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Summary.We consider heteroscedastic regression models where the mean function is a par-
tially linear single-index model and the variance function depends on a generalized partially
linear single-index model.We do not insist that the variance function depends only on the mean
function, as happens in the classical generalized partially linear single-index model.We develop
efficient and practical estimation methods for the variance function and for the mean function.
Asymptotic theory for the parametric and non-parametric parts of the model is developed. Sim-
ulations illustrate the results. An empirical example involving ozone levels is used to illustrate
the results further and is shown to be a case where the variance function does not depend on
the mean function.
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1. Introduction

We consider heteroscedastic regression models where the mean function is a partially linear
single-index model and the variance function depends on a generalized partially linear single-
index model. We do not insist that the variance function depends only on the mean function,
as happens in the classical generalized partially linear single-index model. Our model is

Y =μ.X, α, β, mμ/+g{v.X, θ, ζ, mv/}ε, .1/

μ.X, α, β, mμ/=mμ.XTα/+XTβ, .2/

v.X, θ, ζ, mv/=mv.XTθ/+XTζ, .3/

where g.·/ is a known function, whereas mμ.·/ and mv.·/ are two unknown smooth functions, ε is
independent of X, E.ε/=0 and E.|ε|/=1, the last condition being for identifiability. Generally,
either g.v/ = v or g.v/ = exp.v/. We need additional restrictions on the parameters to ensure
identifiability, specifically ‖α‖=‖θ‖=1 and αTβ=θTζ =0.
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This model retains the flexibility of a non-parametric regression model but has dimension
reduction ability to avoid fitting a multivariate non-parametric regression function. Methods
for estimating the mean function μ.X, α, β, mμ/ in model (1)–(2) are already well established
if the potential heteroscedasticity is ignored, and the linear and index components are different.
For example, Yu and Ruppert (2002) proposed a penalized spline estimation procedure. Xia
and Härdle (2006) integrated the dimension reduction idea and minimum average variance
estimation (Xia et al., 2002). The partially linear structure that is specified in equation (2) is an
important, practical special case of a multiple-index structure for the mean function models,
e.g. Xia (2008), and general models studied in dimension reduction, e.g. Ma and Zhu (2013a).
More recently, Wang et al. (2010) proposed a dimension-reduction-based estimation procedure
with additional slightly stronger assumptions, whereas Liang et al. (2010) proposed a pro-
file least squares estimation procedure. Although they allowed heteroscedasticity, they did not
explicitly model it; instead they simply assumed that E.Y |X, Z/ = mμ.XTα/ + ZTβ, and their
asymptotic theory assumed that v.X, Z/ ≡ 1, although this improvement changes only their
asymptotic covariance matrix. Moreover, all existing work mainly focuses on estimation of the
mean parameters .αT, βT/T.

Often, variance functions are thought to be nuisance parameters used only to improve the
estimation of the mean, but this is a narrow view. There are many reasons why estimating
variance can be important, and this has been understood for decades. Box and Hill (1974), in
studies of kinetic rate parameters, used variance function estimation to improve understanding
of model fit. Box and Meyer (1986) noted the crucial purpose of understanding variability as a
function of covariates in discussing off-line quality control. Carroll and Ruppert (1988), Carroll
(2003), Davidian and Carroll (1987) and Davidian et al. (1988) all described the crucial role of
understanding variability in calibration experiments for such contexts as assays. Cai and Wang
(2008) stated that

‘In addition to being of interest in its own right, variance function estimates are needed, for example,
to construct confidence intervals/bands for the mean function’.

Western and Bloome (2009), in their study of social inequality, fitted a variance function model
as the main purpose of their work, testing whether men who had recently been released from
a prison experience greater income insecurity, i.e. greater variance, in addition to the well-
documented decline in average earnings.

In the context of modelling heteroscedasticity in linear or non-linear models (Bickel, 1978;
Carroll, 1982; Carroll and Ruppert, 1982), there are two analysis strategies: a parametric
approach, in which the variance function is assumed to be a parametric function of the co-
variates, and a non-parametric approach (Carroll and Härdle, 1989; Fuller and Rao, 1978; Hall
and Carroll, 1989) with a fully non-parametric variance structure. This approach is hampered
by the curse of dimensionality in practical applications. Ma et al. (2006) studied semiparametric
efficiency in heteroscedastic partially linear models where X is scalar, which is a special case
of our model. Van Keilegom and Wang (2010) studied a general class of location–dispersion
regression models, including semiparametric quantile heteroscedastic regression. Their results
are very general in terms of asymptotic conditions and theory, and encompass a wide variety of
possible methods. However, the examples that they used to illustrate their methods are special
cases of our model (1)–(3). In addition, our methods have the practical advantage of being based
numerically on a single algorithm, fitting a mean model gÅ{mÅ.XTa/+XTb} with ‖a‖=1 and
aTb = 0 and incorporating weights; see Section 2.7. In contrast, one of the variance function
methods in Van Keilegom and Wang (2010) in our context involves a non-differentiable objec-
tive function. Ma and Zhu (2013a) applied the strategy that had been developed in Ma et al.
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(2006) to heteroscedastic partially linear single-index models and established doubly robust and
efficient estimators of the mean parameters. They also developed a type of generalized least
squares procedure for achieving further efficiency in estimating the mean function, but their
variance models were very special cases of our model (3).

More recently, there is a recognition that variability itself can be a predictor of other outcomes.
Thomas et al. (2012) showed in a context that was different from ours that individual variability in
longitudinal measurements for an individual can be predictive of a health outcome. Teschendorff
and Widschwendter (2012) argued that, in cancer genomics, differential variability can be as
important as differential means for predicting disease phenotypes. Although the techniques in
Thomas et al. (2012) and Teschendorff and Widschwendter (2012) are different from ours, they
indicate that understanding variability can be crucial as does the work of Western and Bloome
(2009).

Our primary goal is to develop efficient and practical estimates of the parameters θ and
ζ, and then the variance function g{v.X, θ, ζ, mv/}. As a by-product, we can do reweighting
(generalized least squares) to improve the estimates of .α, β/. It is worth mentioning that the
model thatα=θ, β=ζ and mμ.·/=mv.·/ is the special case that the variance is entirely a function
of the mean, as is typical in generalized linear models. The model (1)–(3) is also interesting
conceptually because it suggests that, if either α �=θ or β �=ζ, then different linear combinations
of X are governing the distribution of Y . This can be important in classification, for example,
because then extra information is available when modelling Y . Also, we can use this to look for
clusters of individuals who have excess variability: that excess variability can be of other interest.

The paper is organized as follows. Section 2 describes the estimation procedures and sketches
the computational algorithms. Section 3 presents the main theoretical results and their implica-
tions. Section 4 presents the results of simulation studies and an analysis of ozone data, where
it is shown that the variance function does not depend only on the mean function. All technical
assumptions and proofs of the main results are in Appendix A.

2. Estimation methods

2.1. Outline of the estimation methods
Our main goal, and our main innovation, is to develop efficient, practical estimates of the vari-
ance function, along with their asymptotic theory. Along the way, we shall of course develop
efficient estimation of the mean function, although such estimation is much better understood
than variance function estimation, as seen from the literature review in Section 1. Our develop-
ment proceeds in four steps:

(a) initial estimation of the mean function ignoring the heteroscedasticity;
(b) using the absolute residuals from the initial estimate of the mean function, develop an

initial estimate of the variance function;
(c) update the mean function by using weights based on the initial variance function. This

estimate is semiparametric efficient in the case that ε is normally distributed and is shown
in simulations to dominate the unweighted estimator;

(d) update the variance function by using the absolute residuals from the weighted mean
function. This method is shown in simulations to dominate the initial estimate of the
variance function.

2.2. Preliminaries
The two constraints ‖α‖ = 1 (with first non-zero component positive) and αTβ = 0 in effect
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reduce the number of parameters .αT, βT/T from 2p to 2p−2. Therefore, the popular ‘delete-
one-component’ method (Yu and Ruppert, 2002) can be used here. Without loss of generality,
we assume that the first component of α, α1, is positive, and thus we can write α = ..1 −
‖α\1‖2/1=2, α2, : : : , αp/T where α\1 = .α2, : : : , αp/T is α without the first component. Similarly
we denote β\1 = .β2, : : : , βp/T. Because of the second constraint, we have

β1 =−α−1
1

(
p∑

j=2
αjβj

)
= − .1−‖α\1‖2/−1=2

(
p∑

j=2
αjβj

)
:

Thus .α, β/ is a function of ω := .α2, : : : , αp, β2, : : : , βp/T. The 2p × .2p − 2/ Jacobian matrix
@.αT, βT/T=@ω is

Jω =

⎛
⎜⎜⎜⎜⎜⎜⎝

− αT
\1

.1−‖α\1‖2/1=2 01×.p−1/

I.p−1/×.p−1/ 0.p−1/×.p−1/

− βT
\1

.1−‖α\1‖2/1=2 − .αT
\1β\1/

αT
\1

.1−‖α\1‖2/3=2 − αT
\1

.1−‖α\1‖2/1=2

0.p−1/×.p−1/ I.p−1/×.p−1/

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where we have indicated the dimensions of the zero matrices and identity matrices for clarity.
In the same way, we assume that the first component of θ, θ1, is positive, and thus we can

introduce θ\1 and ζ\1. Write ϑ= .θ2, : : : , θp, ζ2, : : : , ζp/T, and define Jϑ similarly to Jω.
Let .Yi, Xi/, i=1, : : : , n, be independent samples of .Y , X/. In what follows, we set Ri =|Yi −

μ.Xi, α, β, mμ/|, "i =Yi −{mμ.XT
i α/+ XT

i β}, di = I."i>0/ − I."i�0/ = sgn."i/, gi = g{mv.XT
i θ/+

XT
i ζ}, δi = Ri − gi, Ui = XT

i α and Ti = XT
i θ. Then E.|"i‖Xi/ = E.Ri|Xi/ = g{mv.XT

i θ/ + XT
i ζ}.

Let g.1/ denote the first derivative of g; define g.1/2 = {g.1/}2. Set Λμ = .m.1/
μ .XTα/XT, XT/T,

Λiμ = .m.1/
μ .XT

i α/XT
i , XT

i /, Λv = .m
.1/
v .XTθ/XT, XT/T, Λiv = .m

.1/
v .XT

i θ/XT
i , XT

i /, Λ̃μ = Λμ−
E.Λμ=g2|XTα/=E.1=g2|XTα/, Λ̃iμ = Λiμ − E.Λiμ=g2

i |XT
i α/=E.1=g2

i |XT
i α/, Λ̃v = Λv −

E{Λv g.1/2.·/|XTθ}=E{g.1/2.·/|XTθ} and Λ̃iv =Λiv−E{Λivg
.1/2
i .·/|XT

i θ}=E{g
.1/2
i .·/|XT

i θ}, and
A⊗2 = AAT for any matrix A. We shall estimate the two unknown functions mμ.u/ and mv.t/

non-parametrically. For notational simplicity, we use the same kernel function and bandwidth
for both non-parametric regressions.

2.3. Initial estimate of the mean function
Methods for estimating the mean function μ.X, α, β, mμ/ in model (1)–(2) are already well
established if the potential heteroscedasticity is ignored, as we reviewed in Section 1. For given
.α, β/, mμ.·/ is estimated via local linear regression of Y − XTβ on XTα, resulting in m̂μ.·/.
More precisely, it should be m̂μ.·, α, β/, but to keep the notation simpler we shall sometimes
use the convention m̂μ.·/. Then .α, β/ are estimated by profiling. Thus, for any given .αT, βT/T,
we use local linear regression to estimate mμ by minimizing

n∑
i=1

[Yi −{a+b.XT
i α−u/+XT

i β}]2 Kh.XT
i α−u/ .4/

with respect to a and b, where K is a kernel function, Kh.·/=K.·=h/=h and h is the bandwidth.
Let .â, b̂/ be the minimizer of expression (4) and set m̂μ.u/= â.

We then estimate α and β subject to the constraints ‖α‖=1 and αTβ=0 by minimizing
n∑

i=1
[Yi −{m̂μ.XT

i α;α, β/+XT
i β}]2, .5/
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with respect to α\1 and β\1, where α and β are functions of α\1 and β\1. We define the solution
of problem (5) as ω̂ = .α̂T

\1, β̂T
\1/T. Thus the final estimator for .α, β/ is .α̂, β̂/={α.ω̂/, β.ω̂/}.

We use Ĵω to denote Jω evaluated at .α̂, β̂/ and in what follows we use Jω for Jω evaluated at
the true value .α0, β0/={α.ω0/, β.ω0/}.

More efficiency for estimating .mμ, α, β/ can be obtained via generalized least squares, which
we shall discuss in Section 2.5.

2.4. Initial estimate of the variance function
Davidian and Carroll (1987) gave the general methodology and theory for variance function
estimation in the parametric case. They distinguished between methods based on squared resid-
uals and those based on absolute residuals, the former being more efficient if the regressions
errors εi are normally distributed, but they called this potential efficiency gain ‘tenuous’ because
it is less robust to outliers. Here we use absolute residuals and follow a profiling approach that
is analogous to that in Section 2.3. Of course, if one chooses to use squared residuals, the same
algorithm as described below applies, by replacing R̂i by R̂

2
i and g.·/ by g2.·/ in equations (6)

and (7) below. The asymptotic distribution results for .θ, ζ/ that are described in theorem 2
below are also easily modified.

Define R = |Y − μ.X, α, β, mμ/| and R̂ = |Y − μ.X, α̂, β̂, m̂μ/|. Recall that E.|ε|/ = 1. Then,
approximately, E.R̂|X/ ≈ g{v.X, θ, ζ, mv/}. Thus, write R̂i = |Yi − μ.Xi, α̂, β̂, m̂μ/| = |Yi −
{m̂μ.XT

i α̂/+XT
i β̂}| and Ŝi ={m̂μ.XT

i α̂/+XT
i β̂}−{mμ.XT

i α/+XT
i β}.

We first minimize in .a0, a1/

n∑
i=1

Kh.XT
i θ− t/[R̂i −g{a0 +a1.XT

i θ− t/+XT
i ζ}]2, .6/

resulting in m̂v.·, θ, ζ/. We then estimate .θ, ζ/ by minimizing
n∑

i=1
[R̂i −g{m̂v.XT

i θ;θ, ζ/+XT
i ζ}]2, .7/

subject to ‖θ‖=1 and θTζ =0, calling these estimates .θ̂, ζ̂/.

2.5. More efficient estimation of the mean function
We now investigate how we can more efficiently estimate .α, β/ via generalized least squares.
Using the method in Section 2.4, form the weights 1=ĝ2

i . Then estimate mμ.·/ by replacing
equation (4) by

n∑
i=1

[Yi −{a+b.XT
i α−u/+XT

i β}]2 Kh.XT
i α−u/=ĝ2

i : .8/

We then update the estimates of .α, β/ by the same process, but the least squares minimization
is weighted with weights ĝ−2

i . As in Davidian and Carroll (1987), it can be shown that there is
no effect on the estimates of .α, β/ due to estimating gi, so only this single step is required for
first-order asymptotics. This is a well-known phenomenon; see for example Carroll and Ruppert
(1988). Specifically, we estimate α and β by minimizing

n∑
i=1

[Yi −{m̂μ.XT
i α;α, β/+XT

i β}]2=ĝ2
i , .9/

with respect to α\1 and β\1. We define the solution of problem (9) as ω̂WLS = .α̂T
w,\1, β̂

T
w, \1/T.

Thus the weighted generalized least squared estimator for .α, β/ is .α̂WLS, β̂WLS/={α.ω̂WLS/,
β.ω̂WLS/}.
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2.6. Updated estimation of the variance function
Our final variance function method is identical in computation to that of the initial estimator in
Section 2.4 except that the absolute residuals Ri are the absolute residuals from the weighted fit,
so R̂=|Y −μ{X, α̂WLS, β̂WLS, m̂.XTα̂WLS, α̂WLS, β̂WLS/}|. We denote the resulting estimators
as ϑ̂WLS and m̂v,WLS.

2.7. Computing
There is a universal theme to the computation of our estimators, namely that all the methods are
based on fitting general models of the form gÅ{mÅ.XTa/+XTb} with ‖a‖=1 and aTb=0, while
at the same time incorporating weights. Thus, for example, in Section 2.4, one could easily carry
the process further and add weights to improve estimation of the variance function, although
even in parametric models this step is usually not done.

2.8. Estimation of var(ε)
In Section 1, we made the identifiability constraint that E.|ε|/ = 1, so that g{v.X, θ, ζ, mv/}
is proportional to var.Y |X/. To estimate the actual variance function, we need to estimate
σ2 =var.ε/. Since E[Y −{mμ.XTα;α, β/+XTβ}]2=g2 =σ2, it is natural to define

σ̂2
n = .n−2p+2/−1

n∑
i=1

[Yi −{m̂μ.XT
i α̂; α̂, β̂/+XT

i β̂}]2=ĝ2
i :

Under the conditions of theorem 1 in Section 3.1 and assuming that E.ε4/ < ∞, a straight-
forward but tedious manipulation shows that n1=2.σ̂2

n −σ2/→N[0, E{.ε2 −σ2/2}].

3. Asymptotic results

3.1. Mean function estimation

Theorem 1. Suppose that assumptions 1 and 2 in Appendix A hold. Define Qω =E{.JT
ωΛ̃μ/⊗2}.

As n →∞, nh4 →∞ and nh6 → 0, for the unweighted mean function estimates of Section
2.3,

m̂μ.u, α̂/−mμ.u/=n−1
n∑

i=1
Kh.XT

i α−u/
"i

fα.u/
−E.ΛT

μ |XTα/Jω.ω̂ −ω/+ h.2/

2
m.2/

μ .u/

+op.n−1=2/,

n1=2Qω.ω̂ −ω/=n−1=2
n∑

i=1
"iJT

ωΛ̃iμ +op.1/:

Accordingly, n1=2..α̂−α/T, .β̂−β/T/T →N[0, E{"2JωQ−1
ω E.gJT

ωΛ̃μ/⊗2Q−1
ω JT

ω}]: Further,
for the weighted mean function estimates of Section 2.5, Define Qw,ω = E{.JT

ωΛ̃μ=g/⊗2}.
Then

m̂μ.u, α̂WLS/−mμ.u/=n−1
n∑

i=1
Kh.XT

i α−u/
"i

fα.u/E.1=g2|XTα/
+ h.2/

2
m.2/

μ .u/

− E.ΛT
μ=g2|XTα/

E.1=g2|XTα/
Jω.ω̂WLS −ω/+op.n−1=2/,
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n1=2Qw,ω.ω̂WLS −ω/=n−1=2
n∑

i=1

εiJT
ωΛ̃iμ

g2
i

+op.1/: .10/

Accordingly, n1=2{.α̂WLS −α/T, .β̂WLS −β/T}T →N{0, E.ε2JωQ−1
w,ωJT

ω/}: Further, when ε
is normally distributed, these estimators are the most efficient in the sense of semiparametric
efficiency (Bickel et al., 1993).

Remark 1. There are three implications of theorem 1. First and most obvious, the weighted
estimates ω̂WLS are more efficient than their unweighted version ω̂. Second, the function
estimated, m̂μ.u, α̂WLS/, is also more efficient than its unweighted version m̂μ.u, α̂/. Finally, an
implication of theorem 1 is that ω̂WLS is asymptotically oracle, in the sense that it has the same
limiting distribution as if the variance function were known. However, in smaller sample size
situations, because of the non-parametric function estimation, we expect that knowing the true
variance function will result in more efficient estimation of ω as well as mμ.·/. All three points
are confirmed in the simulation study of Section 4.2.

Remark 2. The limiting asymptotic distribution for .α̂WLS, β̂WLS/ that is described in theo-
rem 1 has an efficiency property even when ε is not normally distributed. The asymptotic distri-
bution that is described there has a seemingly different expression from the asymptotic variance
from the estimators that were derived by Ma and Zhu (2013a), which were described by them
as semiparametric efficient for the case that the variance function is known or estimated at a
sufficiently fast rate. Ma and Zhu used a different parameterization from ours to achieve iden-
tifiability. However, it can be shown that the two asymptotic variances are the same if we use
their parameterization.

3.2. Variance function estimation

Theorem 2. Suppose that assumptions 1 and 2 in Appendix A hold. Define

Qϑ =E.JT
ϑ Λ̃vg

.1//⊗2:

Define

Σϑ =E["{JT
ϑ E.g.1/Λvd|U/+ .Jϑ −Jω/TE.g.1/ΛvdΛ̃μ/JωQ−1

ω JT
ωΛ̃μ}+ δJT

ϑ Λ̃vg
.1/]⊗2, .11/

Σϑ,WLS =E["{JT
ϑ E.g.1/Λvd|U/+ .Jϑ −Jω/T E.g.1/ΛvdΛ̃μ/JωQ−1

w,ωJT
ωΛ̃μ=g2}+ δJT

ϑ Λ̃vg
.1/]⊗2:

.12/

Then for the initial estimator of Section 2.4, as n → ∞, nh4 → ∞ and nh6 → 0, dropping
arguments for parameters,

m̂v.t/−mv.t/=n−1
n∑

i=1
Kh.XT

i θ− t/
g

.1/
i δi

fθ.t/E{g.1/2.·/|XTθ= t}

−
(

E{g.1/2.·/Λv|XTθ= t}
E{g.1/2.·/|XTθ= t}

)T

Jϑ.ϑ̂−ϑ/

−
(

E{g.1/.·/dΛ̃μ|XTθ= t}
E{g.1/2.·/|XTθ= t}

)T

Jω.ω̂ −ω/+op.n−1=2/: .13/

For the updated variance function estimator of Section 2.6, again dropping arguments for
parameters,
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m̂v,WLS.t/−mv.t/=n−1
n∑

i=1
Kh.XT

i θ− t/
g

.1/
i δi

fθ.t/E{g.1/2.·/|XTθ= t}

−
(

E{g.1/2.·/Λv|XTθ= t}
E{g.1/2.·/|XTθ= t}

)T

Jϑ.ϑ̂WLS −ϑ/

−
(

E{g.1/.·/dΛ̃μ|XTθ= t}
E{g.1/2.·/|XTθ= t}

)T

Jω.ω̂WLS −ω/+op.n−1=2/: .14/

Finally, for the parameter estimators,

n1=2 Qϑ.ϑ̂−ϑ/→N.0, Σϑ/, .15/

n1=2 Qϑ.ϑ̂WLS −ϑ/→N.0, Σϑ,WLS/: .16/

Remark 3. Recalling that d = sgn.ε/, in the special case that ε is symmetric, E.d/=0 and the
first two terms in the asymptotic covariance matrices (11)–(12) = 0, resulting in considerable
simplification. Also, in this case, Σϑ =Σϑ,WLS. In addition, the last terms in equations (13) and
(14) also equal 0. Indeed, in this case, the initial and updated variance function estimators are
asymptotically equivalent to the estimator when the mean function is known. In small sample
size situations, however, because .α̂WLS, β̂WLS, m̂WLS/ are more efficient than their unweighted
version, we expect them to have some effect on the variance estimators.

4. Numerical examples

4.1. Empirical example
We use the ‘National morbidity and mortality air pollution study’ database, which contains
daily mortality, weather and pollution data for 1987–2000. Here we consider data for only
the year 1997. We shall use the partially linear single-index model to explore the relationship
between daily mean ozone level and some predictors. The selected seven explanatory variables
include mean temperature, relative humidity, mean carbon dioxide (CO2) level, mean PM10-
level, mean sulphur dioxide (SO2) level, daily humidity range and daily temperature range.
After excluding 1 day with missing observations, we have a sample size of n = 364. We used
g.v/ = exp.v/. In Table 1 we display estimates and their standard errors for the second-stage
estimators, the latter computed following similar arguments to those in section 7 of Carroll
et al. (1997).

Table 1. Estimates of parameters defined in Sections 2.5 and 2.6 and their estimated standard
errors ̂se for the ‘National morbidity and mortality air pollution study’ example in Section 4.1

Parameter Mean Relative Mean Mean Mean Humidity Temperature
temperature humidity CO2 PM10 SO2 range range

α̂ 0.893 0.240 −0.005 0.320 0.098 −0.149 0.093
ŝe.α̂/ 0.004 0.006 0.007 0.012 0.009 0.008 0.005
β̂ 0.322 −0.742 −1.593 −0.330 −0.470 0.353 0.931
ŝe.β̂/ 0.017 0.027 0.029 0.051 0.038 0.030 0.024
θ̂ 0.215 −0.282 0.260 −0.746 −0.048 −0.327 0.372
ŝe.θ̂/ 0.060 0.067 0.065 0.052 0.081 0.051 0.070
ζ̂ 0.940 −0.055 −0.748 −0.442 1.065 0.288 −0.558
ŝe.ζ̂/ 0.197 0.250 0.248 0.215 0.297 0.236 0.293
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Fig. 1. (a) Scatter plot of Yi � XT
i β̂ versus XT

i α̂ ( , fitted m̂μ); (b) scatter plot of log.R̂i / versus
mv .XT

i ζ/ C XT
i ζ ( , reference line with slope 1 through the origin); (c) similar to (a) but with the second-

step estimators; (d) similar to (b) but with the second-step estimators

There are some striking conclusions from the analysis. First, every parameter that is associated
with the mean function is highly statistically significantly different from 0. In addition, all the
single components of the single-index variance parameter θ, except mean SO2 level, are highly
statistically significant. For the partially linear parameter ζ, the coefficients that are associated
with mean temperature, mean CO2 level and mean SO2 level are highly statistically significant.
It is also clear that a complete partition of the mean or variance function parameters into the
single-index component or the partially linear component is not supported by the analysis.
Finally, it is obvious on inspection, or by a formal hypothesis test, that α �=θ and that β �=ζ.
Thus, the variance of Y given X is not a function of the mean.

Now consider the mean function. In Figs 1(a) and 1(c), we show the scatter plot of Yi −XT
i β̂

versus XT
i α̂ for the first- and second-stage estimators respectively. In both cases, the full curve is

the fitted link m̂μ.·/ for the mean function. It is evident that the means are not constant. There is
a hint that m̂μ.·/ might be constant for smaller values of XTα, with a linear change afterwards,
although a quadratic function might also give a reasonable fit.

Next consider the variance function. As stated above, we used g.v/=exp.v/, so that we would
expect that log.R̂/ would be roughly linear when plotted against m̂v.·/+XTζ̂. In Figs 1(b) and
1(d), we show the scatter plot of log.R̂i/versus m̂v.XT

i θ̂/ + XT
i ζ̂ for the first- and second-stage

estimators respectively, where the full line is just the line that goes through the origin with slope 1
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Table 2. RMSE for estimates and the corresponding standard
error of the mean-squared error (in parentheses) obtained in
example 1 of Section 4.2 for n D 200, with mμ.x/ D 15 sin.0.4x/ and
mv .x/Dcos.0.5x/C 3

2 †

σ α β mμ

Unweighted mean estimates, Section 2.3
0:2 0:052 .0:014/ 0:407 .0:108/ 0:631 .0:165/
0:5 0:121 .0:041/ 0:762 .0:261/ 1:279 .0:450/
1 0:250 .0:075/ 1:111 .0:506/ 2:799 .1:291/

Weighted mean estimates from first-stage variance estimates,
Section 2.5

0:2 0:047 .0:014/ 0:332 .0:120/ 0:627 .0:135/
0:5 0:091 .0:027/ 0:575 .0:208/ 1:162 .0:281/
1 0:164 .0:054/ 0:841 .0:316/ 2:192 .0:802/

Infeasible weighted mean estimates from true variances
0:2 0:045 .0:013/ 0:330 .0:083/ 0:620 .0:148/
0:5 0:090 .0:026/ 0:572 .0:129/ 1:163 .0:313/
1 0:162 .0:049/ 0:827 .0:217/ 2:013 .0:760/

θ ζ mv

Variance estimates from unweighted mean estimates, Section 2.4
0:2 0:204 .0:093/ 0:171 .0:056/ 0:277 .0:092/
0:5 0:191 .0:083/ 0:176 .0:055/ 0:267 .0:103/
1 0:200 .0:094/ 0:174 .0:055/ 0:255 .0:074/

Variance estimates from weighted mean estimates, Section 2.6
0:2 0:199 .0:089/ 0:171 .0:055/ 0:235 .0:080/
0:5 0:189 .0:094/ 0:176 .0:053/ 0:253 .0:065/
1 0:189 .0:089/ 0:173 .0:054/ 0:231 .0:088/

Infeasible variance estimates from true means
0:2 0:188 .0:085/ 0:171 .0:050/ 0:187 .0:055/
0:5 0:189 .0:085/ 0:172 .0:049/ 0:189 .0:055/
1 0:188 .0:085/ 0:171 .0:050/ 0:202 .0:054/

†We contrast the unweighted and weighted mean estimates in Sections
2.3 and 2.5 respectively, the latter being theoretically more efficient. We
also contrast the initial and final variance estimates in Sections 2.4 and
2.6 respectively, the latter being theoretically more efficient. In addi-
tion, we present the infeasible mean estimates that are weighted by the
(unknown) true variances, whereas the infeasible variance estimates are
based on residuals from the (unknown) true mean function. The infea-
sible mean estimates are theoretically asymptotically equivalent to the
weighted mean estimates, whereas the infeasible variance estimates are
asymptotically more efficient than the feasible estimates.

shown as a reference. LOESS fits to these graphs are effectively linear except for some curvature
caused by the large positive values along the x-axis, and a quadratic fit has no statistically
significant quadratic term.

4.2. Simulations
We generated data from model (1)–(3), with g.x/ = exp.x/ and ε ∼ N.0, σ2/. The covariates
X = .X1, : : : , X8/T are generated from a multivariate Gaussian distribution with covariance
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Table 3. RMSE for estimates and the corresponding standard
error of the mean-squared error (in parentheses) obtained in
example 2 of Section 4.2 for n D 200, with mv .x/ D x2 and
mv .x/D2={1Cexp.�2x/}C 3

2 †

σ α β mμ

Unweighted mean estimates, Section 2.3
0:2 0:100 .0:044/ 0:699 .0:149/ 1:774 .0:665/
0:5 0:238 .0:079/ 0:950 .0:298/ 4:508 .1:752/
1 0:330 .0:108/ 1:205 .0:524/ 8:934 .3:157/

Weighted mean estimates from first-stage variance
estimates, Section 2.5

0:2 0:062 .0:027/ 0:469 .0:127/ 1:629 .0:503/
0:5 0:134 .0:048/ 0:775 .0:217/ 3:281 .1:259/
1 0:226 .0:077/ 1:096 .0:342/ 6:443 .3:077/

Infeasible weighted mean estimates from true variances
0:2 0:052 .0:016/ 0:357 .0:098/ 1:628 .0:531/
0:5 0:106 .0:042/ 0:646 .0:213/ 2:992 .1:009/
1 0:187 .0:072/ 0:919 .0:309/ 5:300 .2:341/

θ ζ mv

Variance estimates from unweighted mean estimates, Section 2.4
0:2 0:248 .0:118/ 0:238 .0:0817/ 0:422 .0:102/
0:5 0:238 .0:125/ 0:226 .0:0758/ 0:416 .0:114/
1 0:238 .0:131/ 0:231 .0:0807/ 0:378 .0:109/

Variance estimates from weighted mean estimates, Section 2.6
0:2 0:235 .0:106/ 0:232 .0:067/ 0:315 .0:095/
0:5 0:215 .0:094/ 0:202 .0:073/ 0:274 .0:091/
1 0:198 .0:078/ 0:193 .0:058/ 0:269 .0:078/

Infeasible variance estimates from true means
0:2 0:191 .0:065/ 0:181 .0:065/ 0:201 .0:067/
0:5 0:192 .0:065/ 0:181 .0:065/ 0:199 .0:066/
1 0:191 .0:064/ 0:182 .0:062/ 0:200 .0:068/

†Other descriptions are the same as in Table 2.

given by cov.Xi, Xj/ = 0:2|i−j|. We set α = .1:0, 1:0, 1:0, 1:0, 0:5, 0:5, 0:5, 0:5/T, β = .1:0, −1:0,
1:0, −1:0, 1:0, −1:0, 1:0, −1:0/T, θ = .0:5, −1, 0:5, −1, −0:5, −1, −1, −0:5/T and ζ = .0:2, 0,
−0:2, 0, 0:2, 0,−0:25, 0/T. As presented above, αTβ =θTζ =0 but α and θ are not normalized
to have unit norm, although α and θ are normalized for estimation.

The two examples differ in the functions mμ and mv chosen.

(a) Example 1: mμ.x/=15 sin.0:4x/ and mν.x/= cos.0:5x/+ 3
2 .

(b) Example 2: mμ.x/=x2 and mv.x/=2={1+ exp.−2x/}+ 3
2 .

We consider sample size n = 200 and three noise levels σ = 0:2, 0:5, 1:0. For each scenario,
we generated 100 data sets and considered the estimators that were described in the outline in
Section 2.1 and defined in Sections 2.3–2.6, along with two infeasible estimators:

(a) the unweighted least squares mean function estimates, Section 2.3;
(b) the initial variance function estimates starting from the unweighted least squares mean

function estimates, Section 2.4;
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Table 4. Standard errors for the second-stage estimators in example 1 of
Section 4.2†

σ =0.2
ŝe.α̂/ 0:017 0:013 0:017 0:013 0:015 0:017 0:019 0:016

0:018 0:015 0:015 0:015 0:019 0:018 0:017 0:014
ŝe.β̂/ 0:135 0:125 0:122 0:124 0:102 0:124 0:138 0:134

0:134 0:103 0:126 0:102 0:118 0:118 0:126 0:114
ŝe.θ̂/ 0:075 0:065 0:073 0:066 0:070 0:076 0:077 0:080

0:066 0:064 0:095 0:075 0:060 0:074 0:075 0:081
ŝe.ζ̂/ 0:053 0:050 0:056 0:049 0:058 0:052 0:053 0:054

0:073 0:060 0:064 0:059 0:058 0:054 0:055 0:065

σ =0.5
ŝe.α̂/ 0:027 0:029 0:029 0:029 0:025 0:027 0:025 0:025

0:035 0:032 0:033 0:031 0:036 0:032 0:033 0:029
ŝe.β̂/ 0:282 0:209 0:202 0:202 0:200 0:151 0:147 0:154

0:299 0:171 0:230 0:165 0:200 0:183 0:183 0:182
ŝe.θ̂/ 0:077 0:073 0:074 0:067 0:071 0:076 0:078 0:077

0:055 0:061 0:093 0:081 0:060 0:060 0:068 0:075
ŝe.ζ̂/ 0:060 0:053 0:049 0:050 0:058 0:053 0:053 0:054

0:079 0:062 0:065 0:063 0:059 0:056 0:053 0:069

σ =1
ŝe.α̂/ 0:036 0:050 0:041 0:047 0:045 0:063 0:055 0:050

0:066 0:062 0:055 0:059 0:063 0:060 0:055 0:048
ŝe.β̂/ 0:287 0:280 0:246 0:271 0:303 0:238 0:275 0:291

0:373 0:248 0:262 0:197 0:268 0:212 0:226 0:241
ŝe.θ̂/ 0:078 0:067 0:070 0:066 0:081 0:075 0:078 0:079

0:060 0:060 0:075 0:081 0:060 0:063 0:069 0:069
ŝe.ζ̂/ 0:052 0:048 0:047 0:046 0:057 0:059 0:052 0:051

0:065 0:061 0:061 0:062 0:061 0:060 0:057 0:074

†For each parameter the numbers in the first row are the estimated standard
errors and the numbers in the second row are the Monte Carlo standard errors.

(c) the weighted least squares mean function estimates, Section 2.5;
(d) the updated variance function estimates, Section 2.6;
(e) the infeasible weighted least squares estimates when the variance function is known, where

‘infeasible’ means that these are not real estimators of practical utility since the variance
functions are not known;

(f) the infeasible variance function estimates when the means are known.

The results are given in Tables 2 and 3, which display the root-mean-squared errors RMSE
of various quantities, for example 1 and example 2 respectively. For example, for α RMSE
is just ‖α̂ − α‖ (the vectors are normalized to have unit norms) and for mμ RMSE is√

[Σ50
t=1{m̂μ.xt/−mμ.xt/}2=50], where .x1, : : : , x50/ are equally spaced grid points on an

interval with lower bound the 0:01-quantile of the sampled XT
i α values and upper bound its

0:99-quantile. We see that σ has a significant effect on the estimation of the mean but has a much
smaller effect on the estimation of the variance, which is a known phenomenon in parametric
problems; see Davidian and Carroll (1987).

We expect the mean function and its parameter estimates without weighting to be less efficient
than that with weighting, and this is very clearly seen. Although asymptotically the weighted
estimates are as efficient as the infeasible mean function and parameter estimates, there are small
sample effects especially in Table 3 which confirm that the latter has more efficiency. Variances
are generally much more difficult to estimate than means, and the small sample size effects are
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Table 5. Standard errors for the second-stage estimators in example 2 of
Section 4.2†

σ =0.2
ŝe.α̂/ 0:020 0:020 0:021 0:021 0:021 0:021 0:022 0:022

0:023 0:023 0:026 0:027 0:022 0:019 0:021 0:025
ŝe.β̂/ 0:177 0:166 0:173 0:148 0:163 0:165 0:181 0:169

0:245 0:136 0:149 0:137 0:171 0:152 0:184 0:154
ŝe.θ̂/ 0:083 0:071 0:080 0:080 0:088 0:077 0:086 0:081

0:099 0:076 0:078 0:091 0:093 0:099 0:084 0:069
ŝe.ζ̂/ 0:081 0:062 0:072 0:075 0:081 0:062 0:055 0:077

0:095 0:062 0:070 0:066 0:074 0:070 0:057 0:075

σ =0.5
ŝe.α̂/ 0:048 0:044 0:046 0:048 0:043 0:043 0:019 0:041

0:052 0:047 0:038 0:055 0:057 0:049 0:053 0:045
ŝe.β̂/ 0:370 0:292 0:250 0:247 0:260 0:278 0:243 0:318

0:415 0:217 0:196 0:202 0:256 0:256 0:257 0:223
ŝe.θ̂/ 0:084 0:076 0:070 0:078 0:087 0:072 0:079 0:074

0:081 0:091 0:093 0:088 0:076 0:079 0:065 0:070
ŝe.ζ̂/ 0:078 0:065 0:066 0:075 0:077 0:062 0:078 0:070

0:086 0:062 0:079 0:063 0:071 0:065 0:060 0:070

σ =1
ŝe.α̂/ 0:088 0:060 0:060 0:066 0:063 0:060 0:062 0:069

0:108 0:084 0:065 0:079 0:087 0:079 0:073 0:083
ŝe.β̂/ 0:380 0:281 0:316 0:291 0:290 0:277 0:300 0:386

0:517 0:257 0:236 0:243 0:259 0:275 0:268 0:246
ŝe.θ̂/ 0:091 0:079 0:076 0:082 0:091 0:076 0:083 0:083

0:075 0:074 0:080 0:068 0:069 0:077 0:071 0:080
ŝe.ζ̂/ 0:079 0:077 0:068 0:079 0:075 0:065 0:079 0:078

0:089 0:054 0:071 0:061 0:068 0:062 0:058 0:069

†For each parameter the numbers in the first row are the estimated standard
errors and the numbers in the second row are the Monte Carlo standard errors.

clearly seen, with the updated variance function and parameter estimates dominating the initial
estimates, and not as efficient as the infeasible version.

In Figs 2 and 3, we show 20 randomly chosen estimated link functions for the two examples,
where the true non-parametric link functions are shown as the full grey curves. We see that these
link functions are estimated reasonably well.

Finally, we investigate the accuracy of the standard deviation estimates for the estimated
parameters. For brevity, we consider the second-stage estimators only. The true and estimated
standard deviations (averaged over 100 data sets) are shown in Tables 4 and 5, for example 1
and example 2 respectively. The results that are reported in Tables 4 and 5 indicate that the
performance of the standard deviation estimation is reasonably accurate.

5. Discussion and extensions

Most partially linear single-index models (Carroll et al., 1997; Liang et al., 2010; Xia and Härdle,
2006) have a set of covariates that are dedicated to the parametric part, and a non-overlapping
set of covariates that are dedicated to the non-parametric part. Our model (1)–(3) avoids par-
titioning the covariates and makes the model more flexible and general. A priori partitioning
can be done in our context, however; for example, set α= .αT, 0T/T and β = .0T, βT/T, where
α and β are non-zero vectors. This still leaves a gap between knowing a partition exactly and
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knowing nothing about the partition. Oracle penalization methods such as the adaptive lasso and
smoothly clipped absolute deviation can be used to estimate the partition. Essentially, equation
(5) is penalized in the usual way to obtain oracle estimates of .α, β/. Following this, equation
(7) would have standard penalties for .θ, ζ/. Under standard conditions, such methods will be
oracle, with the penalization parameters estimated by the Akaike information criterion or the
Bayesian information criterion. We shall pursue the details of such an approach in the future.

There are many interesting possible extensions of our models (2) and (3). Most generally,
our model implies that the distribution of Y given X depends on d (= 4 in our case) linear
combinations of X, where necessarily d < p. There is a vast literature on this general problem,
mostly dealing with dimension reduction; see Ma and Zhu (2013b) for a recent example and
many references. This general perspective is too general in practice when the main goal is to
estimate a variance function, because one still needs to understand which linear combinations
affect the variance function, which affect the mean function and which, if any, affect both. A
simpler model that still generalizes models (2) and (3) is when mμ.·/ and mv.·/ depend on dμ and
dv linear combinations of X respectively. In the homoscedastic case, the problem of estimating
the mean function in this resulting multiple-index model has been discussed by Xia (2008). Our
estimation approach in Sections 2.3–2.6 can in principle be readily adapted to this more general
problem, depending on how one estimates the linear combinations. It would be interesting to
find limiting distributions and to discuss efficiency in this case. However, there are considerable
issues with dimensionality, multivariate kernel functions and bandwidth selection. We agree
with the sentiment that was expressed in remark 5.3 of Xia (2008) that, because of these issues,
dμ and dv should be small, and our case that dμ =dv =1 is (the most in our opinion) ‘appealing’
from a practical perspective.

Semiparametric asymptotic efficiency for estimating .θ, ζ/ is a much more complex problem,
both technically and practically. We established in theorem 2 that estimation of .α, β, mμ/ has
no effect on estimation of the variance parameters .θ, ζ/. Thus, from a theoretical perspective,
working on the residuals from the mean fit is equivalent to a model that we observe R =|Y −
mμ.XTα/−XTβ| and, working with R, the model can be thought of as

E.R|X/=g{mv.XTθ/+XTζ}, .17/

var.R|X/=κ2 g2{mv.XTθ/+XTζ}, .18/

where κ is unknown. This is a case where the variance is proportional to a known function of
the mean, which is a semiparametric problem that has not been solved in the literature. Indeed,
it is quite a tricky problem, since R is not normally distributed.

From a practical perspective, it is not obvious that this is a problem that should be solved
from an efficient semiparametric perspective, at least in any practical context, for the following
reasons.

(a) Except for the non-parametric flavour due to mv.·/, models (17) and (18) can be thought
of as generalized linear models. The overwhelming practice in statistics for such models
is to use the variance function for weighting only, but not to try to exploit it to obtain
further asymptotic efficiency. It is easy to implement this weighting, and to derive an
analogue of theorem 2. We have done so, but the promised asymptotic gains in efficiency
for estimating .θ, ζ/ were not realized in our simulations.

(b) In especially the third author’s fairly extensive experience with parametric variance func-
tion models (Carroll and Ruppert, 1982, 1988), the more that higher order moments are
involved in the score functions, the worse the practical performance, and the longer it
takes to reach asymptotics, as in our simulations described in the previous point.
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(c) Our methods are practical, theoretically justified and clearly work well in simulations and
examples.
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Appendix A

A.1. Assumptions
Assumption 1.

(a) The density function fα.u/ of XTα is bounded away from zero and is continuously differentiable on
.XTα, X∈ΩX/ and ΩX is the support of X assumed to be compact. Furthermore, fα.u/ is uniformly
continuous for α in a neighbourhood of α0.

(b) The function mμ.·/ is twice continuously differentiable.
(c) The kernel K is a bounded and symmetric probability density function, satisfying∫ ∞

−∞
u2 K.u/du �=0,

∫ ∞

−∞
|u|l K.u/du<∞, l=1, 2, 3:

(d) The matrix Qω is positive definite.

Assumption 2.

(a) The density function fθ.t/ of XTθ is bounded away from zero and is continuously differentiable on
.XTθ, X ∈ΩX/. Furthermore, fθ.t/ is uniformly continuous for θ in a neighbourhood of θ0.

(b) The functions mv.·/ and g.·/ are twice continuously differentiable.
(c) E{g.1/.·/dΛ̃μ|XTθ= t}, E{g.1/.·/|XTθ= t} and E{g.1/.·/Λμ|XTθ= t} are continuous functions.
(d) The matrix Σϑ defined at expression (11) is positive definite.

A.2. Proof of theorem 1 for the unweighted estimators
The results in theorem 1 for the unweighted estimator follow easily by using the same arguments as in the
proof of theorem 4 in Carroll et al. (1997).

A.3. Proof of equations (13) and (15) in theorem 2
We first give an expression for R̂i −Ri. A direct simplification yields that

Ŝi ={m̂μ.XT
i α̂/+XT

i β̂}−{mμ.XT
i α/+XT

i β}
= m̂.1/

μ .XT
i α/XT

i .α̂−α/+XT
i .β̂−β/+ m̂μ.XT

i α/−mμ.XT
i α/+op.n−1=2/

= Λ̃T
iμJω.ω̂ −ω/+n−1

n∑
j=1

Kh.Uj −Ui/
"j

fα.Ui/
+op.n−1=2/:

From an identity (Knight (1998), page 758), we have that

R̂i −Ri =|Yi −{m̂μ.XT
i α̂/+XT

i β̂}|− |Yi −{mμ.XT
i α/+XT

i β}|
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=−Ŝi.I."i>0/ − I."i�0//+
∫ Ŝi

0
.I."i<s/ − I."i�0//ds

=−diΛ̃T
iμJω.ω̂ −ω/+din

−1
n∑

j=1
Kh.Uj −Ui/

"j

fα.Ui/
+

∫ Ŝi

0
.I."i<s/ − I."i�0//ds+op.n−1=2/: .19/

Write ιk =∫
sk K2.s/ds and κk =∫

sk K.s/ds for k =0, 1, 2.

A.3.1. Step 1
Minimization of expression (6) is equivalent to .â0, â1/ being the solution of the equation

n−1
n∑

i=1
Kh.XT

i θ− t/[R̂i −g{â0 + â1.XT
i θ̂− t/+XT

i ζ̂}].1, .XT
i θ̂− t/=h/Tg.1/{â0 + â1.XT

i θ̂− t/+XT
i ζ̂}=0:

Using Taylor series expansion and the assumptions on h, we know that the left-hand side is

n−1
n∑

i=1
Kh.XT

i θ− t/.R̂i −Ri/.1, .XT
i θ̂− t/=h/Tg.1/

i +n−1
n∑

i=1
Kh.XT

i θ− t/.Ri −gi/.1, .XT
i θ̂− t/=h/Tg.1/

i

+n−1
n∑

i=1
Kh.XT

i θ− t/[gi −g{â0 + â1.XT
i θ̂− t/+XT

i ζ̂}].1, .XT
i θ̂− t/=h/T

×g.1/{â0 + â1.XT
i θ̂− t/+XT

i ζ̂}+o.n−1=2/: .20/

It follows from equation (19) that the first term in equation (20) is

−n−1
n∑

i=1
Kh.XT

i θ− t/.1, .XT
i θ̂− t/=h/Tg.1/

i diΛ̃T
iμJω.ω̂ −ω/

+n−1
n∑

i=1
Kh.XT

i θ− t/.1, .XT
i θ̂− t/=h/Tg.1/

i din
−1

n∑
j=1

Kh.Uj −Ui/"j=fα.Ui/

+n−1
n∑

i=1
Kh.XT

i θ− t/.1, .XT
i θ̂− t/=h/Tg.1/

i

∫ Ŝi

0
.I."i<s/ − I."i�0//ds+op.n−1=2/: .21/

For the second term in expression (21), it obvious that we can replace θ̂ by θ. Also, the term g.1/
i =fα.Ui/ is

a nuisance and we eliminate it. We consider only the first component in the 2×1 vector, since the other is
similarly op.n−1=2/. In this case, with di = sgn.εi/, we want to analyse

An =n−2
n∑

i=1

n∑
j=1

di εjKh.Ui − t/Kh.Uj −Ui/:

Since E.εi/=0, E.An/=0. We merely need to show that var.An/=o.n−1/. However,

var.An/=n−4
n∑

i,j,p=1

∑
l �=j

E{diεjdpεl Kh.Ui − t/Kh.Uj −Ui/Kh.Up − t/Kh.Ul −Up/}:

All the various combinations can be done in turn. For example, if i= j =p= l, then the contribution to
var.An/ is O{.nh/−3}, so we need only that .nh/−3 = o.n−1/. If any three of the .i, j, p, l/ are equal but
different from the remaining one, the contribution is 0. If all four are unequal, the contribution is 0. So,
the only cases that we need to cope with are those in which .i = j, p = l/, .i = p, j = l/ and .i = l, j = p/.
All these cases are similar, so consider the case that i = p and j = l, and write c = E.ε2

i /E.d2
j /. Then the

contribution to var.An/ is
Bn = cn−2 E{K2

h.U1 − t/K2
h.U2 −U1/}

= cn−2h−4
∫

K2
h.u1 − t/K2

h.u2 −u1/fU.u1/fU.u2/du1 du2:

Make the change of variables z1 = .u1 − t/=h and z2 = .u2 −u1/=h, so that

Bn = c.nh/−2
∫

K2.z1/K2.z2/fU.t − z1h/fU.t − z2h/dz1 dz2 =O{.nh/−2}:

This means that var.An/=o.n−1/ as long as nh2 →∞, which follows from our assumptions. Analogously
we can prove that the third term in expression (21) is also of order op.n−1=2/.
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The second term in expression (20) equals n−1Σn
i=1Kh.XT

i θ− t/.1, .XT
i θ̂− t/=h/Tg.1/

i δi, whereas the third
term in expression (20) can be further expressed as

−n−1
n∑

i=1
.1, .XT

i θ̂− t/=h/T.1, .XT
i θ̂− t/=h/Kh.XT

i θ− t/g.1/2
i .â0 −a0, â1 −a1/

T

−n−1
n∑

i=1
Kh.XT

i θ− t/.1, .XT
i θ̂− t/=h/Tg.1/2

i ΛT
ivJϑ.ϑ̂−ϑ/

=−E.g.1/2|XTθ= t/fθ.t/diag.1, κ2/.â0 −a0, â1 −a1/
T

− .1, 0/T E.g.1/2ΛT
v |XTθ= t/fθ.t/Jϑ.ϑ̂−ϑ/+op.n−1=2/:

A combination of these arguments yields that

E.g.1/2|XTθ= t/fθ.t/.â0 −a0/+E.g.1/2ΛT
v |XTθ= t/fθ.t/Jϑ.ϑ̂−ϑ/

+fθ.t/E.g.1/dΛ̃T
μ |XTθ= t/Jω.ω̂ −ω/−n−1

n∑
i=1

Kh.XT
i θ− t/g.1/

i δi =op.n−1=2/,

from which equation (13) follows.

A.3.2. Step 2
Set ĝi :=g{m̂v.XT

i θ̂, θ̂, ζ̂/+XT
i ζ̂}, ĝ.1/

i :=g.1/{m̂v.XT
i θ̂, θ̂, ζ̂/+XT

i ζ̂}, and let Λ̂iv be Λi,v evaluated at .θ̂, ζ̂/.
Minimization of expression (7) is equivalent to solving Σn

i=1ĴT
ϑ Λ̂iv.R̂i − ĝi/ĝ

.1/
i = 0. Now, Σn

i=1ĴT
ϑ Λ̂iv.R̂i −

ĝi/ĝ
.1/
i is
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.R̂i − ĝi/ĝ
.1/
i +

n∑
i=1

JT
ϑΛiv.R̂i − ĝi/ĝ

.1/
i +op.n1=2/

=
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.R̂i −Ri/ĝ
.1/
i +

n∑
i=1

JT
ϑ .Λ̂iv −Λiv/.Ri − ĝi/ĝ

.1/
i +

n∑
i=1

JT
ϑΛiv.R̂i − ĝi/ĝ

.1/
i +op.n1=2/

=
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.R̂i −Ri/g
.1/
i +

n∑
i=1

JT
ϑ .Λ̂iv −Λiv/.R̂i −Ri/.ĝ

.1/
i −g.1/

i /

+
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.Ri −gi/ĝ
.1/
i +

n∑
i=1

JT
ϑ .Λ̂iv −Λiv/.gi − ĝi/ĝ

.1/
i +

n∑
i=1

JT
ϑΛiv.Ri − ĝi/ĝ

.1/
i

+
n∑

i=1
JT

ϑΛiv.R̂i −Ri/ĝ
.1/
i +op.n1=2/:

This is the sum of 10 terms given by
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.R̂i −Ri/g
.1/
i +

n∑
i=1

JT
ϑ .Λ̂iv −Λiv/.R̂i −Ri/.ĝ

.1/
i −g.1/

i /+
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.Ri −gi/ĝ
.1/
i

+
n∑

i=1
JT

ϑ .Λ̂iv −Λiv/.ĝi −gi/ĝ
.1/
i +

n∑
i=1

JT
ϑΛiv.R̂i −Ri/.ĝ

.1/
i −g.1/

i /+
n∑

i=1
JT

ϑΛiv.Ri −gi/.ĝ
.1/
i −g.1/

i /

+
n∑

i=1
JT

ϑΛiv.gi − ĝi/.ĝ
.1/
i −g.1/

i /+
n∑

i=1
JT

ϑΛiv.R̂i −Ri/g
.1/
i +

n∑
i=1

JT
ϑΛiv.Ri −gi/g

.1/
i

−
n∑

i=1
JT

ϑΛiv.ĝi −gi/g
.1/
i +op.n1=2/

�
10∑

k=1
Ik +op.n1=2/: .22/

Under our assumptions, the first seven terms are easily seen to be op.n1=2/. In addition,

I10 =−
n∑

i=1
JT

ϑΛivg
.1/
i [g{m̂v.XT

i θ̂, θ̂, ζ̂/+XT
i ζ̂}−g{mv.XT

i θ/+XT
i ζ}]

=−
n∑

i=1
JT

ϑΛivg
.1/2
i [{m̂v.XT

i θ̂, θ̂, ζ̂/− m̂v.XT
i θ/}+XT

i .ζ̂ −ζ/+{m̂v.XT
i θ/−mv.XT

i θ/}]+o.n1=2/:
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Now, we use expression (13) for {m̂v.XT
i θ/−mv.Xiθ/} and obtain that

I10 =−
n∑

i=1
JT

ϑΛivΛT
ivJϑg

.1/2
i .ϑ̂−ϑ/−

n∑
i=1

JT
ϑΛivg

.1/2
i

fθ.XT
i θ/E{g.1/2.·/|XT

i θ}n−1
n∑

j=1
Kh.XT

i θ−XT
j θ/g.1/

j δj

+
n∑

i=1
JT

ϑΛivg
.1/2
i

(
E{g.1/2.·/Λv|XT

i θ}
E{g.1/2.·/|XT

i θ}
)T

Jϑ.ϑ̂−ϑ/

+
n∑

i=1
JT

ϑΛivg
.1/2
i

(
E{g.1/.·/dΛ̃μ|XT

i θ}
E{g.1/2.·/|XT

i θ}
)T

Jω.ω̂ −ω/+op.n1=2/

=−
n∑

i=1
JT

ϑΛivΛ̃T
ivJϑg

.1/2
i .ϑ̂−ϑ/−

n∑
i=1

JT
ϑδig

.1/
i

E.Λivg
.1/2
i |XT

i θ/

E{g.1/2.·/|XT
i θ}

+
n∑

i=1
JT

ϑΛivg
.1/2
i

(
E{g.1/.·/dΛ̃μ|XT

i θ}
E{g.1/2.·/|XT

i θ}
)T

Jω.ω̂ −ω/+op.n1=2/

=−
n∑

i=1
JT

ϑΛivΛ̃T
ivJϑg

.1/2
i .ϑ̂−ϑ/−

n∑
i=1

JT
ϑδig

.1/
i

E.Λivg
.1/2
i |XT

i θ/

E{g.1/2.·/|XT
i θ}

+nJT
ϑE.Λvg

.1/dΛ̃μ/Jω.ω̂ −ω/+o.n1=2/: .23/

We now deal with the term I8. We have

n−1
n∑

i=1
JT

ωΛiv.R̂i −Ri/g
.1/
i =−n−1

n∑
i=1

g.1/
i JT

ωΛivdiΛ̃
T
iμJω.ω̂ −ω/+n−2 ∑

i,j
Kh.Uj −Ui/"jg

.1/
i JT

ωΛivdi=fα.Ui/

+n−1
n∑

i=1
g.1/

i JT
ωΛiv

∫ Ŝi

0
.I{"�s} − I{"�0}/ds: .24/

For the second term in equation (24), we consider

Sn =n−1=2
n∑

i=1
Qidin

−1
n∑

j=1
Kh.Uj −Ui/"j ,

where Qi =g.1/
i JT

ϑΛiv=fα.Ui/. We have that E."i/=0. Obviously,

Sn =n−1=2
n∑

i=1
"in

−1
n∑

j=1
Kh.Uj −Ui/Qjdj:

We have that

Sn =n−1=2
n∑

i=1
"ifα.Ui/E.Qd|Ui/+op.1/=Op.1/: .25/

It suffices to show that

Tn =n−1=2
n∑

i=1
"i{n−1

n∑
j=1

Kh.Uj −Ui/Qjdj −fα.Ui/E.Qd|Ui/}=op.1/:

The mean of Tn =0 and the variance is op.1/. Here are the calculations. Write var."i/=Gi:

var.Tn/=n−3
n∑

i=1

n∑
j=1

n∑
k=1

∑
l �=j

E["i"k{Kh.Uj −Ui/Qjdj −fα.Ui/E.Qd|Ui/}

×{Kh.Ul −Uk/Qldl −fα.Uk/E.Qd|Uk/}]

=n−3
n∑

i=1

n∑
j=1

∑
l �=j

E[Gi{Kh.Uj −Ui/Qjdj −fα.Ui/E.Qd|Ui/}

×{Kh.Ul −Ui/Qldl −fα.Ui/E.Qd|Ui/}]:

When j �=k,

E[Gi{Kh.Uj −Ui/Qjdj −fα.Ui/E.Qd|Ui/}{Kh.Ul −Ui/Qldl −fα.Ui/E.Qd|Ui/}]=O.h4/=o.1/:
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Hence,

var.Tn/=n−3
n∑

i=1

n∑
j=1

E[Gi{Kh.Uj −Ui/Qjdj −fα.Ui/E.Qd|Ui/}]+o.1/

=O.n−1/=o.1/:

For the third term in equation (24), Ŝi =Op{.nh/−1=2}. For any constant C > 0 (and similarly for C < 0),
by a direct calculation of the mean and variance, we have

∣∣∣
∫ C=

√
.nh/

0
.I{"�s} − I{"�0}/ds

∣∣∣= ∣∣∣E
∫ C=

√
.nh/

0
.I{"�s} − I{"�0}/ds

∣∣∣{1+op.1/}

=E

[∫ C=
√

.nh/

0
{F.s/−F.0/}ds

]
{1+op.1/}

=f ′.0/C2=.2nh/{1+op.1/}
=Op{1=.nh/}=op.n−1=2/,

where F is the conditional distribution function of " and f is the corresponding density. This shows that
the third term of equation (24) is also op.n−1=2/.

As a consequence,

I8 =−nJT
ω E.g.1/ΛvdΛ̃

T
μ/Jω.ω̂ −ω/+

n∑
i=1

"ifα.Ui/E.Qd|Ui/+op.n1=2/: .26/

A combination of equations (23) and (26) and expression (22) yields that

−n1=2JT
ωE.g.1/ΛvdΛ̃T

μ/Jω.ω̂ −ω/+n−1=2
n∑

i=1
"ifα.Ui/E.Qd|Ui/+n−1=2

n∑
i=1

JT
ϑΛivg

.1/
i δi

−n−1=2
n∑

i=1
JT

ϑΛivΛ̃T
ivJϑg

.1/2
i .ϑ̂−ϑ/−n−1=2

n∑
i=1

δig
.1/
i JT

ϑ

E.Λivg
.1/2
i |XT

i θ/

E.g.1/2
i |XT

i θ/

+n1=2JT
ϑE.Λvg

.1/dΛ̃μ/Jω.ω̂ −ω/+op.1/

=n−1=2
n∑

i=1
"ifα.Ui/E.Qd|Ui/+n−1=2

n∑
i=1

JT
ϑ Λ̃ivg

.1/
i δi −n1=2Qϑ.ϑ̂−ϑ/

+ .Jϑ −Jω/TE.Λvg
.1/dΛ̃μ/JωQ−1

ω

n∑
i=1

"iJT
ωΛ̃iμ +op.1/:

It follows that

n1=2 Qϑ.ϑ̂−ϑ/= n−1=2
n∑

i=1
["i{JT

ϑ E.g.1/Λvd|Ui/+ .Jϑ −Jω/TE.Λvg
.1/dΛ̃μ/JωQ−1

ω JT
ωΛ̃iμ}

+ δiJT
ϑ Λ̃ivg

.1/
i ]+op.1/,

completing the proof.

A.4. Proof of theorem 1 for the weighted estimators
For the weighted estimators, under the conditions of theorem 1, we follow similar arguments to those
used by Ichimura (1993) and show that ω̂ is a root-n-consistent estimator of ω. Because the proof is
straightforward, we do not present it here. We next demonstrate the asymptotic normality of ω̂ by using
a general result of Newey (1994).

Let

H.U/= E.X=g2|U/

E.1=g2|U/
,

and κ=m.1/
μ .U/{X −H.U/}. In addition, let
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Ψ.H, mμ, κ, g;α, β, Y , X/=Jω.Y −mμ −XTβ/.κ, XT −HT.U//=g2:

For any given HÅ, mÅ
μ , gÅ and κÅ, define

D.HÅ −H, mÅ
μ −mμ, κÅ −κ, gÅ −g, α, β, Y , X/= @Ψ

@H .HÅ −H/+ @Ψ
@mμ

.mÅ
μ −mμ/+ @Ψ

@κ
.κÅ −κ/

+ @Ψ
@g

.gÅ −g/,

where the partial derivatives are the Fréchet partial derivatives. We have

@Ψ=@H=Jω.Y −mμ −XTβ/.0, −1/T=g2,
@Ψ=@mμ =−Jω.κ, XT −HT.U//T=g2,
@Ψ=@κ=Jω.Y −mμ −XTβ/.1, 0/T=g2,

@Ψ=@g =−2Jω.Y −mμ −XTβ/.κ, XT −HT.U//T=g3:

It is easy to verify that the expectations of these partial derivatives are 0. Accordingly,

‖Ψ.mÅ
x , mÅ

μ , κÅ, gÅ;α, β, Y , X/−Ψ.H, mμ, κ, g;α, β, Y , X/

−D.HÅ −H, mÅ
μ −mμ, κÅ −κ, gÅ −g;α, β, Y , X/‖

=O.‖HÅ −H‖2 +‖mÅ
μ −mμ‖2 +‖κÅ −κ‖2 +‖gÅ −g‖2/, .27/

where ‖·‖ denotes the Sobolev norm, i.e. the supremum norm of the function itself as well as its derivatives.
Equation (27) is Newey’s assumption 5.1(i). It is also noteworthy that his assumption 5.2 holds by the
expression of D.·, · , · , ·;α, β, Y , X/. Moreover, the result

E{D.HÅ −H, mÅ
μ −mμ, κÅ −κ, gÅ −g;α, β, Y , X/}=0

leads to Newey’s assumption 5.3.
Applying similar techniques to those used in Mack and Silverman (1982), we obtain the following

expressions, which hold uniformly in u∈{XTα, X ∈ΩX}:

m̂μ.u/−mμ.u/=op.n−1=4/,
m̂.1/

μ .u/−m.1/
μ .u/=op.n−1=4/,

Ĥ.u/−H.u/=op.n−1=4/,
ĝ.u/−g.u/=op.n−1=4/,

ĝ.1/.u/−g.1/.u/=op.n−1=4/:

These results imply that κ̂−κ=op.n−1=4/. Thus, Newey’s assumption 5.1(ii) holds.
After examining Newey’s assumptions 5.1–5.3, we apply his lemma 5.1 and find that ω̂WLS has the same

limit distribution as the solution to the equation

0=
n∑

i=1
Ψ.H, mμ, κ, g;α, β, Yi, Xi/: .28/

Furthermore, it can be seen that the solution to equation (28) has the same limit distribution as described
in the statement of theorem 1. Hence, we complete the proof for asymptotic normality.

Finally, we show the efficiency of ω̂. Let pε.ε/ be the probability density function of ε and p.1/
ε .ε/ be its

first-order derivative with respect to ε. Then, the score function of ω is

Sω =−Jω

1
g2

.m.1/
μ .U/XT, XT/T p.1/

ε .ε/

pε.ε/
:

For any given function q of X, it can be shown that the nuisance tangent space P , for the three nuisance
parameters, qX.x/, pε.ε/ and mμ.U/, is {q.X/ : E.q/=0, E.εq/ is a function of X only}. Furthermore, the
orthogonal component of P is P⊥ ={εq.X/=g2 : E.q=g2|U/=0}.

Subsequently, we apply the approach of Bickel et al. (1993) and obtain the following semiparametric
efficient score function via equation (9):

Seff =Jωε.m.1/
μ .U/X̃

T
, X̃

T
/T=g2
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with

X̃ =X − E.X=g2|U/

E.1=g2|U/
:

It can be seen that Seff ∈P⊥.
For any εq∈P⊥, we have E.q=g2|U/=0. Accordingly,

E

{
.Sω −Seff /

T εq.X/

g2

}
=JωE

⎡
⎣−

(
m.1/

μ .U/X
X

)T
q

g2
E

{
εp.1/

ε .ε/

pε.ε/

}
− 1

g2

⎧⎨
⎩

(
m.1/

μ .U/X
X

)T

q

−E

⎛
⎝m.1/

μ .U/
E.X=g2|U/

E.1=g2|U/

E.X=g2|U/

E.1=g2|U/

⎞
⎠

T

q

⎫⎬
⎭

⎤
⎦:

Because E{εp.1/
ε .ε/=pε.ε/}=−1, it follows that

E{.Sω −Seff /
Tεq.X/}=Jω E[{m.1/

μ .U/E.XT=g2|U/, E.XT=g2|U/}E.q=g2|U/]=0,

i.e. Seff is the projection of Sω to P⊥, and the estimator ω̂ is therefore efficient (see Bickel et al. (1993)),
completing the proof.

A.5. Proof of equations (14) and (16) in theorem 2
The proof of equations (14) and (16) is identical to that of equations (13) and (15), except that ω̂WLS
replaces ω̂ everywhere, and we apply the asymptotic expansion of n1=2.ω̂WLS − ω/ given in theorem 1.
Routine calculations yield theorem 2.
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