Theorem 1. Assume that the smoothing parameters are
small relative to the sample size, i.e., n1/2δj → 0, and the

spatial correlation G1(.) and unknown covariate X are cor-
rectly represented by a finite number of splines basis functions.
Then, the estimate of β1 is consistent and asymptotically nor-
mally distributed with

n1/2
(
β̂1 − β1

)
d−→ N

(
0, σ2

)
, (11)

where

σ2 = lim
n→∞

n−1
∑n

i=1
(σ2

ε G2
ni + σ2

uH2
ni);

Gni = Dni(θ
T
2 Cnθ2)

−1;

Hni = An�n2B2(Si)(θ
T
2 Cnθ2)

−1 − Anθ2Fni(θ
T
2 Cnθ2)

−2;

An = n−1
∑n

i=1
{G2(Si)β1 + G1(Si)}{B2(Si) − RT

n B1(Si)}T;

Cn = Tn − RT
n �−1

n1 Rn;

Dni = {B2(Si) − RT
n B1(Si)}Tθ2;

Fni = θT
2 C2�n2B2(Si) + BT

2 (Si)�n2Cnθ2.

Rn = �n1n
−1

∑n

i=1
B1(Si)B

T
2 (Si);

Tn = n−1
∑n

i=1
B2(Si)B

T
2 (Si). (12)

Using this asymptotic expression, we can also estimate the
standard error of the estimated regression coefficient β̂1. The
next section will discuss two such options.

2.4. Estimating the Standard Error of β̂1

We first consider a model-based estimate of the standard error
of β̂1 using the asymptotic theorem discussed in the previous
section and then suggest a more robust estimate of standard
error using simulation.

2.4.1. Model-based standard error. The model-based
standard errors of the estimated β̂1 can be estimated by sub-
stituting corresponding consistent estimates of σ2

ε and σ2
u (de-

fined below) into expression (12). Specifically,

σ̂2
ε =

∑n

i=1
{Yi − B2(Si)̂θ2β̂1 − B1(Si)̂θ1}2

n − 2trace{L1(δ1, δ2)} + trace{L1(δ1, δ2)L
T
1 (δ1, δ2)}

σ̂2
u =

∑n

i=1
{Wi − B2(Si)̂θ2β̂1}2

n − 2trace{L2(δ2)} + trace{L2(δ2)L
T
1 (δ2)}

,

where the denominators are the residual degrees of free-
dom associated with model (3) and model (4) with smoother
matrices L1(δ1, δ2) and L2(δ2), respectively (Ruppert et al.,
2003). Define Bj = {Bj(S1), ..., Bj(Sn)}T for j = 1,2 and Dn =
{Dn1, ..., Dnn)}T. Then, the smoother matrices have the follow-
ing expressions (see Web Appendix A.5)

L1(δ1, δ2) = n−1
{

DnD
T
n (̂θT

2 Cnθ̂2)
−1 + B1�n1B

T
1

}
(13)

L2(δ2) = n−1B2�n2B
T
2 . (14)

2.4.2. Simulated standard error. From (10), the expres-

sion for β̂1 can be written as (see the Web Appendix A.4)

β̂1 = Anθ2 + n−1
∑n

i=1
{An�n2B2(Si)Ui + Dniεi}

θT
2 Cnθ2 + n−1

∑n

i=1
FniUi

+ op(n
−1/2),
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where εi and Ui are the random errors defined in models
(1) and (2). Since these quantities are not directly observed,

we can estimate the variance of β̂1 by a residual bootstrap
(Carroll et al., 2006).

Let M be a fairly large number, say 100, and for b = 1, . . . ,

M, generate independent random samples εbi ∼ Normal(0, σ̂2
ε )

and Ubi ∼ Normal(0, σ̂2
u ) for i = 1, 2,...n. Define the b’th boot-

strap estimates of β1 as

β̂b
1 = Ânθ̂2 + n−1

∑n

i=1
{Ân�n2B2(Si)Ubi + D̂niεbi}

θ̂T
2 Ĉnθ̂2 + n−1

∑n

i=1
F̂niUbi

,

where Ân, D̂n, Ĉn, and F̂ni can be estimated by substituting the
appropriate quantities into expression (12). These estimated
quantities preserve the underlying spatial structure. There-
fore, the sample variance of β̂1

1, ..., β̂
M
1 is a consistent estimate

of the variance of β̂1 (Efron and Tibshirani, 1993).

2.5. Smoothing Parameter Selection

Our main objective is to obtain a consistent estimate of the
regression parameter β1 such that it accounts for the mea-
surement error in the covariate. However, selecting a suitable
combination of the smoothing parameters (δ1, δ2) is a prereq-
uisite to a good model fit. All discussion so far has assumed
that these parameters are fixed and known.

To choose smoothing parameters that attempt to mini-
mize the mean square error (prediction error), three common
approaches have been discussed in the literature (Ruppert
et al., 2003) (i) Generalized Cross Validation (GCV); (ii)
Mallow’s Cp; and (iii) Akaike Information Criterion (AIC).
Among these methods, minimization of GCV scores is more
attractive because of being invariant and computationally effi-
cient (Wood, 2006). We use the GCV criterion to estimate the
smoothing parameters (δ1, δ2) in a two-step procedure (Wood,
2006). We first obtain an optimum value of δ2 by minimizing
the GCV score based on model (2) and then substitute this
estimated value of δ2 into (8) to obtain an estimate of θ2. We

then use these estimates of δ̂2 and θ̂2 in (13) to obtain an

expression for the smoothing matrix, L1(δ1, δ̂2). Finally, we
minimize the following GCV score associated with the out-
come model to get an optimum value of δ1:

GCV(δ1) = n−1
∑n

i=1
{Yi − Ŷi}2

{1 − n−1trace{L1(δ1, δ̂2)}}2
,

where L1 is defined in Section 2.4.

3. Simulation Study

In this section, we discuss a simulation study designed to eval-
uate the finite sample properties of our proposed method in
the presence of covariate measurement error in spatial linear
regression.

3.1. Data Generation

We simulate n sample locations randomly within a square,
where n is the sample size. Specifically, the ith random sam-
ple location Si is generated by simulating two coordinates
(e.g., latitude and longitude) from a Uniform[0,1] distribution.

Given a set of simulated Si’s, the unobserved true covariate
X is generated using a bivariate bump function. Specifically,
the bivariate bump function is generated using the product
of two univariate bump functions generated separately for
each coordinate. That is, for each coordinate, k, we gener-
ate Xik = 1

1+aik
+ 3e−50(aik−0.3)2 + 2e−25(aik−0.7)2 , k = 1, 2, where

ai1 and ai2 are the first and second coordinates of simu-
lated ith sample location, respectively. The observed error-
contaminated versions, W , of the true covariate are generated
by adding independent Gaussian noise with varying the mea-
surement error variance σ2

U as 0, 0.25, and 0.50 to X. The
contour plot associated with the true and error-prone covari-
ate is given in Figure 1.

As shown in the Figure 1, presence of measurement er-
ror adds noises to the true distribution of the smooth covari-
ate. As a result, the underlying true covariate distribution
becomes obscured for higher degrees of measurement error.

The smooth spatial surface, G1(Si), is generated to have
a normal distribution with mean 0 and variance–covariance
matrix σ2

G1
R, where σ2

G1
= 0.2 and R has an exponential cor-

relation structure with range parameter τG1 (Pinheiro and
Bates, 2000). This implies that the correlation between two
observations with distance h units apart is exp(−h/τG1). We
considered three different range parameters (τG1= 0.1, 0.3,
and 0.5) resulting in minimal, moderate, and high correlation
among the values of G1’s.

Outcome data, Y , were then generated according to equa-
tion (1), with intercept and slope parameters are (β0, β1)

T =
(1, 2)T and the variance parameter for the independent resid-
ual error assumed to be 0.5. We used the nlme package
(Pinheiro et al., 2013) in R to generate exponential spatial
correlation for our simulated data and in model fitting. The
R code for the simulation and implementation of the proposed
method is available with this article at the Biometrics website
on Wiley Online Library.

3.2. Generating Bi-Variate Splines Basis Functions

We now describe the steps used to fit our proposed semipara-
metric model. We generated two sets of basis functions B1(·)
and B2(·) using bivariate thin plate spline regression basis
with 125 and 150 knots for response and covariate models, re-
spectively. We choose thin plate splines because they are not
sensitive to knot locations, perform reasonably well for a ba-
sis of any given lower rank, are computationally efficient and
more importantly rotationally invariant (Ruppert et al., 2003;
Wood, 2006). Unequal number of knots were chosen for B1(.)
and B2(.) to make the model identifiable, (see Section 2.1).
The number of knots for the response model (1) was analo-
gous to the default number of knots [max{20,min(n/4,150)}]
suggested by Ruppert et al. (2003). For the covariate model
(2), we increased the default number of knots by 20%. Knot
positions were automatically selected using the cluster sepa-
ration method “clara” (Kaufman and Rousseeuw, 2005) in R
(R Core Team, 2013).

Of course, one could select the number of knots by another
algorithm such as space filling algorithm (Nychka and Saltz-
man, 1998). However, implementation of this algorithm is
computationally intensive. Nychka and Saltzman (1998,page-
169) argued that the number of knots is flexible in the context
of geo-spatial model and one needs to select large enough
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Figure 1. Contour plots of covariates (X and W) with different specification of measurement error variance.

knots to accurately represent the underlying function while
keeping the computational burden as low as possible. Fur-
thermore, Ruppert (2002) suggest that given the GCV crite-
ria, the number of knots is not crucial for penalized regression
splines once it reaches a certain minimum value.

3.3. Simulation Results

The average of estimated regression coefficients along with
their estimated standard errors based on 1000 simulation runs
is presented in Table 1, assuming a sample size of 500 and
varying the measurement error variance σ2

U between 0, 0.25,
and 0.50. We estimated three different standard errors of the
estimated regression coefficients, including, (i) empirical stan-
dard errors obtained by taking the standard deviation of the
1000 simulated regression coefficient estimates, (ii) the aver-
age of model-based standard errors, and (iii) the average of
simulated standard errors defined in Section (2.4). We con-
sidered three different range parameters (τG1 = 0.1, 0.3, and
0.5) to represent minimal, moderate, and high level of spa-
tial correlation in G1(Si). The first column of Table 1 spec-
ifies the range parameter used in that particular simulation.
The next four columns list the estimated regression coeffi-
cient using ordinary least squares (OLS), linear mixed models
with spatial correlation structure (LME), generalized additive
models (GAM), and our proposed method when the true co-
variate is measured without error. The second and thirds sets
of four columns also list estimates obtained using the above
four methods (OLS, LME, GAM, and proposed method) with
measurement error variances 0.25 and 0.50, respectively. Ex-
cept for our proposed method, all of these methods produce
naive estimates of regression coefficient.

In the absence of measurement error, OLS, LME, GAM,
and our method all give similar answers. As the degree of
measurement error increases, OLS, LME, and GAM all ex-
hibit bias, though the degree of bias varies. All naive stan-
dard error estimates ignoring covariate measurement error
severely underestimate the empirical standard errors. In con-

trast, our proposed bias correction method performs well even
if the degree of bias for generalized additive model with error-
prone covariate varies (range: 0.99–1.32) with the strength
of the spatial correlation structure. Both model-based and
simulation-based estimates of the standard error appear to
be working well. In all cases, the average of the estimated
measurement error variances is very similar to the true values
(not shown in the table).

To evaluate the performance of the proposed method un-
der small sample settings, we also conducted simulations with
sample sizes of 250 and 100 assuming a measurement error
variance σ2

U of 0.5. The results are given in Table 2.
With the size of 250 samples, our proposed method still

provides reliable estimates of the true regression coefficient.
However, with small sample sizes (say, n = 100) the variance
of estimated regression coefficients tends to be slightly in-
flated. To explore the impact of number of knots on our pro-
posed method, we conducted additional simulation study by
varying the number of knots for covariate model as 130, 140,
and 170 with measurement error 0.025, sample size of 500,
and varying range parameters, where the number of knots for
the residual error model was fixed as 125. The results are pre-
sented in the Web Table 1 in the Supplementary Materials
available at the Biometrics website on Wiley Online Library.
These results indicate that the proposed methods are robust
for the selection of number of knots for covariates models.

4. Application

4.1. Analysis of Ischemic Heart Disease Data

We applied our proposed methodology to reanalyze data on
Ischemic Heart Disease (IHD). One of the key objectives of
the analysis is to assess the relationship between IHD rates
and area level measures of socio-economic status. These data
were collected from all hospitals in New South Wales, Aus-
tralia between July 1, 1994 to June 30, 2002. A detailed de-
scription of the data has been given elsewhere (Burden et al.,
2005). Briefly, patients who were admitted to the hospitals
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Table 1
Simulation results using different combinations of range parameters and measurement error variance. Reported numbers are

averaged over 1000 simulations with 500 observations per simulation.

No Measurement error variance, Measurement error variance,
measurement error σ2

u = 0.25 σ2
u = 0.5

Range*
(τG1) OLS LME GAM Proposed OLS LME GAM Proposed OLS LME GAM Proposed

Estimated coefficient

0.1 2.001 2.001 2.002 1.991 1.928 1.439 1.332 2.066 1.858 1.274 0.986 2.034
0.3 1.999 1.999 1.999 1.988 1.927 1.574 1.327 2.096 1.858 1.343 0.987 2.036
0.5 2.001 2.001 2.001 1.991 1.926 1.599 1.312 2.064 1.857 1.389 0.999 2.035

Empirical standard error

0.1 0.029 0.028 0.040 0.029 0.032 0.609 0.216 0.056 0.035 0.751 0.216 0.069
0.3 0.035 0.030 0.030 0.032 0.036 0.554 0.211 0.045 0.038 0.730 0.219 0.058
0.5 0.031 0.027 0.026 0.029 0.035 0.543 0.223 0.051 0.039 0.712 0.210 0.052

Average of estimated standard errors

0.1 0.014 0.021 0.030 0.015 0.022 0.040 0.058 0.051 0.027 0.037 0.057 0.053
0.3 0.014 0.020 0.026 0.014 0.022 0.035 0.057 0.041 0.027 0.035 0.056 0.052
0.5 0.014 0.018 0.023 0.014 0.022 0.034 0.057 0.049 0.026 0.034 0.056 0.051

Average of simulated standard errors

0.1 — — — 0.015 — — — 0.050 — — — 0.068
0.3 — — — 0.014 — — — 0.041 — — — 0.052
0.5 — — — 0.014 — — — 0.049 — — — 0.051

τG1 : values of the range parameter following exponential correlation in G1(si).

Table 2
Simulation results using different combinations of range parameters and sample sizes. Reported numbers are averaged over

1000 simulations with measurement error variance 0.5.

Sample size 250 Sample Size 100
Range*
(τG1) OLS LME GAM Proposed OLS LME GAM Proposed

Estimated coefficient

0.1 1.860 1.511 0.976 1.952 1.859 1.831 1.037 1.947
0.3 1.861 1.495 0.975 1.951 1.859 1.824 1.045 1.948
0.5 1.860 1.522 0.980 1.950 1.860 1.831 1.036 1.949

Empirical standard error

0.1 0.045 0.536 0.217 0.046 0.066 0.088 0.344 0.069
0.3 0.047 0.541 0.207 0.048 0.067 0.099 0.349 0.072
0.5 0.046 0.530 0.209 0.046 0.066 0.095 0.342 0.068

Average of estimated standard errors

0.1 0.038 0.051 0.083 0.046 0.061 0.064 0.132 0.099
0.3 0.038 0.051 0.081 0.045 0.060 0.064 0.130 0.099
0.5 0.037 0.050 0.081 0.045 0.060 0.063 0.130 0.098

Average of simulated standard errors

0.1 — — — 0.046 — — — 0.101
0.3 — — — 0.046 — — — 0.101
0.5 — — — 0.045 — — — 0.099

τG1 : values of the range parameter following exponential correlation in G1(si).
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Table 3
Analysis of Ischemic Heart Disease Data under different specification of measurement error

Estimates for SEIFA
Model based Simulated

Methods β̂ se(β̂) se(β̂)

Ordinary Least Squares (OLS) −0.062 0.014 —
Generalized Additive Model (GAM) −0.145 0.014 —
Proposed semiparametric approach −0.273 0.045 0.045
Huque et al. (2014) approach
Method I: method of moments −0.377 0.041 —
Method II: transformation of covariate −0.278 0.015 —

via the emergency room and discharged with IHD were de-
fined as acute IHD cases. Data also includes patient age, gen-
der, and geographic location reported via postcode of resi-
dence. Data from 579 postcodes were included in the analy-
sis. IHD event data were linked with the Census data which
contains age and gender-specific population counts. SEIFA
(Socio-Economic Indexes For Areas) scores and centroid co-
ordinates (latitude and longitude) for each postcode were ob-
tained from Australian Bureau of Statistics. We calculated
age-sex adjusted standardized incidence ratios (SIR) by divid-
ing the observed number of IHD cases by the age-sex adjusted
expected number of IHD cases (Breslow and Day, 1987).

The results of our analysis are given in Table 3.
The naive analysis ignoring spatial correlation and mea-

surement error suggests a significant protective effect associ-
ated with higher SEIFA values (β̂OLS = −0.062, SE = 0.014).
Similarly, analysis via a Generalized Additive model ignoring
measurement error but accounting for spatial correlation also
suggests that the effect is very strong (β̂GAM = −0.145,SE =
0.014). Our proposed semiparametric approach that accounts
for measurement error in the covariates results in an estimated
slope parameter β1 of −0.273 with measurement error vari-
ance estimated as 0.52. We choose 145 knots to represent the
spatial correlation in the outcome model and 180 knots to rep-
resent the covariate model. The model- and simulation-based
standard errors were estimated as 0.045 and 0.045, respec-
tively. Thus, accounting for the measurement error in the co-
variate reflects a high magnitude of protective effect of higher
SEIFA scores on IHD rates, compared with naive analysis.

5. Discussion

In this article, we develop a semiparametric framework to ob-
tain a consistent estimate of the true regression coefficients
when covariates are measured with error in spatial regression
modeling settings. Asymptotic theory establishes that our ap-
proach yields consistent, asymptotically normal estimates for
the regression coefficient. The theory provides both model-
based and simulation-based standard error estimates. Our em-
pirical simulation results confirm that ignoring measurement
error and conducting naive analysis using both generalized ad-
ditive model and linear mixed model attenuates the estimated
regression coefficient toward the null hypothesis of no effect.
Our results also confirm the results of Huque et al. (2014)
that the degree of measurement error bias depends on the

assumed correlation structure. It is interesting that the bias
appears to be least with OLS. This is likely because the covari-
ate spatial structure and residual spatial structure compete
to explain the variability in the response (Waller and Gotway,
2004). Our proposed semiparametric bias correction method
performs very well and provides comparable estimates of the
regression parameters to the parametric methods described
by Huque et al. (2014) when applied to Ischemic Heart Dis-
ease (IHD) data. Our approach is computationally efficient
and stable because it involves direct estimation using least
squares and can be implemented using standard nonlinear
least squares software.

Although Huque et al. (2014) and Li et al. (2009) reported
similar results for the bias associated with covariate measure-
ment error in spatial regression settings, their approaches re-
quire correct specification of the true covariate measurement
error variance. In addition, Huque et al. (2014) reported under
estimation of standard error when measurement error vari-
ances are estimated from the data. In contrast, our approach
is robust because it neither assumes that the covariate mea-
surement error is known nor depends on any particular kind
of spatial correlation structure. Our method is analogous to
the popular regression calibration method where we estimate
the true underlying covariate following smoothing assumption
and replace the error-prone covariate with this estimate in the
outcome model.

Measurement error theory makes it very clear that without
some kind of information regarding the magnitude of measure-
ment error, models will not be identifiable. Broadly speaking
there are two possibilities: (i) measurement error variance is
known or can be estimated using some form of validation data;
(ii) assumptions are made regarding the nature of the mea-
surement error process. By assuming that the true unobserved
covariate is smooth, our article is using the second approach.
Because our approach is assumption based and not an empir-
ical measurement error adjustment, our solution will not be
robust to this particular assumption. Nevertheless, because
we use a semiparametric approach to quantifying the spatial
correlation in our regression model, our approach should be
more robust than parametric alternatives, such as those pro-
posed by Huque et al. (2014). In practice, there will often be
situations where it makes sense that spatially defined covari-
ates are smooth. Air pollution epidemiology might be a good
example. In general, however, we recommend that our pro-
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posed method be used in the spirit of sensitivity analysis to
assess the impact of measurement error.

One of the additional assumptions required by our ap-
proach is that the basis functions for the covariate and the
spatial residual term are unequal. In practice, this can be
achieved through ensuring more knots for the basis function
representing covariate than the spatial residuals. This ensures
estimation of variability in covariate in a smaller scale than
the residual error. In many spatial epidemiology contexts,
measurement error becomes an increasing concern at small
scales because of limitations in measurement resources. As
a result, the covariate measurement bias reduction relies in
estimating variability in covariate at scale smaller than the
residual error (Paciorek, 2010).

In our simulation, we have considered only a single covari-
ate measured with error in a spatial linear mixed model with
Gaussian error. It would be of interest to explore the effect
of covariate measurement error in the presence of multiple
covariates and also omitted covariates. Future work should
also consider extensions of our formulation to the setting
of spatial-generalized linear mixed model with non-Gaussian
outcomes. However, such explorations are beyond the scope
of this present article.

Our heart disease example demonstrated a substantial in-
crease in the rates of IHD as the level of SEIFA measured at
the postcode level decreased, with the magnitude of the ef-
fect increasing after adjustment for measurement error. Our
results are consistent with broader literature suggesting a
relationship between low socio-economic status and adverse
health outcomes (see systematic review by Pickett and Pearl,
2001).

Because the SEIFA Index is measured at a group level, it
is tempting to think that Berkson measurement error the-
ory should be in operation. However, this argument does not
apply since we are considering measurement error in a group-
level covariate applied at a group-level analysis. It is also im-
portant to note that our results can only be interpreted at a
group level. Interpretation at the individual level may result
in ecological bias (Sheppard, 2003). While it might be ideal
to use individual-level data, in many research areas, group-
level data are the only available source for analysis. Air pol-
lution epidemiology provides a classic example, because indi-
vidual measurements of air pollution studies are rarely col-
lected, instead, they are estimated based on neighborhood
monitoring and other sources (Sheppard et al., 2012). Conse-
quently, air pollution exposures are typically measured with
error.

In spatial data settings, for example, in environmental epi-
demiology, with the increasing popularity of the semipara-
metric/multilevel models to account for the observed data
correlations, it is important that practitioners be aware of the
consequences of measurement error. Furthermore, it is useful
to quantify its potential effect on the estimating exposure–
outcome relationship. The approach presented in this article
provides one way of achieving this.

6. Supplementary Materials

Web Appendix A, referenced in Section 2, Web Table 1, refer-
enced in Section 3.3, and a version of R codes for implement-

ing the proposed method are available with this article at the
Biometrics website on Wiley Online Library.
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