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Motivated by physical activity data obtained from the BodyMedia FIT device (http://www.bodymedia.com), we
take a functional data approach for longitudinal studies with continuous proportional outcomes. The functional
structure depends on three factors. In our three-factor model, the regression structures are specified as curves
measured at various factor points with random effects that have a correlation structure. The random curve for
the continuous factor is summarized using a few important principal components. The difficulties in handling the
continuous proportion variables are solved by using a quasilikelihood-type approximation. We develop an efficient
algorithm to fit the model, which involves the selection of the number of principal components. The method is
evaluated empirically by a simulation study. This approach is applied to the BodyMedia data with 935 males and
84 consecutive days of observation, for a total of 78,540 observations. We show that sleep efficiency increases
with increasing physical activity, while its variance decreases at the same time. Copyright © 2016 John Wiley &
Sons, Ltd.
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Introduction

Motivated by physical activity data, we take a functional data approach for longitudinal studies on continuous pro-
portional outcomes. The research is aimed at understanding the influence of physical activity on sleep efficiency. The
response variable, sleep efficiency, is measured by the ratio of daily sleep time to lying down time for each participant
(Lambiase et al., 2013), and thus, it is a continuous proportion. The major explanatory factor, physical activity level,
is measured by the daily minutes of moderate to vigorous physical activity. The intensity of physical activity is evalu-
ated in a unit called METs, with 1 MET being the energy required to sit quietly, a quantity that depends on one’s body
weight and other characteristics. Moderate to vigorous physical activity has 3—6 METs and is roughly when a person is
moving fast enough or strenuously enough to burn off three to six times as much energy per minute as when she or he
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is sitting quietly. Month and weekday effects may also influence sleep efficiency, and we take them into account as two
additional factors. Therefore, our functional structure depends on physical activity, month and weekday effects factors.

It has been widely reported that greater physical activity leads to greater sleep efficiency, both marginally (Lambiase et
al., 2013; Oudegeest-Sander et al., 2013) and, in longitudinal data, within-person (Ekstedt et al., 2013). However,
these studies mainly use correlation-based or linear regression methods, which do not take advantage of newly devel-
oped instruments, such as the BodyMedia FIT device (bodymedia.com), the ActiGraph device (actigraphcorp.com)
and the ActivPal device (paltechnologies.com). These devices can measure physical activity data continuously (e.g.
minute-by-minute) for an extended period (e.g. weeks). In this study, we use data from the BodyMedia FIT device. The
BodyMedia FIT device is a multi-sensor armband that measures skin temperature, heat flux, galvanic skin response,
and motion through a three-axis accelerometer. With this device, there is the opportunity for new and more powerful
statistical methods to understand physical activity and other outcomes, both within and between individuals.

The data we have are summaries of daily minutes of moderate to vigorous physical activity (MVPA) and daily sleep
efficiency over 12-week periods with starting dates distributed throughout the calendar year. There are numerous
questions that arise, including the following:

e What is the effect of daily MVPA minutes on daily sleep efficiency?

e |f daily MVPA minutes lead to greater sleep efficiency, is the effect constant or is there some point where the
effect of increasing MVPA plateaus or even decreases?

e Does increasing MVPA minutes have influence on the stability (variability) of sleep efficiency?

The purpose of this paper is to develop initial methods that can be used to answer the questions and conjectures
described earlier. We do not claim that the methods are the last word in the analysis of physical activity and sleep
efficiency, but we believe that our work is novel because we take a functional data analysis approach to the question,
while simultaneously recognizing explicitly that sleep efficiency is a variable that necessarily is constrained to the unit
interval (0, 1), a constraint that, to the best of our knowledge, has not been considered in the functional data literature.

There are many studies for continuous proportional responses, but not for longitudinal functional data. One naive way
is to ignore that the proportional outcomes should be in the unit interval (0, 1), and then fit the responses by ordinary
linear regression, but this potentially gives predictions outside the unit interval (Kieschnick & McCullough, 2003). The
beta distribution (Ferrari & Cribari-Neto, 2004) can also be employed to analyze the data. Simas et al. (2010) and
Zhao et al. (2012) used beta regression with functional forms for predictors, but they were limited by assuming that
all observations are independent. Verkuilen & Smithson (2012) and Figueroa-Zdniga et al. (2013) used mixed effects
in the beta regression to model correlated data, but their fixed and random effects structures were not in functional
formulations. On the other hand, continuous proportions can be analyzed by first taking the logit transformation of
the outcomes and then using linear regression to fit the data. However, as we will show, this approach can lead to
biased results.

There are of course many statistical papers that focus on functional data analysis, but as far as we are aware, there
are only a few studies that focus on proportional responses. Hall et al. (2008) proposed a functional model for
non-Gaussian data. However, the model estimation is partly based on a simplified first-order linear approximation
formulation and is known to lead to biased results in some settings (Serban et al., 2013). Goldsmith et al. (2015)
proposed a generalized multilevel function-on-scalar regression model for outcomes with exponential family. Gertheiss
et al. (2015) discussed a marginal functional regression model for binary outcomes, and Scheipl et al. (2016) studied
generalized functional additive mixed models for outcomes with exponential family distribution as well as others like
beta distribution. However, these models cannot handle the effects from the three factors in our data.

In the case of correlated functional data, a large number of random effects are required to model the smooth
random curves. Current computational methods for random effects mainly use Monte Carlo or Gauss—Hermite

Stat 2016; 5: 242-250 243 Copyright © 2016 John Wiley & Sons, Ltd



H. Li et al. Stat

(wileyonlinelibrary.com) DOI: 10.1002/sta4.121 The ISI's Journal for the Rapid
Dissemination of Statistics Research

quadrature approximations (Molenberghs & Verbeke, 2005), but in our context, these are computationally expensive.
For example, Figueroa-Zufiga et al. (2013) suggested that the beta regression could require more quadrature nodes
than logistic regression.

We address this problem with the approach proposed by Cox (1996), where a quasilikelihood method (Wedderburn,
1974) is used to model continuous proportions. The quasilikelihood does not need to find a full distribution for
outcomes but only requires the specification of the first and second moments. However, the existing methodology is
limited to independent data, and we extend it to our longitudinal functional data scenario. In particular, the modelling
of the correlation structure with respect to physical activity, month and weekday effects is necessary. To build a
flexible model, we use functional random curves for the MVPA minutes. To avoid the dimension problem in random
curves, we only use a few important functional principal components to summarize the random curves. This method
is developed by Zhou et al. (2008) in the linear model, and we take this general approach to address a continuous
proportional response.

A new efficient algorithm is proposed. The algorithm includes both features of penalized quasilikelihood (Breslow &
Clayton, 1993) and the eigen-decomposition discussed in Yao et al. (2005). Because our problem involves quasi-
likelihood modelling and random effects, a penalized quasilikelihood approach is convenient. On the other hand,
the eigen-decomposition approach is efficient for simultaneous selection and estimation of the functional principal
components. As a result, the new algorithm includes both procedures.

The paper is organized as follows. Section 2 describes the model, and Section 3 is for our algorithm in model fitting.
Section 4 gives results from a simulation study. Section 5 analyzes the BodyMedia data set involving physical activity
and suggests answers to the three questions posed earlier. Concluding remarks are given in Section 6.

Model

2.1 The mixed effects model for continuous proportional data

Let Yi(r,s,t) be a continuous proportional observation at MVPA minute r, month s and weekday t for subject i =

1,...,n. Each subject has m; observations. The possible values for s can be 1,2,...,12, which represents January
to December, while t can be 1,2,...,7, indicating Sunday through Saturday. We use Yi(rj, sj, t;) to denote the jth
observation for subject /. Define Y; = {Yi(ri1, Sit, ti1), - - -+ Yi(tim;, Sim;, t,-m,.)}T.

According to the quasilikelihood method suggested by Wedderburn (1974) and McCullagh & Nelder (1989), we only
specify the first and second moments for the outcomes. The mean and variance functions of Y;(r, s, t) given random
effects are

E{Y[(f,S,t)|U/(f,S, t)} = H{/_L(f,s,t) + Ui(r7sr t)},

1
var{Y;(r, s, t)|U;(r, s, t)} = oz[E{Y,-(r,s, HIU;(r,s, L1 — E{Yi(r,s,t)|Ui(r, s, 0}, W

where H(-) denotes the logistic distribution function, w(r,s,?t) is a fixed curve, U;(r,s, t) is a random effects curve
and o2 is a dispersion parameter. We further assume that, given the random effects U;(r, s, t), the variables in Y; are
independent.

Cox (1996) discussed other candidates for modelling Y;(r, s, t). For example, the variance structure can be specified as

G 2LELYi(r,s, H)|Ui(r,s, )P [ 1 — E{Y;(r, s, H|Ui(r,s, H)}*.

However, unlike Cox’s independent observation scenarios, our method involves the random effects curves U;(r, s, t) to
model the correlation structure. Therefore, we focus on model (1).
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We further specify u(r, s, t) and U;(r, s, t) terms in (1) by additive models
w(r,s,t) = po(r) + p1(s) + p2(t); (2)
Ui(r,s,t) = Ujo(r) + Ui 1(s) + Uj2(0), (3)

where wo(r), n1(s) and ua(t) are fixed curves at r,s,t, and U;o(r), U;1(s), Ui(t) are random curves at r,s,t,
respectively. For model identifiability, we set w1(1) = u2(1) = 0. We also assume that U; o(r), U; 1(s) and U;»(t) are
mutually independent for all r, s, t.

2.2 Basis functions

To model the fixed and random curves in (2) and (3), let bo(r) = {bo,1(r), - - ., bo,gy (N}, b1(S) = {b1,1(S), ..., b1,g,(S)}T
and ba(t) = {ba,1(1), ..., baq, (1)} be the vectors of orthogonal B-spline basis functions evaluated at physical activity
minutes r, month s and weekday t, respectively. The orthogonal B-spline basis functions can be computed using an
exact approach found in the R package “orthogonalsplinebasis” (Redd, 2011; R Core Team, 2016).

We model the fixed effects curves to be

1o(r) = by (r)Bo, p1(s) = bi(s)Bi, pa(t) = b(t)B2,
where B9, B1, B2 are qo x 1, g1 x 1, g5 x 1 regression coefficient vectors, ands =2,...,12and t =2,...,7.

For the random effects curve U, o(r), we set
Uio(r) = bg(ruio,

where u; o are qo x 1 correlated random effects vectors. In practice, when gy is large, the estimation of the variance
structure for u; o could be difficult. Based on the principal component approach (Zhou et al., 2008), we summarize
Ujo by using only a few principal components by setting u;o = Z%=194a,'y(, where L is the number of principal
components, 6, is the £th go x 1 orthogonal principal component vector and «; ¢ is the £th principal component
score. For identifiability, the principal components are sorted in decreasing order by the variance of «;, and the «; ¢
is set to be independent across all £ = 1,...,L. Denote ® = (64,...,6;) and o; = (a,-,l,...,a,,L)T. We assume
o; ~ Normal(0, A), where A = diag(A,...,Ar), and thus u;o ~ Normal(0, ¥y) with ¥y = OABT. We further
denote f;(r) = b(T)(r)(?[ as the £th principal component curve.

Remark 1
Instead of using principal components, there are two commonly used models for the random effects curve U; o(r),
namely,

Uio(n) = ufy; and Uio(r) = ufy +ufyr,

where u?, and ur, are scalar random effects. The first formulation only involves random intercepts, which implies
homoscedast/cn‘y for U; o(r) across r. The second model has an additional random-slope term, so that the variance
of U;o(r) is a quadratic function over r. However, as we show in the simulation study, both formulations can be
limited when the random effects structure is complicated, and they can lead to biased estimates.

For U; 1(s) and U; »(t), we use dummy variables given as

Uii(s) = Z/ﬁl/(s = K)Ui1x =1(s = DUj1,1 +1(s =2)Uj12 + - +1(s = 12)Uj 1,12,
U2t = ZZ=1/(Z‘ =Kz =1t =Dujz1 + 1t =2Ujzz+ -+ 1t =TUi27,
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where /(-) is an indicator function, and u;; = (Uj1.1,...,Ui1,12)" and Ujs = (Uja1,...,Uj27)" are 12 x 1 and 7 x 1
random effects vectors. We assume u;; ~ Normal(0, ¥;) and u;» ~ Normal(0, ¥,) with ¥, = diag(¥;1,..., ¥1,12)
and ¥, = diag(\Ilzyl, ey ‘1127).

Therefore, models (2) and (3) can be rewritten as
1(r,s,t) = by(n o + by (3)B1 + b (H)B2; (4)
Ui(r,s,t) = by(NOa; + > 42 1(s = K)ujik + Y foy/(t = K)tj 2. (%)

The modelling with B-splines involves six sets of parameters to be estimated: (i) the dispersion parameter: o2; (ii) the
B-spline coefficients for the fixed effects: B¢, 81 and B,; (iii) the number of principal component: L; (iv) the B-spline
coefficients for principal component functions: ®; (v) the principal component scores’ covariance matrix: A; and (vi)
the covariance matrices for u;; and uj,: W, and Ws.

Model fitting procedure

3.1 Second-order approximation for continuous proportions

Estimation of the parameters is complicated by the continuous proportional outcomes. We approximate the continuous
proportions using a penalized quasilikelihood that includes a second-order approximation term. This method was
introduced in Goldstein & Rasbash (1996), and it outperforms the methods proposed by Breslow & Clayton (1993).
The method is as follows. Because H(-) is logistic distribution function, the first and second derivatives of H(-) are
H'() = HO{1 = H()} and H”() = {1 = 2H()}H'(). Let g(-) = 1/H'().
Set X(r,s,t) = {bI,(r),bI(s),b;(t)}. Let /y(s) = {l(s = 1),...,/(s = 12)}T, and L,(t) = {I(t = 1),...,I(t = 7)}T, and
T ~
set Z(r,s, t) = {by(r), 11(s), /5(t)}. Denote B = (B, I,,B;)T and u; = (UIO, uIl,uIZ) . Given known values of (8,4;),
letting i (r, s, t) = X(r, s, t)ﬁ + Z(r,s, t)u;, we use the approximate model
YI-*(I',S, t) = g{’ﬁ/‘(risl t)} [Y,'(f,S, t) - H{’ﬁ/‘(risl t)}] +,ﬁi(r,51 t)
— (1/2)g{mi(r, s, OYH"(Ti(r, s, I Z(r, s, Var(u; — W) Z' (1, s, )] (6)
~ X(r,s,)B + Z(r,s,Ou; + €(r,5,1),

where €;(r,s,t) = Normal [0,o2g{77‘,-(r,s, t)}]. The derivation of this approximation can be referred to Molenberghs &
Verbeke (2005).

3.2 Estimation algorithm

According to the second-order approximation in (6), the transformed continuous proportional outcomes Y*(r,s, t)
can be treated as continuous variables with normal distributions. We estimate the parameters using an
Expectation/Conditional Maximization Either (ECME) algorithm (Schafer, 1998). The ECME algorithm updates fixed
structure parameters by the Newton—-Raphson approach and updates the random effects parameters by the Expecta-
tion Maximization (EM) method. We provide a brief sketch of the model estimation procedure here, and the details
are in the Supporting Information for Appendix S1.

We set the initial numbers of principal components to be L = gy, and thus, ¥, is a full rank covariance matrix. We
also give initial values for other parameters listed in Section 2.2. Then the iteration procedure is as follows:

1. Update g and o2 by a Newton—-Raphson approach,
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2. Update ¥y, ¥; and ¥, by the EM method, and
3. Update L, ® and A with an eigen-decomposition of W.

The entire procedure is iterated until convergence. For convergence properties of the ECME algorithm, see
Liu & Rubin (1994).

3.3 Maximum penalized likelihood

The previous discussion focuses on the modelling of the response variables using basis functions. It is helpful, however,
to introduce roughness penalties to regularize the fits of functions (Eilers & Marx, 1996). Denote 8, to be the £th
column for ©.

We penalize the loglikelihood and update the parameters in each iteration to maximize
Loen =L — 188D —19 Y §_,0; Do,

where L is defined in the Appendix S1 Equation (S8.2), tg and 4 are penalty parameters, and the penalty matrices
are Do = [ by(nby(n'dr, Dy = [ b (s)by(s)Tds, D, = [ by (t)bs(t)" dt and D = diag(Do, D1, D>).

Using maximum penalized likelihood has only a minor effect on the estimation algorithm, although of course it has a
major effect on the estimation results. We describe the details in the Supporting Information for Appendix S1.3.

In all of our work, we use fivefold crossvalidation to choose penalty parameters. We searched over a two-dimensional
grid for g and rg. The tuning parameters are obtained by maximizing the cross-validated loglikelihood

— "1 Imjlog(2x) + log{|cov(Y))[} + {Y; — E(Y)} {eov(Y)} 1Y, — E(Y)},

where the estimates E(Y,-) and cov(Y,) are described in the Supporting Information for Appendix S1.4.

Simulation studies

We use a simulation of 500 runs to assess the performance of our longitudinal functional additive model. There are
n = 240 subjects, and each subject has 84 visits observed in 12 weeks; this is similar to our BodyMedia data, but
with a much smaller number of subjects. Each week has complete observations from Monday to Sunday. We set each
month to have 4 weeks. All subjects are observed in 3 consecutive months. For example, subject 1 is observed from
January to March and subject 2 is observed from February to April. Then Y;(r, s, t) is generated according to the beta
distribution with density function conditional on U;(r, s, t) as

L'(¢)
L) {1 = 1)}

where T'(-) is the gamma function, « = E{Yi(r,s, t)|U;(r,s,t)} and ¢ = 1/02 — 1. We set E{Yi(r,s, t)|U;(r,s, 1)} =
H{po(r) + p1(s) + p2(®) + fi(Naix + fa(Neiz + Ui (s) + Uia(®)}, where wo(r) = H(r/2 —5.5), pi(s) = (s —
7)2/36 — 1 and us(t) = —(t — 3)2/5 + 0.8. The principal component curves are f;(r) = sin{2xr/22}/+/11 and
f2(r) = cos{2mr/22}/+/11. We generate o; 1, a2, U; 1(s) and U;»(t) as normally distributed with zero means and set
Ay =12, Ay =6, Vs =2Tforall s, and W, = 1 for all t. We also generate r as uniformly distributed in [0, 22]. For
o2, we studied o2 = 0.02 by following the suggestion from Figueroa-Zifiga et al. (2013) and ¢ = 1/30, which is
similar to the result of our data application in Section 5. Our method has good performances in both scenarios, and
we only report the simulation results from o2 = 1/30 here.

itr, s, O {1 —y(r, 5,019,
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As a comparison with our method, three naive approaches are explored. The first approach (labelled as NAIVE1)
follows our algorithm but uses a random intercepts model for U; ¢(r) as discussed in Remark 1. The second method
(labelled as NAIVE2) is similar to NAIVEL but uses a random slopes model. The third method (labelled as NAIVE3)
uses an identical random effects structure as our method, but it first takes a logit transformation of the responses and
then fits the outcomes by a linear functional data model (Zhou et al., 2008).

We use cubic B-spline basis function with 10 equispaced knots to fit wuo(r) and use linear B-spline basis functions
with five and four knots to fit u;(s) and u»(f), respectively. Convergence was achieved for all simulated data sets.
The correct number of principal components was selected in all simulated data sets. Table S1 presents the mean
estimates and the mean squared errors (MSE) of the parameters, which indicates good performance in the estimation
of the model parameters for our approach.

Figure S1(a) and (b) show the true fixed curve wo(r) and the averaged estimates of the four methods. They indicate
that NAIVE1, NAIVE2 and NAIVE3 approaches lead to obviously biased outcomes, while there is little bias for our
method. Figure 1(c)-(f) represent the performance of our approach in fixed curves wi(s), w2 (t) and the principal
component curves f1(r), f2(r), respectively. Our approach captures all of the true curve patterns.

Application to physical activity data

In this section, we apply our methods to the BodyMedia data to help answer the question raised in Section 1. Our
data involve 935 males, and each person has 84 observations consisting of daily METS and daily sleep efficiency.
Referring back to the notation of Section 2, Yi(r, s, t) is the ratio of daily sleep time to lying down time, r is the average
minutes of MVPA time on the current day and previous day, s is the month and t is the weekday. We use cubic B-
spline basis function with 24 equispaced knots to fit o (r), while other basis functions follow the settings in Section 4.
The dispersion parameter o2 is estimated to be 0.034.

Figure S2 presents the estimation results for fixed effects curves uo(r), n1(s) and w2 (t), and principal component curve
f1(r). Figure S2(a) suggests that conditioning on the random effect U;(r, s, t), the relation between MVPA minutes and
sleep efficiency can be divided into three parts. From minutes O to 60, the increase of MVPA minutes leads to higher
sleep efficiency. The effect of increasing MVPA minutes flattens out gradually between minutes 60 and 120, while
the greater MVPA minutes have negative influence on sleep efficiency after minutes 120. Figure S2(b) suggests that
sleep efficiency has a strong monthly trend, where January and February have higher sleep efficiency, while October
has lower sleep efficiency. Figure S2(c) indicates that Sunday and Monday have lower sleep efficiency but the sleep
efficiency on Wednesday and Thursday is higher. Thus, it suggests that sleep efficiency is greater in the middle of
the week.

The number of principal components for MVPA minutes is selected to be 1. Figure S2(d) shows the princi-
pal component curve is decreasing with increasing MVPA time, which means that greater physical activity leads
to less between-subject variability. The result implies subjects with more physical activity have more consistent
sleep efficiency.

We also study the marginal mean and variance structure of Y;(r, s, ). The month is set to be January, and the weekday
is Monday. Figure S3(a) presents the marginal mean of the outcomes evaluated at different MVPA minutes. It displays
the increasing MVPA results in the improvement of sleep efficiency. However, the increase in sleep efficiency is up to
about 120 MVPA minutes, and then it tails off. Figure S3(b) is the marginal variance of the responses. The variability
of sleep efficiency is decreasing with increasing MVPA time. In particular, the variability at 200 MVPA minutes is
about half of that at 0 MVPA minutes. This suggests that people with higher physical activity time will generally have
more constant sleep efficiency.
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We show the correlation structure of the outcomes with respect to MVPA time on Monday in January,
corr{Y;(j, 1,2), Yi(k,1,2)}, as a 3-D plot in Figure 4. The figure reaches its peak around (j = 0,k = 0). This makes
sense because lower MVPA time leads to higher variability in sleep efficiency, which causes greater correlation. On
the other hand, the plot decreases as MVPA minutes increase. This is likely because, intuitively, sleep efficiency is
relatively constant for people with longer MVPA minutes.

@ Discussion

We have proposed a three-factor joint modelling and estimation strategy for functional data with continuous propor-
tions. The simulation results are encouraging, with little bias. The analysis of the BodyMedia data using the our method
demonstrates its utility in real applications. Our conclusions are that daily sleep efficiency improves with increasing
MVPA up to about 120 minutes and increasing MVPA results in a decrease in the variance of sleep efficiency through-
out the range of MVPA minutes. The former conclusion makes sense in general; however, the plateau of mean daily
sleep efficiency at about 120 MVPA minutes has not been reported previously, largely because fully linear modelling
of this data is standard. We believe that the substantial decrease in the variability of sleep efficiency as MVPA minutes
increase is also a new finding, with standard analyses focusing only on means.
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