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SUMMARY. Motivated by objective measurements of physical activity, we take a functional data approach to longitudinal data
with simultaneous measurement of a continuous and a binary outcomes. The regression structures are specified as smooth
curves measured at various time-points with random effects that have a hierarchical correlation structure. The random
effect curves for each variable are summarized using a few important principal components, and the association of the two
longitudinal variables is modeled through the association of the principal component scores. We use penalized splines to model
the mean curves and the principal component curves, and cast the proposed model into a mixed effects model framework
for model fitting, prediction and inference. Via a quasilikelihood type approximation for the binary component, we develop
an algorithm to fit the model. Data-based transformation of the continuous variable and selection of the number of principal
components are incorporated into the algorithm. The method is applied to the motivating physical activity data and is

evaluated empirically by a simulation study. Extensions for different types of outcomes are also discussed.
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1. Introduction

We propose a new methodology for modeling paired func-
tional data that consist of simultaneous measurements of a
continuous and a binary variable. Our methodology is moti-
vated by data recording the physical activity of individuals
over time. The paired factors, energy expenditure and inter-
ruptions to sedentary behavior (sitting or lying down), were
measured simultaneously every 5 minutes for 3 hours in sixty
individuals. The main purposes of this study are to model the
functional pattern of the two measurements, and to explore
their correlation structures. The unit of energy expenditure
recorded by the device is the metabolic equivalent (MET),
a continuous measurement. In addition, the interruption of
sedentary behavior measurement (INT) is binary, recording
whether sedentary behavior was interrupted at least once in
the corresponding time interval. Figure la displays a sample
data from one subject. Figure 1b shows the averaged METs
level across subjects with or without interruption of sedentary
behavior in each time point, respectively. The two curves have
large differences, which implies a possible correlation between
METs and interruption of sedentary behavior. Figures lc—
f are histograms and Q—Q plots for the METSs level at two
time points. The plots suggest the continuous measurement
are skewed.

Current studies have mainly focused on either continu-
ous or binary variables treated separately. For example, Yao,
Miiller, and Wang (2005b) discuss functional linear regression,
and Hall, Miller, and Yao (2008) develop a modeling strategy
for non-Gaussian longitudinal observations. However, there
is very limited methodology for joint analysis of continuous
and binary variables. In addition, as in our application to
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measurements of physical activity, data are sometimes very
skewed, and transformation is required. In this article we de-
velop methodology to handle both binary and skewed contin-
uous variables. This problem has not been addressed previ-
ously.

For the analysis of paired data with different types, a major
issue is to model the correlation structure between the two
measurements. A naive way is to ignore the correlation and
fit the two variables separately, but this potentially gives less
insight into the data than a paired analysis. In particular, our
application requires us to understand the association patterns
between two measurements over time, and, as we will show,
ignoring the correlation between the two responses can lead
to biased predictions.

To solve this problem, Gueorguieva and Agresti (2001) sug-
gest using random effects to link the variables. In the case of
functional data though, a large number of random effects are
required to model the smooth curves, and this can cause prob-
lems in computation and model interpretation. To circumvent
this issue, Zhou, Huang, and Carroll (2008) develop a method
to reduce the dimension of the problem by using a few impor-
tant principal components to summarize random curves. The
correlation between the paired variables is then modeled by
the correlation across the principal component scores. We ad-
dress our problem with this general approach, but the existing
methodology is limited to paired continuous data.

To facilitate the study of the correlation structure, we pro-
pose a paired “pseudo” normal distribution strategy. We use a
penalized quasilikelihood method to approximate the binary
variable by a “pseudo” normal variable. The skewed-normal
variable with Box—Cox transformation can also be handled
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a Sample Data: ID 49
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Figure 1. (a) Sample data from subject with ID 49. The solid line displays the METs level. Unfilled and filled dots display
whether or not interruption of sedentary behavior occurs from minute —60 to 115, respectively. See Section 5 for more
explanation of the data. (b) Averaged METs level across subjects. Solid and dashed lines represent the averaged METs
level across subjects with and without interruption of sedentary behavior from minute —60 to 115, respectively. (c) and (d)
histogram and Q-Q plot for the METs level on minute —5. (e) and (f) histogram and Q-Q plot for the METs level on minute

0.

as normal. Thus two variables can be treated as a paired
“pseudo” normal distribution, which facilitates estimation of
the correlation structure. Our methodological strategy can be
extended to other types of variables with exponential distribu-
tions, as we will show, see Section 6 and Online Supplemental
Materials.

Current computational techniques for the mixed con-
tinuous and binary problems mainly use Monte Carlo or
Gauss—Hermite quadrature approximations (Gueorguieva

and Agresti, 2001), which can be computationally expensive
in many scenarios. Based on our paired “pseudo” normal
distribution, a new efficient algorithm is proposed. The algo-
rithm has to estimate the principal component vectors, and it
includes features of both the model-based approach proposed
by Zhou et al. (2008) and the eigen-decomposition method
discussed in Yao, Miiller, and Wang (2005a). Since our
problem involves skewed continuous and binary variables, the
likelihood approach is attractive, but the eigen-decomposition
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approach is much more computationally efficient. As a result,
the new algorithm includes both features of likelihood and
eigen-decomposition.

The article is organized as follows. Section 2 describes the
model, while Section 3 describes our algorithm for model fit-
ting. Section 4 gives results from a simulation study. Section 5
analyzes the motivating physical activity data set. Concluding
remarks and the model extensions are in Section 6.

2. Model

2.1. The Mixed Effects Model for Continuous and
Binary Data

Let {Y;(¢), Wi(¢)} be the paired continuous and binary outcome
observations at time ¢ for subject i =1,...,n, and let #; for
j=1,....,m; be the observation times. Let g, (-;1) be the
Box—Cox transformation with transformation parameter A,
and let logit(-) denote the logit transformation. Our general
model is

geelYi(t); A} = u(t) + Ui (t) + €,i(2), (1)
logit[pr{W;(t) = 1}] = v(1) + V(1) (2)

where () and v(r) are fixed curves, U;(r) and V;(¢) are cor-
related random effects curves, and €, (¢) denotes independent
random noise with mean zero and variance o?. We assume
that given U;(r) and V,(r), the paired observations are in-
dependent. Therefore, the correlation structure between the
two variables comes from the random effects curves U;(#) and
Vi(t).

We further model U;(r) and V() by k, and k,, principal
components, so that

k,\‘ kw
Ui(t) = ny,((t)a_vi,i; Vi(t) = wa,l(t)awi,i- (3)
=1 =1

Here {f,1(t), ..., fir,®)} and  {fu1(2), ..., fuur, (1)} are
orthogonal principal component functions, which have
[ Fra@) fro (1) dt = [ fue(r) fuee(£) dt = I(€ = £*), where I(:)
is an indicator function. {ety; 1, ..., ok, } and {oi1, ..., Cwik, )
are independent respective principal component scores.

In practice, the fixed curves {u(¢), v(¢)}, number of prin-
cipal components (k,,k,) as well as principal component
functions {fy (1), fuwe(t);€=1,...,ky,, €*=1,...,k,} are un-
known, and need to be estimated. In addition, (ay; ¢, Quier; £ =
Lok, f=1,..., k,) are also unknown and we treat them
as random effects following normal distributions with zero
means and a covariance matrix from which we obtain the cor-
relation structure between paired observations. The detailed
model specification will be given in Section 2.2.

2.2.  Modeling with B-Splines

We employ a set of smooth basis functions to represent the
functions {u(t), v(r), U;(t), V,(#)}. Other basis expansion ap-
proximation of functions suggested in Ruppert, Wand, and
Carroll (2003) could of course be used in our methodology.
Let b(t) = {b1(t), ..., b,(t)}T be the vector of orthogonal B-
spline basis functions evaluated at ¢, which can be computed
using an exact approach found in the R package “orthogo-
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nalsplinebasis.” This means that [ b(1)b™ (¢) dt = I,, where I,
is the ¢ x ¢ identity matrix. In this approach, and similar to
Zhou et al. (2008) we smooth the fixed curves and principal
component functions by writing

w(t) = br(0)By; v(1) =0T (1)Bu;
fy,é(t) = bT(I)ey.ZQ fw.l(t) = bT([)ew.lv (4)

where B, and B, are g x 1 spline coefficients vectors for fixed
effects, and 0,, and 6, are g x 1 orthogonal spline coeffi-
cients vectors for principal component functions which have
0T 0y = OF 6,00 = 1(£ = £%).

Combining (3) and (4), we write model (1) and (2) as

geelYi(t); A} = bT(l)IB,v + bT(t)GyO‘yi + 6)’i(t)? (5)
logit[pr{W;(¢) = 1}] = b™(£) B, + b* (1) O, (6)

where ©y = (0,1,...,0,,) and Oy = (Oy1,..., 0wk, ), Oy =
(0tyity .-y oyig,)T and oy = (duits - - - Quik,)T. Based on the
orthogonality in (4), 070, =1 and 0,0, =I,.

We assume the random effect principal component scores
a,; and oy, follow normal distributions with mean zero and
covariance matrices Ay, = diag(Ayy1, ..., Ayy,) and Ay, =
diag(Apw,1s - - -» Apwi, ), Where Ay, = var(ay,v,g) and Ay, =
var(ay;¢). For identifiability (Zhou et al., 2008), we require
Ayyr > > Ay and Ayyq >0 > Ayyg,. In our model
settings, ®,a,; and ©,a,; are identifiable, but the signs of
©, and ®, in each of their columns are not identifiable. Iden-
tifiability can be achieved using the sign constraint criteria
discussed in Zhou et al. (2008, 2010).

To study the correlated paired observations, we have to
study the association structure between o,; and ;. Define
the random effects o; = (¢T, of,)T = Normal(0, A) with the
(ky + ky) x (ky +k,) matrix A including diagonal elements
A,y and A,,, and off-diagonal element A,. In particular, A,
determines the covariance of U;(¢) and V;(t) by

cov{U(1), V;(t)} = b (1)0,A,, O b(r).

Therefore, the modeling with B-splines involves six sets of
parameters to be estimated: (a) the Box—Cox transformation
parameter: A; (b) the B-spline coefficients for the fixed effects:
B, and B,; (c) the random noise variance: o%; (d) the number
of principal components: k, and k,; (e) the B-spline coeffi-
cients for principal component functions: ®, and ®,,; and (f)
the principal component scores covariance matrix: Ay, Ay,
and A,,.

2.3.

Section 2.2 specifies the model and the parameters that are
to be estimated, but estimation is complicated by the binary
variable. To solve this problem, we approximate the binary
variable W;(r) using a penalized quasilikelihood strategy that
includes a second order approximation term. This method
was introduced in Goldstein and Rasbash (1996) and greatly
improves over the methods that were discussed in Breslow
and Clayton (1993). The method is as follows. Let H(-) be
the inverse logit function, and let the first and second deriva-
tives of H(-) be H'(-) and H’(-), respectively. Based on the

Paired “Pseudo” Normal Distribution
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binary data model (6), given known values of (Ew @w,fx\wi)

and 7;(¢) = b () By + b (1)Oy@yui, we have the approximate
model

Wi (1) = [1/H {n()}][Wi(r) —

_[1/2H,{/ﬁi(l)}]H”{/ﬁi(t)}{bT(Z)GW@‘(QW aw)@Tb(l)}

= bT(1)By + b (£)Ouoru + €uilt), (7)

H{n; (1)} + i (1)

where €,,;(t) = Normal[0, 1/H'{1;(¢)}].
Therefore, models (5) and (6) become

=bT (), + b (1)O,0y; + €,i(1); (8)
= b7 (1) By + BT (1)O 0ty + €4i(1). (9)

where Y (t) = g {¥:(r); A}. Equations (8) and (9) play impor-
tant roles in inference because they indicate that, the Box—
Cox transformed continuous variable is normal, the trans-
formed binary variable is approximately normal, and the ran-
dom effect terms «,; and «,,; are also normal. Therefore, we
obtain a paired “pseudo” normal distribution. The bivariate
formulation also leads to convenient estimation of model pa-
rameters; see Section 3.

3. Model Fitting Procedure

3.1.  Link to the Mized Effects Model

To facilitate model fitting, we first rewrite the principal com-
ponent part of the models (8) and (9) by yy = Oyay,, Yui =
®,ay;, and further denote y; = (y;l; )/UE)T and covari-
ance matrix W= cov(y;) = cov(¥yi, Yui) = cov(O,ay, Oyety;)
with block diagonal elements W,, = ®},A”®}T and W, =
@),,,Aww('ﬂg and off-diagonal elements W¥,,, = ®yAyw®5 and its
transpose.

Then (8) and (9) become

= bT([)ﬂy + bT(t)yyi + Eyi(t)§
= bT(t)IBu; + bT(t)ywi + ewi(t)-

(10)
(11)

The newly introduced random effect y; and its covariance
matrix W are not included in the list of model parameters in
Section 2.2, but they are important ancillary components in
our model fitting. In particular, the special case of k, =k, = ¢
makes W full rank. That in turn makes (10) and (11) equiva-
lent to the commonly used mixed effect model or multivariate
mixed effects model. Our estimation algorithm takes advan-
tage of that equivalence. We describe the method in more
detail in the next section.

3.2. Joint Estimation Algorithm

We estimate the parameters by extending the idea of an
ECME algorithm (Schafer, 1998). The ECME algorithm up-
dates the fixed effects parameters by the Newton—Raphson
approach, and updates the random effects parameters by the
EM method. We provide a brief sketch of the model fitting
here.

We set the initial numbers of principal components to be
ky =k, = q and thus the initial value of W is a full rank co-
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variance matrix. We also give initial values for parameters A,
By, Bw and o?. Then the iteration procedure is

1. update A, By, B, and o2 by a Newton-Raphson approach,

2. update ¥ by the EM method, and

3. update ky, k,, Oy, O,, Ay, Ay, and A,, with an eigen-
decomposition of \lJ

The entire procedure is iterated until convergence. The de-
tails of Steps 1 and 2 are given in the Online Supplementary
Material. Section 3.3 displays the details for Step 3.

3.3.  Figenvalue Decomposition Procedure

For the W obtained in the EM step, we use eigenvalue decom-
position for ¥,, and W¥,,, as

—@)A @ S W, = OuA 0T

y? w?

s A\y q} and Ay = diag{Aww 1seees
,,,,,,q} Components in Aw and Aww are sorted in decreas-

Where Zw = diaug{zvv Loess

ing order, respectively. O and @w are orthogonal matrices,
respectively. We also obtain AW = @ lI/)wG)w and its trans-
pose.

To select the number of principal components (k,, k), we
set a threshold P and choose k, and k,, as

A A,

ky = min {k Cwat ot Bk P} :
A,V.vyl +oet A.vy-q
Auwr + -+ Doy

k, = min {k ool + * vk > P} .
Aww.l +--- 4+ Aww,q

Then we maintain the selected components and remove un-
selected components from the covariance structure by taking
®, and O, to be the first k, and k, columns of ©, and ©,,
respectively; A,, and A, to be the first k, and k, rows and
columns of Zyy and wa, respectively; and Ay, to be the first
ky rows and k, columns of Z}w Thus, we have updated pa-
rameters ky, ky, Oy, Oy, Ay, Ay and Ay,

yyy
Finally, the reduced rank WER can be obtained by

R —0A0T,

where @ is the block diagonal matrix of updated ©, and ©,,
and A has diagonal elements with updated A,, and A,,,, and
off-diagonal element with updated A,,. The updated reduced-
rank WER is used in the next iteration.

A subjective choice of P is often satisfactory. We use P =
0.85 in all our numerical studies to follow, simulations and
data analysis, with good results. Of course, other approaches
such as AIC and BIC could be used instead.

3.4. Mazimum Penalized Likelihood

The previous discussion focuses on the modeling of the re-
sponse variables using basis functions. It is helpful however
to introduce roughness penalties to regularize the fits of the
functions (Eilers and Marx, 1996).
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We penalize the loglikelihood and update the parameters
in each iteration to maximize

cpen = £ - Tu:Brerﬁy - tvﬂgDﬂw - Tuzlz‘ 10‘T2D0
_tvzlzmleszDgw ¢ (12)

where the loglikelihood £ is defined by the model (8) and (9),
with formula presented in the Online Supplementary Mate-
rial, 7,, 7,, Ty and 7, are penalty parameters, and the penalty
matrix is D = f b"()b"(1)T dt. Using maximum penalized like-
lihood has only a minor effect on the form of the algorithm
in Section 3.2, although of course it has a major effect on the
estimation results. In the Online Supplementary Material, we
describe the updated algorithm for maximum penalized like-
lihood.

3.5.  Tuning Parameter Selection

We use fivefold crossvalidation to choose penalty parameters
T,, Ty, Tu and 7, in (12). Since the computational cost of
searching over a four dimensional grid for 7,, 7,, 7y, and 7,
is non-trivial though, we separate the search into two parts,
as follows. First, the tuning parameters for the continuous
variable, 7, and 7y, are obtained by maximizing the crossval-
idated likelihood based on the marginal likelihood for Y; from
model (8).

Second, we find 7, and 7, by maximizing the crossvalidated
likelihood for the binary variable. However, Molenberghs and
Verbeke (2005) note that the likelihood value in (9) for W} ()
with “pseudo” normal distribution is different from model (6)
for the actual binary data W;(t). As a result, for crossvalida-
tion we use the crossvalidated likelihood from actual binary
data W;(r) model

/ (H VH(BT (1) By 4 6T (1)© 0t} Wi ()

(1 —H{"(1)B, + b (1)O ,au,}}lw"’ff)) F(uis Ayny) devy,

(13)

where f(oy;; Ayy) is the normal density function for o, de-
fined in Section 2.2. We compute (13) with a Gauss—Hermite
quadrature method with 21 quadrature points.

An anonymous referee suggested that a REML approach
might be able to be developed to estimate these turning pa-
rameters as variance components. Our crossvalidation method
is well established in the non-/semi-parametric literature, and
our results indicate that it works well in our particular situ-
ation, as well as being straightforward. Future work could
develop a REML approach in our context.

4. Simulation Studies

In this section, we use simulation studies to illustrate the per-
formance of our method (labeled as JOINT). As a compari-
son, a naive approach is also explored, which separately fits
the two variables by assuming them to be independent (la-
beled as INDEPENDENT).
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In the simulation study of 500 runs, we have n = 60 sub-
jects and each subject contributes data at 36 time points.
The time points for each subject are equally spaced, f;; =
J, j=1,...,36. At time 7, subject i has two observations
{Y:(t), Wi(1)}, where

gtr{Yi([); )‘} = /’L(t) + fy,l(t)ayi,l + fy,2(t)(xyi,2 + eyi(t);
logit{W;(t) = 1} = v(t) + fuw1(t)otwi1,

with var{e;()} =02 =0.25 and A=0.5. The fixed ef-
fects curves have the form w(r) =3+ 1/25+ exp{—(t —
18)%/25} and v(r) = exp(t/4 — 5.5)/{1 + exp(1/4 — 5.5)} — 1.5.
The principal component functions are f,1(t) = sin{27(t —
1)/35}/4/17.5, fy2(t) = cos{2n(t — 1)/35}/«/17 5 and Jwa(t) =
1/4/35, 50 that [ f2,(t)dr = [ f2,(t)dr = [ f2,(t)dr =1 and
[ fr1(@t) fr2(t)dt = 0. We set Am_lz AM_6 Apw1 =
36. In addition, Ay, =10, and Ay, = 7. In this setting,
approximately 30% of the binary responses equal 1.0.

We use a cubic B-spline basis function with 10 equispaced
knots to fit the data in both the JOINT and INDEPENDENT
approaches. We also use both model fitting methods to esti-
mate bivariate the conditional mean curve E{Y;(¢)|W;(t — 1) =
1, W;(¢r — 2) = 1}. Figure 2 summarizes the results graphically.
Figure 2a—e shows the true fixed and random curves, and
the averaged estimates of the two methods. The JOINT and
INDEPENDENT methods have similar estimates which cap-
ture the true curve patterns. Figure 2f shows the estimate of
E{Y;(1)|W;(t — 1) =1, W;(t — 2) = 1}. Our JOINT approach is
obviously the much less biased of the two, indicating the need
for joint modeling. Table 1 presents the means and the mean
squared errors (MSE) of the parameter estimates.

Other methods based on pre-smoothing the individual data
are discussed in the Online Supplementary Material.

5. Application to Physical Activity Data

In this section we apply our methods to data from Kozey-
Keadle et al. (in press) who measured both energy expendi-
ture and interruptions to sedentary behavior (sitting or lying
down). Those data are part of a larger project that inves-
tigated the metabolic effects of several interventions to in-
crease exercise and reduce sedentary time in moderately over-
weight but healthy office workers. The device they used was
an ActivPAL™ (www.paltech.plus.com), a wearable monitor
that uses accelerometers to measure movement and the angle
of the wearer’s leg simultaneously over time and on a dense
time scale. The movement measurements are used to esti-
mate energy expenditure, and the leg angle detects when the
wearer stands up, which indicates an interruption of sedentary
behavior.

The unit of energy expenditure recorded by the device is
the metabolic equivalent (MET), which is a relative measure
that is defined as the ratio of a person’s energy cost dur-
ing an activity to that person’s resting energy expenditure.
For instance, sitting still while awake is 1 MET, and walk-
ing is approximately 2—4 METSs, depending on the speed. An
activity that requires at least 3 METs is termed moderate
to vigorous physical activity (MVPA). METs is a continuous
measurement, but it has an approximate floor (1 MET), so
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a Y, Fixed effects curve p(t)
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b W, Fixed effects curve v(t)

o
2 4
0
Te) o -
< ] T
o
< 2
I
n
©
0
—- e
i |
0 | Nl
N T T T T T T T T c\ll T T T T T T T T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
C v, Random effects curve f , 4(t) d v, Random effects curve f v.2(t)
< ~
o o
o 2 o ¢
o o
o o
ol ol
N N
T ¢ ° 7
< <
S 1 S A
| T T T T T T T T I T T T T T T T T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
€ W, Random effects curve f  1(t) f Mean curve E{Y i(D)Wi(t-1)=1,Wi(t-2) =1}
< |
S -
™ =]
@
o
g ] - o -
L] o LJ [ ] [} ] L]
© -
e
~ -
o
. © -
© T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Time points t

Figure 2. Fitted fixed effects curves and principal component functions for 500 simulated data sets: (a) fixed effects curve
u(t) of Y, (b) fixed effects curve v(r) of W, (c) principal component function f,(¢) for ¥, (d) principal component function
fy.2(t) for Y, (e) principal component function f, 1(t) for W, (f) mean curve for E{Y;(t)|W;(t — 1) = 1, W;(r — 2) = 1}. Dotted
lines denote the true curves. Solid and dot-dashed lines represent the averaged values of the fitted curves for the methods

JOINT and INDEPENDENT, respectively.

measurements of METSs tend to be skewed to the right. Re-
ferring back to the notation of Section 2, ¥;(¢) is mean METSs
minus 1.24 for subject i in the tth time interval. The inter-
ruption of sedentary behavior measurement (INT) is binary,
and W;(r) =1 if sedentary behavior was interrupted at least
once in the rth time interval and is zero otherwise.

We have summarized the data in five minute intervals. To
illustrate our methods, we study the pattern of MET's and in-
terruptions to sedentary behavior in the time around a bout of

MVPA. To do this, we selected one day from each individual
and found the first MVPA bout. Then we extracted data for
1 hour before and 2 hours after that bout (36 five-minute in-
tervals). In our figures, minute —60 denotes 1 hour before the
first MVPA bout, minute 0 represents the first MVPA bout
and minute 115 ends 2 hours after the first MVPA bout. Since
physical activity and sedentary behavior are related, we ex-
pect correlation between METSs and interruption of sedentary
behavior across time.
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Table 1
Results for simulation. Displayed are the average estimates
and mean squared errors (MSE) of the parameters for the
JOINT and INDEPENDENT methods. The numbers marked
with an asterisk means that the actual number is multiplied

by 1000.

Parameter o2 A Ay Ay
True 0.25 0.50 12.00 6.00
JOINT mean 0.24 0.49 11.54 5.32
INDEPENDENT mean 0.23 0.48 11.28 5.25
JOINT MSE 1.08* 0.92* 5.61 1.99
INDEPENDENT MSE 0.79* 0.73* 4.90 1.81
Parameter Apw.1 Ay A2

True 36.00 10.00 7.00

JOINT mean 36.17 9.62 6.35
INDEPENDENT mean  36.03 NA NA

JOINT MSE 70.44 15.20 5.80
INDEPENDENT MSE 69.67 NA NA

The model used cubic B-splines with ten equally spaced
interior knots. Fivefold crossvalidation was used to select the
penalty parameters. Figure 3a and b presents fixed effects for
METs, u(t), and interruption of sedentary behavior, and v(z).
The plots include the estimated curves and 90% bootstrap
confidence intervals. The plots illustrate that mean energy
expenditure (METS) increases dramatically at about 15 min-
utes before the first MVPA bout, and decreases back to just
above the starting level by an hour after the bout. Similarly,
the probability of interrupting sedentary behavior increases
before the bout of MVPA, and decreases after the bout has
started. The transformation parameter is A = 0.073 which in-
dicates severe skewness for METs.

The approach described in Section 3 results in k, = k,, = 2
principal components. Figure 3c—f displays the principal com-
ponent curves for METs {f,1(7), f,2(f)} and interruption of
sedentary behavior, { f,,1(¢), fuw.2(f)}, along with correspond-
ing 90% bootstrap confidence intervals. All of the principal
component curves suggest that the subject-to-subject vari-
ability of MET's and interruption of sedentary behavior can be
divided approximately into three intervals: 0—60 minutes be-
fore the first MVPA bout, 0-60 minutes after the bout started,
and 60-120 minutes after the bout started. The first compo-
nent for METS, f,1(¢), rises to a peak about 40 minutes after
the start of the MVPA bout, decreases after that, but it stays
positive. This suggests that main mode of subject to subject
variability in METSs is how much energy was expended and
how long the bout of activity lasted. On the other hand, f, 2 (7)
has one positive and two negative peaks, which indicates vari-
ability only in the METSs cost of the bout, not the duration.
For interruptions to sedentary behavior, f,,1(#) does not cross
zero, and this shows that the variation is largely characterized
by more or fewer interruptions at all time points. Moreover,
the variations are positively correlated, which implies that
each subject was more (or less) likely to interrupt sedentary
behavior in each interval. The second component for interrup-
tion of sedentary behavior, f, 2(¢), has one positive and two
negative peaks which suggests that subjects who were more
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likely to have breaks from sedentary shortly after the MVPA
bout were less likely to interrupt sedentary behavior before or
after the bout, or vice versa.

We obtained the estimates for A, ; =21.41, A, 5 = 5.15,
Apw1 =926, Ayy2 =385, Ay =354, Ay =—4.03,
Ay = —2.31, and Ay, 92 = 1.11. They show that the pri-
mary principal component scores in the two variables are
positively correlated with correlation coefficient 0.25, which
indicates that the energy expenditure and sedentary behavior
interruptions can be positively associated at some time points.

To illustrate explicitly the covariance structure of the prin-
cipal components curves, we take cov{U;(r), V;(s)} as 3D plot
in Figure 4. The covariance surface appears to have four fea-
tures. First, METs and interruption of sedentary behavior
are negatively correlated when the MVPA bout occurred (¢
and s both zero). This makes sense since sedentary to non-
sedentary transitions are less likely to occur during a bout
of moderate to vigorous activity. Next, when # > 0 and s > 0,
METSs and interruption of sedentary behavior are positively
correlated. Again, this might be expected since an interrup-
tion of sedentary behavior is likely to be associated with an
increase in energy expenditure. Third, the correlation is also
positive when ¢ > 0 and s < 0.

This is probably the most interesting feature of the plot,
and it suggests that people who are more likely to interrupt
sedentary behavior (i.e., stand up more often) at a time when
they are generally inactive are also more likely to be more ac-
tive after a bout of MVPA. Finally, before the bout of MVPA
(t < 0), there is little correlation between METs and inter-
ruption of sedentary behavior. This is likely because, by con-
struction, METSs were relatively low and constant before the
MVPA bout.

Suppose someone has made consecutive sedentary behav-
ior interruptions in the previous 10 minutes. It is of in-
terest to estimate the expectation of energy expenditure in
the next time period. More generally, there is interest in
estimating the current mean of METSs given the sedentary
behavior interruption history in the past m time periods,
which is E{Y;(¢)|W;(t —1),..., W;(t —m)}. Our fitted model
can provide such mean curves. Figure 5 shows the mean curve
with/without sedentary behavior interruptions in the previ-
ous 10 minutes. It can be seen that without previous seden-
tary behavior interruptions, the energy expenditure is higher
around the MVPA bout.

6. Extensions and Discussion

We have proposed a joint modeling and estimation strategy
for functional data with both continuous and binary vari-
ables. Because the physical activity data in Section 5 is highly
skewed, our algorithm estimates a Box—Cox transformation,
while at the same time employing a data-based method to
select the number of principal components for both variables.
The simulation results are encouraging and show that our
method has little bias and outperforms separate marginal
analyses of the two responses. The analysis of the physical
activity data using the our method demonstrates its utility
in applications.

In Section 2.2, our model constructs the correlation
structure between two variables by using correlated principal
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a Fixed effects curve p(t)
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Figure 3. Fixed effects and mean structure for the physical activity data in Section 5: (a) fixed effects curve of METs,
(b) fixed effects curve of interruption of sedentary behavior, (¢) and (d) principal component function for METSs, (e) and (f)
principal component function for interruption of sedentary behavior. Solid lines represent the averaged values of the fitted
curves. The upper and lower dashed lines are the 5% and 95% quantiles of the fitted values across 500 bootstrap estimates.

component scores. There are alternative models to postu-
late the association, such as conditional formulations. For
example, we can extend our model to have

gulYi(1)|Wi(1); ) = I{Wi(r) = Ohpo(r) + H{Wi() = 1}ua (1)
+U;(1) + €,(1),
logit[pr{W;(r) = 1}] = v(r) + V.(z),

where g, {Y;(t)|W;(¢); 1} denotes that the Box-Cox trans-
formed continuous variable Y;(7) depends on the observation

of W;(t), and po(#) and w4 (t) are the fixed effect curves under
W;(t)=0 and W;(r) =1, respectively. Other settings follow the
model in Section 2. Therefore, given different observations of
W;(t), the Box—Cox transformed Y;(f) may involve different
fixed effect curves. Similarly, another conditional formulation
is

logit[pr{W;(t) = 1|Y;(£)}] = vo(r) + vi{t, Yi(£)} + Vi(2),
gurlYi(1); ) = (1) + Ui(r) + € (1),
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Figure 4. The estimates of covariance surfaces for

cov{U;(t), Vi(s)}.

where pr{W;(¢) = 1|Y;(¢)} is the probability of W;(t) = 1 given
the observation of Y;(¢), and vo(r) and vq{t, Y;(¢r)} are the
fixed effect curves depending on time ¢ and the observation
of {t,Y;(t)}, respectively. Both conditional models can be
modeled by similar B-spline and the paired “pseudo” normal
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Figure 5. The estimates of mean curves for METSs level.
Solid line represents the expected curve without sedentary
behavior interruptions in the past 10 minutes, while dashed
line displays the curve with sedentary behavior interruptions
in the past 10 minutes.
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distribution framework discussed in Section 2, and our
algorithm can fit both models with minor modifications.
We study the two models in detail and use them to fit our
physical activity data. The results are included in the Online
Supplementary Materials.

Although our method is developed to handle physical ac-
tivity data with mixed continuous and binary variables, it can
be extended to handle data of other types. In particular, when
the variable belongs to the exponential family with canonical
link, the normalized approximation in (7) can be conducted
by taking H(-) to be the corresponding inverse canonical link
function, and H'(-) and H"(-) as the first and second deriva-
tives of H(-), respectively. For example, consider count-binary
mixed data where Y;(¢) is replaced with a count observation
with log link for subject i at time point ¢, and W;(¢) follows
the definition of binary variable as earlier. This model can be
written as

log{¥,(1)} = () + U, (1), logit[pr(Wi(r) = 1}] = v(r) + Vi (1).

Again, our modeling strategy and computation algorithm can
easily handle these data with minor modification. We study
this model via a simulation study illustrated in the Online
Supplementary Materials. The simulation results have little
bias, which suggests our methods are flexible enough to handle
data of different types.

Finally, we have used one parameter A for data transforma-
tion. It would be interesting to consider letting the data trans-
formation parameter vary with time, use A(¢). This has the
same flavor of spatially adaptive penalized regression splines,
for example, Crainiceanu et al. (2007), where the penalty pa-
rameter is allowed to vary with time. Because different Box—
Cox transformations are on very different scales, some normal-
ization to alleviate this phenomena will be useful, for example,
see Hinkley and Runger (1984).

7. Supplementary Materials

R programs, technical details, tables, and figures referenced
in Sections 2, 3, 4, and 6 are available with this paper at the
Biometrics website on Wiley Online Library.
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