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1 Introduction

Mismeasurement in variables arises ubiquitously in practice, and it has long been a concern in

various fields including clinical and epidemiological studies. In nutrition studies, for instance,

food frequency questionnaires are commonly used to measure diet, and it is known that this

instrument involves a large degree of variation and measurement error (e.g., Rosner et al.

1989). Measurement error may occur for different reasons. Sometimes variables may be

difficult to observe precisely due to physical location or cost. Sometimes they are impossible

to measure accurately due to their nature. For example, the level of exposure to radiation

cannot be measured accurately (e.g., Pierce et al. 1992). In other situations, a variable may

represent the average of a certain quantity over time, and any practical way of measuring

such a variable necessarily incurs error.

Variables are often classified into two different categories leading to measurement error

in continuous variables and misclassification of discrete variables. It is known that ignoring

mismeasurement of variables often leads to biased results. For example, in the simple linear

regression model where a covariate is subject to classical additive error, the estimate of the

slope can be attenuated towards zero if the error in the covariate is ignored. The effect of

mismeasurement in a covariate can be complex, generally depending on the form of the error

model and the relationship between the response and the covariates as well as the distribution

of the covariates. There is an enormous literature on this subject (e.g., Stefanski and Carroll,

1987; Nakamura, 1990; Carroll and Wand, 1990; Rosner et al., 1990; Rosner et al., 1992;

Wang and Davidian, 1996; Wang et al., 1998; Lin and Carroll, 2000; Huang and Wang, 2001;

Liang and Wang, 2005; Spiegelman et al., 2005; Zucker and Spiegelman, 2004; Zucker and

Spiegelman, 2008; Sugar et al., 2007; Hall and Ma, 2007; Yi, 2008; Liang, 2009; Yi et al.,

2011; Yi et al., 2012). Textbook treatments of measurement error in regression can be found

in Fuller (1987), Gustafson (2004), Carroll et al. (2006) and Buonaccorsi (2010).

Although there has been extensive attention on either covariate measurement error (e.g.,

Carroll et al., 2006; Buonaccorsi, 2010) or covariate misclassification (e.g., Akazawa et al.,

1998; Gustafson, 2004; Buonaccorsi, et al., 2005; Wang et al., 2008; Dalen et al., 2009;

Buonaccorsi, 2010 and the references therein), relatively little work has been published ad-
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dressing both characteristics simultaneously. The only work we are aware of is Spiegelman

et al. (2000), where both continuous and discrete covariates are allowed to be subject to

error or misclassification. However, this work was restricted to a binary outcome, using lo-

gistic regression and maximum likelihood to obtain estimates and inference. More discussion

and a generalization of their work to allow for misspecification of the model describing the

relationship between the true and observed covariates are given in Section 3.3.1.

Our goal is to develop a rich class of methods to handle data with both covariate mea-

surement error and misclassification under general model frameworks. For convenience, we

embed our approach within the framework of the generalized linear model, a class of models

that are widely applied in practice. Regarding the measurement error and misclassification

processes, we consider the scenario that an external validation study is available. We develop

a number of estimation methods and inference tools which apply under a wide range of cir-

cumstances. Our investigation covers both functional and structural modeling strategies for

the measurement error and misclassification processes. In particular, our likelihood method

differs from that of Spiegelman et al. (2000) in several aspects which are discussed in Section

3.4.

Our paper contains the following sections. In Section 2, we describe the models for

the data with mismeasured continuous covariates or misclassified discrete covariates, and in

Section 3, we develop methods to correct bias induced from mismeasured or misclassified

covariates. Asymptotic theory is described in Section 4. In Section 5, we further propose

two methods that are approximate but easy to implement to partially correct for bias due

to measurement error and misclassification. To assess the performance of our methods, we

conduct simulation studies and present an empirical data analysis in Section 6. Concluding

remarks are given in Section 7.
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2 Notation and Model Setup

2.1 Response Model

Suppose there are n individuals in the main study. For i = 1, ..., n, let Yi be the response

variable for the ith subject. Let Wi be the vector of covariates that are precisely measured,

Xi be the vector of error-prone covariates, and Zi be a scalar binary covariate subject to

misclassification. Extensions to multiple binary covariates subject to misclassification are

straightforward but involve more complex notation.

We are interested in the relationship between the response variable Yi and the true co-

variates (Xi, Zi,Wi). In particular, we link the response to the covariates using a parametric

model f(yi|xi, zi,wi;β) where f is a specified function and β is a vector of unknown pa-

rameters. The primary objective here is to conduct estimation and inference about the

parameters in β. To clearly demonstrate our proposed methods, here we consider a concrete

model form: the generalized linear model. To be specific, assume that Yi has the probability

density or mass function from the exponential family

f(yi) = exp[{yiθ − b(θ)}/d(ϕ) + c(yi, ϕ)],

where b(·), c(·, ·) and d(·) are known functions, θ is a canonical parameter, and ϕ is a

dispersion parameter. The mean and variance of Yi are b′(θ) and d(ϕ)b′′(θ), respectively

(McCullagh and Nelder 1989).

Let µi = E(Yi|Xi, Zi,Wi) and vi = var(Yi|Xi, Zi,Wi) denote the conditional mean and

variance of Yi, given covariates, respectively. It is customary to set µi = g−1{b′(θ)} and

vi = h−1[g−1{b′(θ)}] for some functions g and h, together with a regression model for b′(θ).

More specifically, we consider the regression model

g(µi) = XT

i βx + Ziβz +WT

i βw, (1)

where g(·) is a known monotone function, and β = (βT

x, βz,β
T

w)
T is the vector of regression

parameters. An intercept may be included in βw by including 1 in the covariate vector Wi.

Further, assume vi = h−1(µi, ϕ), where h(·) is a known function and ϕ is the dispersion or
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scale parameter that is known or may be estimated. For instance, for binary data there is

no ϕ and vi = µi(1− µi).

2.2 Measurement Error and Misclassification Processes

LetX∗
i and Z∗

i be the observed measurements ofXi and Zi, respectively, i = 1, ..., n. Suppose

that the data come from a main study and a validation study. In the main study, there are no

measurements of the error-prone covariates Xi and Zi but measurements on other variables

are available, while the external validation study has measurements on covariates only. That

is, the available data from the main and the validation studies are {(yi,x∗
i , z

∗
i ,wi) : i ∈ M}

and {(x∗
i , z

∗
i ,xi, zi,wi) : i ∈ V}, respectively, where M and V contain n and m subjects,

respectively. Here we assume that the subjects in those two studies are not the same, i.e,

M and V do not overlap, and further assume that given Wi, the conditional distribution

of (Xi, Zi,X
∗
i , Z

∗
i ) for i ∈ V is the same as that of (Xi, Zi,X

∗
i , Z

∗
i ) for i ∈ M so that the

information carried by the validation sample V can be transported to the main studyM when

carrying out inferences. This assumptio is similar to but different from the transportability

assumption made by Spiegelman et al. (2000), who assumed that the conditional distribution

of (Xi, Zi) given (X∗
i , Z

∗
i ,Wi) is the same in both the main and the validation studies. The

feasibility of a transportability assumption is basically justified by the nature of individual

study designs. Our assumption is typically reasonable for scenarios where both main and

external validation studies are carried out to the same population using the same data

collection procedures.

Let pi = pr(Z∗
i = 0|Xi, Zi = 1,Wi) and qi = pr(Z∗

i = 1|Xi, Zi = 0,Wi) be the misclassi-

fication probabilities that may depend on the true covariates. Regression models for binary

data can be employed to model the misclassification probabilities. Typically, we consider

logistic regression models, bearing in mind that any parametric modeling can be employed

for individual problems,

logit(pi) = α01 +αT

x1Xi +αT

w1Wi, and logit(qi) = α00 +αT

x0Xi +αT

w0Wi (2)

where α = (α01,α
T
x1,α

T
w1, α00,α

T
x0,α

T
w0)

T is the vector of regression parameters.
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For the measurement error process, it is often reasonable to assume that f(x∗
i |z∗i ,xi, zi,wi)

= f(x∗
i |xi, zi,wi), i.e. the X∗

i surrogate measurement is independent of surrogate Z∗
i , given

the true covariates (Xi, Zi,Wi). A parametric model may then be employed to specify

f(x∗
i |xi, zi,wi). Various options can be found in Carroll et al. (2006) for this purpose. As

an example, we consider that Xi and X∗
i follow a regression model, i.e., given (Xi, Zi,Wi),

X∗
i = ΓxXi + γzZi + ΓwWi + ei, (3)

where the error terms ei are mean zero normal variables and are independent of other

variables, Γx and Γw are conforming matrices, and γz is a vector of parameters. We write

the vector formed by the elements of Γx, Γw as γx and γw.

Different specification of the coefficient vectors or matrices features various measurement

error models. For instance, setting Γw and Γx to be a zero and unit matrices respectively

and γz to be a zero vector in (3) gives a classical additive model (Carroll et al. 2006);

nonzero vector γz distinguishes different measurement error models corresponding to the

two subpopulations categorized by Zi = 0 or Zi = 1. Again, measurement error models

do not have to be restricted to the regression model (3); any parametric modeling of the

measurement error process can be handled by our proposed methods.

3 Methodology

3.1 Likelihood Function

We assume conditional independence between the response variable Yi and the surrogate mea-

surements (X∗
i , Z

∗
i ), given the true covariates (Xi, Zi,Wi), i.e., measurement error and mis-

classification are nondifferential in the sense that f(x∗
i , z

∗
i |yi,xi, zi,wi) = f(x∗

i , z
∗
i |xi, zi,wi),

or equivalently, f(yi|xi, zi,x
∗
i , z

∗
i ,wi) = f(yi|xi, zi,wi). Estimation of the model parameters

relies on the factorization

f(yi,xi, zi,x
∗
i , z

∗
i |wi) = f(yi|xi, zi,wi)f(x

∗
i , z

∗
i |xi, zi,wi)f(xi, zi|wi), (4)

where the last term f(xi, zi|wi) is a nuisance function. The factorization (4) allows us to

model one type of variables at a time. Specifically, the first term f(yi|xi, zi,wi) is deter-
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mined by the response model (1), and the middle term f(x∗
i , z

∗
i |xi, zi,wi) is determined by

the measurement error and misclassification models (3) and (2), i.e., f(x∗
i , z

∗
i |xi, zi,wi) =

f(x∗
i |z∗i ,xi, zi,wi)f(z

∗
i |xi, zi,wi) = f(x∗

i |xi, zi,wi)f(z
∗
i |xi, zi,wi). Estimation of the associ-

ated parameters α and γ can be carried out based on the validation data {(xi, zi,wi,x
∗
i , z

∗
i ) :

i ∈ V}. The last term f(xi, zi|wi) features the probability distribution of the true covari-

ate processes; and specification or nonspecification of this quantity leaves us room to take

different estimation approaches.

3.2 Pseudo-Likelihood Method

Because measurements of the response variable are only available for the main study, one

might attempt to estimate β using the observed likelihood contributed by the subjects in

the main study, which is immediate from the factorization (4):

Li =

∫ ∫
f(yi|xi, zi,wi)f(x

∗
i , z

∗
i |xi, zi,wi)f(xi, zi|wi)dη(xi)dη(zi), (5)

where dη(·) represents the dominating measure which is either Lebesgue or counting measure

for continuous or discrete random variable. This method requires modeling the covariate

distribution f(xi, zi|wi), which can be restrictive sometimes and will be relaxed in Section

3.3. Let δ be the vector of parameters governing the covariate process f(xi, zi|wi), and

ϑ = (αT,γT, δT)T, and θ = (βT,ϑT)T. Then under regularity conditions including that θ is

identifiable, maximizing
∏

i∈M Li with respect to θ yields a consistent estimator of θ.

This approach is conceptually easy to implement. However, it overlooks the available

measurements from the validation data set, and furthermore, using the main study data alone

would usually lead to nonidentifiability issues for the model parameters (Küchenhoff 1990).

To overcome these limitations, we propose a pseudo-likelihood method for estimation of θ,

where the validation data serve as the basis for modeling and estimation pertaining to the true

covariate process f(xi, zi|wi). In principle, f(xi, zi|wi) can be factorized as either the product

of f(xi|zi,wi) and f(zi|wi) or the product of f(zi|xi,wi) and f(xi|wi). To be consistent with

our model setup in Section 2, here we break the covariate distribution f(xi; zi|wi) into two

parts, f(xi|zi,wi) and f(zi|wi), and use the validation data {(xi, zi,wi,x
∗
i , z

∗
i ) : i ∈ V} to
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proceed with modeling and estimation procedures. Define

Li,cov = f(xi, zi,x
∗
i , z

∗
i |wi) = f(x∗

i |xi, zi,wi)f(z
∗
i |xi, zi,wi)f(xi, zi|wi),

and Si,cov(ϑ) = ∂log(Li,cov)/∂ϑ.

Estimation of θ can proceed by maximizing
∏

i∈M Li ·
∏

i∈V Li,cov with respect to θ, or

by jointly solving  ∑
i∈V Si,cov(ϑ) +

∑
i∈V ∂log(Li)/∂ϑ∑

i∈M Si(β,ϑ)

 = 0, (6)

where Si(β,ϑ) = ∂log(Li)/∂β. Alternatively, one can use a pseudo-likelihood algorithm.

Specifically, we first use the validation study to solve
∑

i∈V Si,cov(ϑ) = 0 for an estimator

of ϑ, say, ϑ̂. Then, replacing ϑ with the estimate ϑ̂ and then solving
∑

i∈M Si(β, ϑ̂) = 0

results in an estimator, denoted by β̂, of β. Since Si,cov(ϑ) is free of the parameter β

for i ∈ V , under regularity conditions, this pseudo-likelihood procedure leads to the same

estimator as that obtained by jointly solving

{
∑

i∈VS
T
i,cov(ϑ),

∑
i∈MST

i (β,ϑ)}T = 0. (7)

The joint method based on (6) is statistically more efficient while the pseudo-likelihood

procedure based on (7) is computationally easier to implement (Gong and Samaniego 1981).

In the sequel, our discussion is focused on the pseudo-likelihood procedure; modifications for

accommodating the joint method are straightforward.

3.3 Estimating Function Method

3.3.1 Basic Theory

We now explore a semiparametric approach to protect against possible model misspecification

of f(xi, zi|wi). Let Sβ(yi,xi, zi,wi) = ∂log{f(yi xi, zi,wi;β)}/∂β be the score function

determined by the response model (1). If Xi and Zi were observed precisely, β could be

directly obtained by solving the sample version of E{Sβ(Yi,Xi, Zi,Wi; β)} = 0. SinceXi and

Zi are not observed and only the surrogates X∗
i and Z∗

i are available, we have to rely on the

“observed” score functionUβ(Yi,X
∗
i , Z

∗
i ,Wi) = E(X,Z)|(Y,X∗,Z∗,W ){Sβ(Yi,Xi, Zi,Wi)}, where

7



the expectation E(X,Z)|(Y,X∗,Z∗,W ) is evaluated with respect to the joint distribution of Xi and

Zi, given (Yi,X
∗
i , Z

∗
i ,Wi). The joint probability density function f(xi, zi|yi,x∗

i , z
∗
i ,wi) is

f(yi|xi, zi,wi)f(x
∗
i |xi, zi,wi)f(z

∗
i |xi, zi,wi)f(xi, zi|wi)∫

f(yi|c, t,wi)f(x∗
i |c, t,wi)f(z∗i |c, t,wi)f(c, t|wi)dη(c)dη(t)

, (8)

where f(yi|xi, zi,wi) is determined by the response model (1), and f(x∗
i |xi, zi,wi) and

f(z∗i |xi, zi,wi) are determined by the measurement error model (3) and misclassification

model (2), respectively.

We now consider the functional modeling strategy that leaves f(xi, zi|wi) unspecified.

Our strategy consists of proposing a possibly misspecified model of the density function of Xi

and Zi, denoted f ∗(xi, zi|wi; δ
∗), and use it as a working model. We let f ∗(xi, zi|yi,x∗

i , z
∗
i ,wi)

denote the corresponding working density function obtained from (8) except for replacing

the true density f(xi, zi|wi) with the working density f ∗(xi, zi|wi; δ
∗). Similarly, we use

E∗
(X,Z)|(Y,X∗,Z∗,W ) to denote the expectation evaluated with respect to the joint working den-

sity f ∗(xi, zi|yi,x∗
i , z

∗
i ,wi). Define

U∗
β(Yi,X

∗
i , Z

∗
i ,Wi) = E∗

(X,Z)|(Y,X∗,Z∗,W ){Sβ(Yi,Xi, Zi,Wi)} (9)

as the working version ofUβ(Yi,X
∗
i , Z

∗
i ,Wi) under the working density f

∗(xi, zi|yi,x∗
i , z

∗
i ,wi).

To find an unbiased estimating function for the β parameter, we use a projection method.

The discussion in the following has similar spirit as that of Tsiatis and Ma (2004), while the

development will be more complex due to the involvement of two additional processes. These

two processes are required to feature a true discrete covariate Zi and its misclassified value

Z∗
i . To be specific, we assume that the working density f ∗(xi, zi|wi; δ

∗) has the same support

as that of the true density function f(xi, zi|wi). There exists a function a(Xi, Zi,Wi) that

satisfies the identity

E(Y,X∗,Z∗)|(X,Z,W )[E
∗
(X,Z)|(Y,X∗,Z∗,W ){a(Xi, Zi,Wi)}]

= E(Y,X∗,Z∗)|(X,Z,W ){U∗
β(Yi,X

∗
i , Z

∗
i ,Wi)}, (10)

where the expectation E(Y,X∗,Z∗)|(X,Z,W ) is taken with respect to the joint density function

f(yi,x
∗
i , z

∗
i |xi, zi,wi) that is determined by models (1), (2) and (3). Then an estimating

function for β is given by

U∗(Yi,X
∗
i , Z

∗
i ,Wi) = U∗

β(Yi,X
∗
i , Z

∗
i ,Wi)− E∗

(X,Z)|(Y,X∗,Z∗,W ){a(Xi, Zi,Wi)}. (11)
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Be definition of a(Xi, Zi,Wi), it is readily seen that this estimation function is unbiased, i.e.,

E(Y,X∗,Z∗,W ){U∗(Yi,X
∗
i , Z

∗
i ,Wi)} = 0. Therefore, under regularity conditions, a consistent

estimate of β can be obtained from solving
∑

i∈MU∗(yi,x
∗
i , z

∗
i ,wi) = 0.

3.3.2 Projections and the Robust Two-Step Method

The idea behind this method can be intuitively explained using the concept of “space”

and “projection”. If we think of an unbiased estimating function as a vector that is or-

thogonal to the tangent space spanned from the true model f(yi,x
∗
i , z

∗
i ,wi) (called “the

true tangent space”), then there are several ways to find an unbiased estimating function.

One way is to directly project the true score function Sβ(Yi,X
∗
i , Z

∗
i ,Wi) to the true tan-

gent space and find the orthogonal residual vector. This approach usually requires the

complete knowledge of the true distributions of the relevant variables. An alternative ap-

proach is to perform the projection by two steps using a working distribution as an inter-

mediate stage. In the first step, we calculate the latent variable working score function

S∗
β(Yi,Xi, Zi,Wi) based on the working model f ∗(xi, zi|wi), and subsequently construct

the observed data working vector U∗
β(Yi,X

∗
i , Z

∗
i ,Wi) from the working density f ∗(xi, zi|wi)

together with models (1),(2) and (3). In the second step, we further calculate the projec-

tion of the working score vector U∗
β(Yi,X

∗
i , Z

∗
i ,Wi) to the nuisance tangent space, which

has the form E∗
(X,Z)|(Y,X∗,Z∗,W ){a(Xi, Zi,Wi)}. The difference between the working score

vector U∗
β(Yi,X

∗
i , Z

∗
i ,Wi) and its projection to the working tangent space turns out to be

orthogonal to the true tangent space in this class of models. That is, the estimating func-

tion U∗(Yi,X
∗
i , Z

∗
i ,Wi) is orthogonal to the true tangent space. When the working density

f ∗(xi, zi|wi; δ
∗) coincides with the true density function f(xi, zi|wi), the difference vector

U∗(Yi,X
∗
i , Z

∗
i ,Wi) coincides with the vector U(Yi,X

∗
i , Z

∗
i ,Wi) which is obtained from the

direct projection approach, and hence this estimating function U∗(Yi,X
∗
i , Z

∗
i ,Wi) becomes

semiparametric efficient (Tsiatis and Ma 2004). If Yi is binary, semiparametric efficient esti-

mating functions are also Fisher efficient; for epidemiological and clinical applications, this

will often be the case. The appeal of the indirect projection approach lies in the relaxation

of the knowledge of the true distribution f(yi,xi, zi,x
∗
i , z

∗
i ,wi). The only additional work is
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in solving (10), which, under many popular models, has a closed form solution, see Ma and

Tsiatis (2006) and Ma and Ronchetti (2011).

We comment that our discussion here is suitable for the situation when models (1),

(2) and (3) are correct, while the conditional distribution f(xi, zi|wi) can be misspecified.

Regardless of the correctness of a working model f ∗(xi, zi | wi) for the covariate process,

consistency of the resulting estimators for the response parameters is always guaranteed; if

the f ∗(xi, zi | wi) is correct, we can further ensure efficiency of the estimators.

Now we apply this projection method to handle estimation of the β parameter for our

problem with a main study and a validation study. The notation is similar to that in Section

3.2 except for replacing the true density f(xi, zi) with a working density f ∗(xi, zi; δ
∗). To be

specific, let L∗
i,cov denote the counterpart of Li,cov in (6) with the true density f(xi, zi) replaced

by the working density f ∗(xi, zi; δ
∗), ϑ∗ = (αT,γT, δ∗T)T, θ∗ = (β,ϑ∗T)T, and S∗

i,cov(ϑ
∗) =

∂log(L∗
i,cov)/∂ϑ

∗. Let U∗(β, δ∗;Yi,X
∗
i , Z

∗
i ,Wi) be the estimating function determined in

(11), where the function a(Xi, Zi,Wi) is the solution to the equation (10) which is calculated

using L∗
i,cov and (8), and U∗

β(Yi,X
∗
i , Z

∗
i ,Wi) is determined by (9). Then estimation of β can

be carried out using a two-stage estimation algorithm. In Stage 1, solving
∑

i∈V S
∗
i,cov(ϑ

∗) = 0

leads to an estimator of ϑ∗, say, ϑ̂
∗
; in Stage 2, replace ϑ∗ with the estimate ϑ̂

∗
and then

solve
∑

i∈M U∗(β, ϑ̂
∗
; yi,x

∗
i , z

∗
i ,wi) = 0 for an estimator, β̂, of β.

3.4 Robustness and Discussion for a Different Likelihood

A different but related modeling approach was taken by Spiegelman et al. (2000). We start

from the joint likelihood of (Yi,Xi, Zi,X
∗
i , Z

∗
i ) given Wi, while Spiegelman et al. (2000) start

from the joint likelihood (Yi,Xi, Zi) given (X∗
i , Z

∗
i ,Wi). Spiegelman et al. (2000) specify

the density of (Xi, Zi) given (X∗
i , Z

∗
i ,Wi), which, referring to Section 3.3, we write here

as f(xi, zi|X∗
i , Z

∗
i ,Wi,ϑ). They then base estimation of β on the distribution of Yi given

(X∗
i , Z

∗
i ,Wi). As suggested in the following theorem, our method results in a more efficient

estimator for β than the method of Spiegelman et al. (2000) does. A proof is sketched in

Appendix A.1.

Theorem 1 Let β̂joint be the estimator of β obtained from the joint likelihood of (Yi,Xi, Zi,X
∗
i , Z

∗
i )
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given Wi, and β̂cond be the estimator of β obtained from using the conditional likelihood

(Yi,Xi, Zi) given (X∗
i , Z

∗
i ,Wi). Then β̂joint is asymptotically more efficient than β̂cond.

We note that the approach of Spiegelman et al. (2000) is sensitive to misspecification of

f(xi, zi|x∗
i , z

∗
i ,wi,ϑ). However, it is straightforward to develop a two-stage approach similar

to that in Section 3.3 that allows consistent estimation of β even if f(xi, zi|x∗
i , z

∗
i ,wi,ϑ)

is misspecified. Only minor changes are needed in the development in Section 3.3. Start

with a working density f ∗(xi, zi|x∗
i , z

∗
i ,wi,ϑ). The working density function of (Xi, Zi) given

(Yi,X
∗
i , Z

∗
i ,Wi) is now not (8) but rather is

f(yi|xi, zi,β)f
∗(xi, zi|x∗

i , z
∗
i ,wi,ϑ)∫

f(yi|c, zi,β)f ∗(c, t|x∗
i , z

∗
i ,wi,ϑ)dη(c)dη(t)

. (12)

Everything now is exactly the same as starting at (9), except expectations in the working

model are based upon (12) rather than (8). The estimating function for β is still at (11)

but using the working likelihood function (12), and then the two-step method discussed in

Section 3.3.2 can be applied.

A major advantage of modeling f(x∗
i , z

∗
i |xi, zi,wi) in our approach is that this distri-

bution is more likely to be transportable than is f(xi, zi|x∗
i , z

∗
i ,wi), and the distribution

f(x∗
i , z

∗
i ,wi) can be estimated in the main study. As in Spiegelman et al. (2000), we can

allow for a study in which the probability of selection into the validation component de-

pends on (Yi,X
∗
i , Z

∗
i ,Wi). Our pseudo-likelihood method would follow exactly the same

paradigm, while estimating function approach and the methods discussed in Section 5 would

use weighting based on the probability of selection into the validation sample.

4 Asymptotic Results

In this section we establish the asymptotic results for the estimators resulted from the like-

lihood and estimating function methods. The proofs of the following results are sketched in

the Appendix.

Theorem 2 Assume that the ratio of the validation sample size m and main sample size

n is bounded between two positive constants c and C. When the model f(xi, zi | wi, δ) is

11



correct, then the pseudo-likelihood estimator β̂ obtained from (7) satisfies

n1/2(β̂ − β)
d−→ Normal(0,Σ), n → ∞,

where Σ = A−1B(A−1)T,

A = E

{
∂Si(β,ϑ)

∂βT

}
,

B = var{Si(β,ϑ)}+ (n/m)C var{Si,cov(ϑ)}CT, and

C = E

{
∂Si(β,ϑ)

∂ϑT

}[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

.

Theorem 3 Assume the ratio of the validation sample size m and main sample size n

is bounded between two positive constants c and C and the first equation of (7) is used

to obtain ϑ̂. Let β̂ be the estimator obtained from solving
∑

i∈M U∗
i (β, ϑ̂) = 0, where

U∗
i (β, ϑ̂) ≡ U∗(yi,x

∗
i , z

∗
i ,wi;β, ϑ̂). Then regardless whether the model f(xi, zi | wi, δ) is

correct or misspecified, the estimator β̂ satisfies

n1/2(β̂ − β)
d−→ Normal(0,Σ), n → ∞,

where Σ = A−1B(A−1)T,

A = E

{
∂U∗

i (β,ϑ)

∂βT

}
,

B = var{U∗
i (β,ϑ)}+ (n/m)C var{Si,cov(ϑ)}CT, and

C = E

{
∂U∗

i (β,γ, α, δ)

∂(γT, α)

}
(Ip,0)

[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

.

Here p is the dimension of (γT, α)T, ϑ = (γT, α, δ)T is the true parameter value if the model

f(xi, zi | wi; δ) is correct, and is the parameter that minimizes the Kullback-Leibler distance

between the proposed model family and the true distribution that generated the data if the

model is misspecified.

Using the above two theorems, it is clear that while the likelihood method in Theorem

2 requires the model f(xi, zi | wi; δ) to be correct to yield a consistent estimator for β, the

estimating function method in Theorem 3 always yields consistent estimator for β whether

f(xi, zi | wi; δ) is correct or not. We also note that the C matrix in Theorems 2-3 reflects

the variability induced from estimation of nuisance parameters ϑ using the validation data

set.
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5 Approximate Methods

5.1 Augmented Simulation-Extrapolation

If Xi and Zi were precisely measured, inference for the parameters can be based on the

likelihood function using the main study data M, i.e., L(β) =
∏n

i=1 Li(β), where Li(β) is a

probability density or mass function from the exponential family together with the regression

model (1). Equivalently, under regularity conditions, the estimator is the root of the score

functions S(β) = ∂log{L(β)}/∂β.

In the presence of measurement error or misclassification, L(β) is not computable because

(Xi, Zi) are unobserved. An intuitive method is to directly replace (Xi, Zi) in L(β) with

the surrogate (X∗
i , Z

∗
i ). This method would, as shown in the context of measurement error

alone, generally produce biased results. To correct induced biases, either completely or

partially, one might be tempted to use existing methods that are developed to accommodate

continuous or discrete mismeasured covariates. For example, it is appealing to develop

a simulation based method by combining the simulation-extrapolation (SIMEX) method

for continuous mismeasured covariates (Cook and Stefanski 1994) and the MC-SIMEX for

misclassification (Küchenhoff et al. 2006).

To be specific, we consider the error model at (3), where ei follows a normal distribution

Normal(0,Σe), and is independent of the true covariates and the response. Referring to the

misclassification model (2), define α1 = (α01,α
T
x1,α

T
w1) and α2 = (α00,α

T
x0,α

T
w0)

T, and let

(α̂1, α̂2) be their estimates computed using the validation data, so that the true and esti-

mated misclassification probabilities are {pi(α1), qi(α2)} and {pi(α̂1), qi(α̂2)}, respectively.

Also let Σ̂e be the estimate of Σe obtained from a linear regression analysis of model (3) in

the validation data.

Following the simulation steps of Cook and Stefanski (1994) and Küchenhoff et al. (2006),

one may create artificial surrogate measurements for Xi and Zi, and then apply these mea-

surements with other observed data to fit a model in order to portray the patterns of different

error degrees on estimation; finally an estimator is obtained through extrapolating a regres-

sion model fitted to these patterns. This method can be quite time-consuming due to the
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intensive simulations required.

Alternatively, we propose an augmented simulation-extrapolation method. This proce-

dure capitalizes on the unique feature associated with discrete variables, and is thus prefer-

able. The idea works as follows. Using the discrete feature of Zi, we first construct unbiased

estimating functions to correct misclassification effects; in the second step we apply the

SIMEX algorithm to these functions to further correct for measurement error effects induced

in X∗
i .

We write the score functions in (7) as S(β;Yi,Xi, Zi,Wi) by explicitly spelling out its

dependence on the parameter as well as the data (Yi, Xi, Zi, Wi). Also explicitly accounting

for the dependence of the misclassification probabilities on their parameters, define

S∗(β;Yi,Xi, Z
∗
i ,Wi,α1,α2)

= (1− pi − qi)
−1

[
(1− Z∗

i ){S(β;Yi,Xi, Zi = 0,Wi)(1− pi)− S(β;Yi,Xi, Zi = 1,Wi)qi}

−Z∗
i {S(β;Yi,Xi, Zi = 0,Wi)pi − S(β;Yi,Xi, Zi = 1,Wi)(1− qi)}

]
.

It can be shown that EZ∗|Z{S∗(β;Yi,Xi, Z
∗
i ,Wi,α1,α2)} = S(β;Yi,Xi, Zi,Wi), where the

conditional expectation is evaluated with respect to the conditional probability mass func-

tion pr(Z∗
i |Zi,Wi). That is, if Xi were not subject to measurement error, then estimating

functions S∗(β;Yi,Xi, Z
∗
i ,Wi,α1,α2) can be used directly to produce a consistent estimator

for the β parameter, because they are unbiased and computable.

Now we describe the augmented simulation-extrapolation method in detail. There are

three basic steps:

1. Simulation Step: Given B (say, B = 200) and a sequence of M specified values

{λ1, λ2, · · · , λM} with λ1 = 0 (say, taken from [0, 1]), we artificially generate surro-

gates for X∗
i by adding additional noise from the measurement error and misclassi-

fication models. That is, we perform the following steps. Given b = 1, 2, · · · , B,

for each λ = λ1, λ2, · · · , λM , generate eib from Normal(0, Σ̂e) and set X∗
i (b, λ) as

X∗
ib(λ) = X∗

i +
√
λeib.

2. Estimation Step:

14



Replace Xi in the unbiased estimating functions S∗(β;Yi,Xi, Z
∗
i ,Wi,α1,α2) with

X∗
i (b, λ), and solve S∗{β;Yi,X

∗
ib(λ), Z

∗
i ,Wi, α̂1, α̂2} = 0 to obtain an estimator β̂b(λ).

Define β̂(λ) = B−1
∑B

b=1 β̂b(λ).

3. Extrapolation Step:

For each component of β̂(λ) fit a regression model to each of the sequences {(λ, β̂r(λ)),

λ = λ1, λ2, ..., λM and extrapolate it to λ = −1, where β̂r(λ) denotes the rth compo-

nent of β̂(λ). Let β̂r denote the corresponding predicted values. Then β̂asimex =

(β̂1, β̂2, ..., β̂pc)
T is called the augmented-SIMEX estimator of β, where pc = dim(β).

The asymptotic theory for the Augmented SIMEX estimator β̂asimex is given in Appendix

A.4. Standard errors for β̂asimex can be obtained using this theory, or, a computational cost,

by bootstrapping.

5.2 Augmented Regression Calibration

Parallel to the augmented simulation-extrapolation above, we propose an augmented re-

gression calibration (RC) method. By analogy with the augmented SIMEX method,

we first correct for misclassification effects by using the unbiased estimating functions

S∗(β;Yi,Xi, Z
∗
i ,Wi); then use standard regression calibration method to adjust for measure-

ment error involved in S∗(β;Yi,Xi, Z
∗
i ,Wi). That is, replace Xi in the unbiased estimating

functions S∗(β;Yi,Xi, Z
∗
i ,Wi) with its conditional mean E(Xi|X∗

i , Z
∗
i ,Wi), and then solve

S∗{β;Yi, E(Xi|X∗
i , Z

∗
i ,Wi), Z

∗
i ,Wi} = 0

to obtain an augmented - RC estimator of β, denoted by β̂arc.

To implement this method, we need to estimate the conditional mean E(Xi|X∗
i , Z

∗
i ,Wi),

and this is done by applying standard regression procedures to the validation data in V using

the conditional model for Xi on Wi. Like the usual RC method, with linear regression or

log-linear mean regression models, augmented-RC estimators are consistent; with logistic

regression, the augmented-RC estimators would incur some degree of bias, although the

magnitude is typically small (Spiegelman et al. 2000). Finally, the sandwich method can be

employed to calculate the variance estimates for the augmented-RC estimator.
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6 Empirical Studies

6.1 Simulation Studies

We performed extensive simulations to investigate the performance of the proposed methods,

including the pseudo-likelihood method based on (7) and the estimating function method

under both correct and misspecified latent variable distribution models. For comparison,

we include the two approximate methods, augmented regression calibration and augmented

SIMEX, where augmented regression calibration is also studied under both correct and mis-

specified latent variable distribution models. The validation sample size is set as m = 500

and the main study size is taken as n = 1000. One thousand simulations are run for each

parameter configuration.

The true covariates Xi were independently generated from the uniform distribution

UNIF [−3.0, 4.0], and the discrete variables Zi and Wi were independently simulated from

a Bernoulli distribution with success probability 0.5. We generated X∗
i from the model

X∗
i = Xi + ei, where ei is a centered normal random error with standard deviation half

of that of Xi, and we generated Z∗
i from the Bernoulli distribution with the probability of

misclassification 0.2 under both Zi = 0 and Zi = 1. These procedures were repeated m

times to generate a validation sample {(Xi, Zi, X
∗
i , Z

∗
i ,Wi) : i = 1, · · · ,m}. To generate

the data for the main study, we used the procedures above to generate n sets of covariates

{(Xi, Zi, X
∗
i , Z

∗
i ,Wi) : i = 1, · · · , n}, and then for each simulated true covariates (Xi, Zi,Wi),

we generated the response Yi from the logistic regression model

logit{pr(Yi = 1 | Xi, Zi,Wi)} = β0 + βzZi + βxXi + βwWi, (13)

with the true parameter values set as β = (β0, βz, βx, βw)
T = (0.1,−1.0, 0.7, 0.5)T, i =

1, · · · , n. We then discarded (Xi, Zi), i = 1, . . . , n. Thus, the simulated data included

a main study data {(Yi, X
∗
i , Z

∗
i ,Wi) : i = 1, · · · , n} and a separate validation sample

{(Xi, Zi,Wi, X
∗
i , Z

∗
i ) : i = 1, · · · ,m}.

The validation data are used to fit the true model f(x∗, z∗ | x, z, w) that generated

x∗, z∗ to estimate the parameters α and γ. In particular, the additive error model and

the measurements of Xi’s and X∗
i ’s from the validation sample are used to estimate the
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measurement error variance.

The results of the seven different methods are reported in Figure 1 and Table 1, where

the estimated standard errors (ŝd) were calculated using the results in Theorem 2 for the

pseudo-likelihood estimators and those in Theorem 3 for the semiparametric estimators, with

all the associated quantities evaluated at the estimated parameter values. The results for

the regression calibration estimators were obtained from using Theorem 2 with Xi replaced

by E(Xi|X∗
i ). From these results, it is clear that when the latent variable distribution model

is correctly specified, the pseudo-likelihood method has the best performance in terms of

both estimation bias and variability. However, as soon as this model was misspecified (here

we misspecified the uniform distribution as normal), the pseudo-likelihood method showed

severe bias. In contrast, the estimating function method retained a small bias regardless of

model misspecification, and inference was quite precise judging from the close match between

the sample and estimated standard deviations and the 95% confidence interval coverage rate

and its nominal value. The two approximate methods, augmented regression calibration and

augmented SIMEX, both reduced the estimation bias somewhat, but did not fully produce

a consistent estimator as reflected from the nontrivial sample biases.

Our second simulation is similar to the first one, except that we now generated the latent

variable from a normal distribution, and we increased the measurement error inXi so that the

standard deviation of e is about 90% of that of Xi. All other aspects of the data generation

procedure remain unchanged. The corresponding results are given in Figure 2 and Table 2.

As it can be clearly seen, similar conclusions can be drawn as in the first simulation.

To investigate how the performance of the proposed methods is affected by the validation

sample size, we considered another scenario with the validation sample size m taken as one

tenth of the main study size n = 2000. This ratio of m to n reflects the feature of the

motivating data analyzed in Section 6.2. The simulation results are summarized in Figures

3-4 and Tables 3-4. The performance of the seven methods demonstrated the same patterns

as observed previously. As expected, the results of inference are less precise mainly due to

the smaller sample size of the validation study.

Based on the theoretical results as well as numerical performances, we hence recommend

the estimating function method as the estimation and inference tool when both measurement
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error and misclassification exist in the covariates. If there is sufficient validation data to verify

that a conjectured model for the latent variable distribution fits the data, then maximum

pseudo-likelihood and regression calibration are also good alternatives.

In our simulation studies, we used the true parameter values as starting values for all the

methods and reported the convergence values accepted by the default optimization procedure

as point estimates. In addition, we experimented using the true parameter values plus a small

random perturbation as starting values, and the final results were similar. This investigation

pertains to the potential issue of local minimizers or multiple roots, as discussed in Section

7. Empirically, choosing sensible starting values may be helpful in real data analysis. For

example, an estimate from a quick (and possibly approximate) method, such as the SIMEX

or regression calibration approach, may serve as a good starting value.

6.2 Data Analysis

In this subsection, we illustrate our methods by analyzing data from the Women’s Interview

Study of Health (WISH) study (Brinton et al. 1995; Potischman et al. 1999). This was a

case-control study in which the outcome variable Yi is the indicator that a women (indexed

by i) has breast cancer. Age and calories coming from protein and fat are potential risk

factors for breast cancer. We let Wi be age. Our continuous variable Xi is the logarithm

of the percentage of calories coming from protein, and the discrete variable is whether the

percentage of calories coming from fat exceeds 30. The surrogates X∗
i and Z∗

i were measured

by a food frequency questionnaire, and have both bias and substantial measurement error.

The main study consisted of 1,904 women for whom (Yi,Wi, X
∗
i , Z

∗
i ) were measured.

There was also a validation study with measurements (Xi, Zi, X
∗
i , Z

∗
i ) for 180 subjects. These

data consist of six 24-hour recalls completed one month apart, along with six days of dietary

diaries from 2 sets of 3-day diaries. We treat the first dietary recall as an unbiased measure

of a person’s true intake. As Nusser et al. (1996) point out, “it is well established that the

characteristics of responses in a repeated survey are a function of the time in sample at which

a responded is observed”. In response to this, they centered and scaled their data so that

each day had the same mean and standard deviation as the first dietary recall, although
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unlike us, they did this in the transformed scale, and then back-transformed. The resulting

12 days of measurements were then averaged to get our definition of the true percentage

of calories coming from protein and fat, and thus Xi and Zi. For numerical stability, by

subtraction and division we standardized each component of Wi, Xi and X∗
i so that they

had mean zero and variance one in the validation study. Of course, the same subtraction

and division was then used in the primary study. Such standardization has absolutely no

impact on issues of statistical significance.

We considered the logistic regression model

logit{pr(Yi = 1 | Xi, Zi,Wi)} = β0 + βzZi + βxXi + βwWi.

In our illustration, for the misclassification and measurement error processes, we assumed

that pr(Z∗
i = z∗i |Xi, Zi,Wi) = pr(Z∗

i = z∗i |Zi) and f(x∗
i |xi, zi, wi) = f(x∗

i |xi). The first

assumption was reasonable based on a logistic regression of Z∗
i on Zi, Xi,Wi, where the

coefficients of Xi,Wi were both nonsignificant based on the validation data.

Similarly, the second assumption was also reasonable since a linear regression of X∗
i on

Xi, Zi,Wi yielded nonsignificant coefficients for Zi and Wi. We denoted the misclassification

probabilities pi = pr(Z∗
i = 0|Zi = 1) and qi = pr(Z∗

i = 1|Zi = 0), see (2). In the validation

data, we estimated that pr(Zi = 1) ≈ 0.80, pr(Z∗
i = 1) ≈ 0.83. In addition, we estimated

that pr(Zi = 1|Z∗
i = 1) ≈ 0.85, pr(Zi = 0|Z∗

i = 0) ≈ 0.48, pr(Z∗
i = 1|Zi = 1) ≈ 0.89

and pr(Z∗
i = 0|Zi = 0) ≈ 0.41, all reflecting considerable misclassification. In terms of the

measurement error process, we assumed a linear additive error model X∗
i = κ1 + κ2Xi + ei,

where we estimated κ̂1 = 0.00 and κ̂2 = 0.44 based on the validation data. We assumed ei

to be normal with mean zero, variance σ2
e , and independent of Xi. From the validation data,

we estimated (κ1, κ2, σe) = (0.00, 0.44, 0.90), reflecting considerable bias and measurement

error in the FFQ for protein. The Kolmogorov-Smirnov test for normality based on this

assumption yielded a p-value 0.976, which supports the normal error assumption. For the

pseudo-likelihood method, we further assumed that Xi followed a standard normal distribu-

tion: this assumption was also supported by the Kolmogorov-Smirnov test with a p-value

0.968. To assess the impact of possible misspecification of this distribution, we also consid-

ered a case that the Xi’s were assumed to follow a uniform distribution, even though this
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distributional assumption was not supported by the Kolmogorov-Smirnov test (the p-value

is less than 0.0001).

We compared five methods. The two “naive” methods ignore the existence of measure-

ment error and treat X∗
i as the same as Xi. One of the two naive methods takes into

account the misclassification of Z∗
i , while the other even ignores the difference between Z∗

i

and Zi. Both naive estimators are carried out by performing pseudo-likelihood estimation.

To correct for both measurement error and misclassification effects, we apply our methods -

the pseudo-likelihood and estimating equation methods described in Section 3, and the aug-

mented SIMEX and augmented RC methods discussed in Section 5.2. The analysis results

are reported in Table 5 and are also summarized as follows.

• There were very strong corrections for measurement error. If we considered the analysis

that ignored measurement error entirely, we found (β̂z, β̂x) = (−0.20,−0.11). However,

the estimating function results under either a normal or a uniform distribution for X

were about (−0.57,−0.58).

• The effect on the pseudo-likelihood estimator of differently specified distributions of

(Xi, Zi) given Wi was striking. It is seen that assuming normality yielded β̂x = −0.59

with standard error 0.329, while assuming a uniform distribution yields β̂x = −0.24

with standard error 0.127. Although it was not clear from what exact conditional

distribution (Xi, Zi) given Wi the data come, the Kolmogorov-Smirnov test provided

support for the normal distribution (with p-value 0.9679) but not a uniform distribution

(with p-value smaller than 0.0001). Figure 5) displays the corresponding QQ plots.

• The estimating function approach yielded almost identical estimates for βx under either

assumed normality or uniformity for Xi. However, incorrectly assuming uniformity

increased the standard error estimate for βx from 0.40 to 0.44.

Finally, we point out that the analyses we conducted here may appear not to accom-

modate the case-control study design. To be specific, the data we analyze were collected

using a retrospective sampling strategy for case-control studies, but the model we use to

fit the data was prospective. This discrepancy would, in general, make the analysis results
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invalid. However, under the logistic regression model, it is well-known that except for the

intercept in the model, the case-control sampling design can be ignored. Indeed, fitting

the data prospectively is equivalent to fitting the correct logistic model retrospectively, but

with a different intercept. This equivalence was established by Prentice and Pyke (1979) for

the case without covariate error, and discussed by Carroll, et al. (1993) for settings in the

presence of error in covariates.

7 Discussion

In regression analysis, we often encounter covariates that are subject to both measurement

error and misclassification. It is necessary to address biases induced by mismeasurement

in order to carry out valid inferences. In this paper, we developed a number of functional

and structural methods to handle data with a mix of measurement error and misclassifi-

cation. Our methods can be applied to meet different objectives. The pseudo-likelihood

method enjoys the efficiency property while the estimating function approach is attractive

because of its robustness to model misspecification. The augmented SIMEX and augmented

regression calibration methods are easy to implement, although they just partially correct

for measurement error effects.

We note that like most estimation methods, iterative numerical algorithms, such as the

Newton-Raphson or Fisher scoring schemes, are often needed to obtain estimators when

implementing the proposed methods. In general, local maximizers or multiple roots may arise

when implementing likelihood-based methods or estimating equations approaches. While

evaluation of the likelihood function at local maximizers allows us to identify the global

maximizer, choosing a suitable estimator from multiple roots of estimating equations may

not be straightforward. When multiple roots occur with using the proposed estimating

equations, one may follow the criteria by Heyde and Morton (1998) to discriminate the

consistent estimator from multiple roots of estimating equations. More discussion on dealing

with multiple roots of estimating equations can be found in Hanfelt and Liang (1995) and

Heyde (1997, Section 13.2 and Section 13.3).

In this paper, we consider the main study/external validation study design. We can
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readily modify the proposed methods to accommodate other settings as well, such as a

validation sample that is either internal or external, as discussed by Guo and Little (2011).

In contrast to our methods, Wang et al. (2008) explored the use of expected estimating

equations to handle data with measurement error and misclassification. Instead of assuming

the availability of a validation sample, Wang et al. (2008) investigated the situation with

repeated surrogate measurements taken for associated response or covariate variables. The

methods developed by Wang et al. (2008) emphasize the evaluation of conditional expec-

tations of relevant quantities, and this requires specification of a distributional assumption

for the true covariates, but our methods provide tools which apply to both settings where

distributions of the true covariates are known as well as situations where distributions of the

true covariates are left unspecified.

Measurement error or misclassification are ubiquitous in practice, and most available

work deals with one of the two features separately but not both simultaneously. In this

paper, we directed our attention to the common problem that measurement error and mis-

classification exist concurrently in the data analysis. We developed a rich class of methods

to handle data with both covariate measurement error and misclassification under general

model frameworks. Our investigation covers both functional and structural modeling strate-

gies for measurement error and misclassification processes. Our methods can be applied to

different situations to meet various objectives.
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Appendix

A.1 Efficiency comparison of the two likelihood methods

Note that the observed data from the validation and main studies are {(Xi, Zi,X
∗
i , Z

∗
i ,Wi) :

i ∈ V} and {(Yi,X
∗
i , Z

∗
i ,Wi) : i ∈ M}, respectively. We compute the likelihood of the

observed data given the Wi as follows

Ljoint(β,ϑ) =
∏
i∈V

f(xi, zi,x
∗
i , z

∗
i | wi,ϑ)×

∏
j∈M

f(yj,x
∗
j , z

∗
j | wj,β,ϑ). (A.1)

On the other hand, Spiegelman, et al. (2000) compute the likelihood function for the
data of the validation and main studies by conditioning on (X∗

i , Z
∗
i ,Wi). Specifically, the

likelihood of (Xi, Zi) conditional on (X∗
i , Z

∗
i ,Wi) is

f(xi, zi| x∗
i , z

∗
i ,wi,ϑ) =

f(x∗
i , z

∗
i ,xi, zi| wi,ϑ)∫ ∫

f(x∗
i , z

∗
i | s, t,wi,α,γ)f(s, t| wi, δ)dη(s)dη(t)

,

and the likelihood of Yi given (X∗
i , Z

∗
i ,Wi) is

f(yi| x∗
i , z

∗
i ,wi,β,ϑ) =

f(yi,x
∗
i , z

∗
i | wi,β,ϑ)∫ ∫

f(x∗
i , z

∗
i | s, t,wi,α,γ)f(s, t| wi, δ)dη(s)dη(t)

.

Thus, the observed data likelihood given all the (X∗
i , Z

∗
i ,Wi) is

Lcond(θ) =
∏
i∈V

f(xi, zi| x∗
i , z

∗
i ,wi,ϑ)

∏
j∈M

f(yj| x∗
j , z

∗
j ,wj,β,ϑ)

= Ljoint(β,ϑ)/M(ϑ), (A.2)

where

M(ϑ) =
∏
i∈V

∫ ∫
f(x∗

i , z
∗
i | s, t,wi,α,γ)f(s, t| wi, δ)dη(s)dη(t)

×
∏
j∈M

∫ ∫
f(x∗

j , z
∗
j | s, t,wj,α,γ)f(s, t| wj, δ)dη(s)dη(t),

which is the likelihood of the (X∗
i , Z

∗
i ) given the Wi for all the data of the validation and

main studies.
Let θ̂joint = (β̂

T

joint, ϑ̂
T

joint)
T and θ̂cond = (β̂

T

cond, ϑ̂
T

cond)
T be the estimators of θ that

are obtained by maximizing (A.1) and (A.2), respectively. By likelihood theory, as n →
∞,

√
n(θ̂cond − θ) has a normal distribution with mean zero and covariance matrix J−1

cond,
where Jcond = limn→∞ n−1E{−∂2log(Lcond)/∂θ∂θ

T}. After some algebra, the inverse of the

asymptotic covariance matrix of
√
n(β̂cond − β) is

[asyvar{
√
n(β̂cond − β)}]−1 = Jcond

ββ − J cond
ββ (J cond

ϑϑ )−1(Jcond
βϑ )T, (A.3)

where
J cond
ββ = lim

n→∞
n−1E{−∂2log(Lcond)/∂β∂β

T},
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J cond
βϑ = lim

n→∞
n−1E{−∂2log(Lcond)/∂β∂ϑ

T},

and
Jcond
ϑϑ = lim

n→∞
n−1E{−∂2log(Lcond)/∂ϑ∂ϑ

T}.

By analogy and the relationship (A.2),the inverse of the asymptotic covariance matrix of√
n(β̂joint − β) is given by

[asyvar(
√
n(β̂joint − β)}]−1 = J cond

ββ − Jcond
ββ (J cond

ϑϑ + Jϑϑ)
−1(Jcond

βϑ )T, (A.4)

where Jϑϑ = limn→∞ n−1E{−∂2logM(ϑ)/∂ϑ∂ϑT}. Comparing (A.3) and (A.4) implies that

β̂joint is more efficient than β̂cond.

A.2 Sketched proof of Theorem 2

Assume we have m observations in the validation data set and n observations in the main
data set. Using (7), we obtain

0 = m−1/2
∑
i∈V

Si,cov(ϑ̂) = m−1/2
∑
i∈V

Si,cov(ϑ) + E

{
∂Si,cov(ϑ)

∂ϑT

}
m1/2(ϑ̂− ϑ) + op(1).

or

m1/2(ϑ̂− ϑ) = −
[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ) + op(1).

We also have

0 = n−1/2
∑
i∈M

Si(β̂, ϑ̂)

= n−1/2
∑
i∈M

Si(β,ϑ) + E

{
∂Si(β,ϑ)

∂ϑT

}
n1/2(ϑ̂− ϑ)

+E

{
∂Si(β,ϑ)

∂βT

}
n1/2(β̂ − β) + op(1)

= n−1/2
∑
i∈M

Si(β,ϑ) + E

{
∂Si(β,ϑ)

∂βT

}
n1/2(β̂ − β)

−E

{
∂Si(β,ϑ)

∂ϑT

}√
n/m

[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ)

+op(1 +
√

n/m).

This yields the desired results.
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A.3 Sketched proof of Theorem 3

Using the result in White (1982) and the proof of Theorem 2, we have

m1/2(ϑ̂− ϑ) = −
[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ) + op(1),

where ϑ is the true parameter value if the model is correct and is the parameter that
minimizes the Kullback-Leibler distance between the proposed model family and the true
distribution that generated the data if the model is incorrect. Since the dimension of (γT, α)T

as p, we have

m1/2


 γ̂

α̂

−

 γ

α

 = − (Ip,0)

[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ) + op(1).

Using the estimating equation, we have

0 = n−1/2
∑
i∈M

U∗
i (β̂, ϑ̂)

= n−1/2
∑
i∈M

U∗
i (β,ϑ) + E

{
∂U∗

i (β,ϑ)

∂βT

}
n1/2(β̂ − β)

+E

{
∂U∗

i (β,ϑ)

∂ϑT

}
n1/2(ϑ̂− ϑ) + op(1)

= n−1/2
∑
i∈M

U∗
i (β,ϑ) + E

{
∂U∗

i (β,ϑ)

∂βT

}
n1/2(β̂ − β)

+E

{
∂U∗

i (β,γ, α, δ)

∂δT

}
n1/2(δ̂ − δ)

+E

{
∂U∗

i (β,γ, α, δ)

∂(γT, α)

}
n1/2


 γ̂

α̂

−

 γ

α

+ op(1).

The construction of U∗
i insures

E

{
∂U∗

i (β,γ, α, δ)

∂δT

}
= 0

because U∗ is in the space orthogonal to the nuisance tangent space spanned by the score
functions with respect to the parameters involved in the model fX,Z|W(x, z | w). Thus, we
have

0

= n−1/2
∑
i∈M

U∗
i (β,ϑ) + E

{
∂U∗

i (β,ϑ)

∂βT

}
n1/2(β̂ − β)

+E

{
∂U∗

i (β,γ, α, δ)

∂(γT, α)

}
n1/2


 γ̂

α̂

−

 γ

α

+ op(1)
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= n−1/2
∑
i∈M

U∗
i (β,ϑ) + E

{
∂U∗

i (β,ϑ)

∂βT

}
n1/2(β̂ − β)

−(n/m)1/2E

{
∂U∗

i (β,γ, α, δ)

∂(γT, α)

}
(Ip,0)

[
E

{
∂Si,cov(ϑ)

∂ϑT

}]−1

m−1/2
∑
i∈V

Si,cov(ϑ)

+op(1 +
√

n/m),

completing the argument.

A.4 Asymptotic Theory for Augmented SIMEX

Let vec(Σe) be the vector of unique elements of a matrix Σe and denote the symmetric
square root of Σe as gssr{vec(Σe)}.

Define Xi = (1,XT
i ,W

T
i )

T, and recall thatα1 = (α01,α
T
x1,α

T
w1)

T andα2 = (α00,α
T
x0,α

T
w0)

T.
Define H(1)(x) = H(x){1 − H(x)}, the derivative of H(x) = exp(x)/{1 + exp(x)}, and
Ck = E{XiXT

i H
(1)(X T

i αk)} for k = 1, 2. Then it is readily seen that for k = 1, 2,

n1/2(α̂1 −α1) = (n/m)1/2C−1
1 m−1/2

m∑
i=1,i∈V

{
Z∗

i − 1−H(XT
i α1)

}
+ op(1); (A.5)

n1/2(α̂2 −α2) = (n/m)1/2C−1
2 m−1/2

m∑
i=1,i∈V

{
Z∗

i −H(XT
i α2)

}
+ op(1). (A.6)

For the error model (3), we use linear regression in the validation data to estimate

{Γx, γz,Γw}, and let {Γ̂x, γ̂z, Γ̂w} denote the resulting estimate. Remembering that ei =

X∗
i −ΓxXi −γzZi −ΓwWi, we write êi = X∗

i − Γ̂xXi − γ̂zZi − Γ̂wWi. Then we estimate Σe

by

Σ̂e = (m− pc)
−1

m∑
i=1,i∈V

êiê
T
i ,

where pc is the dimension of (Xi, Zi,Wi). Because the residuals are uncorrelated with the
predictors, it is obvious that

n1/2{vec(Σ̂e)− vec(Σe)} = (n/m)1/2m−1/2

m∑
i=1,i∈V

{vec(eieTi )− vec(Σe)}+ op(1). (A.7)

The limit (A.7) does not involve the estimated regression parameters in model (3).
It is convenient to rewrite the Augmented SIMEX procedure as follows. Generate eib∗ ∼

Normal(0, I). Then β̂b(λ) is the solution to

0 = n−1/2
∑n

i=1,i∈MS∗[β̂b(λ), Yi,X
∗
i +

√
λgssr{vec(Σ̂e)}eib∗, Z∗

i ,Wi, α̂1, α̂2].

It is clear that β̂b(λ) = βb(λ) + op(1), where βb(λ) is the solution to

0 = E
(
S∗[βb(λ), Yi,X

∗
i +

√
λgssr{vec(Σe)}eib∗, Z∗

i ,Wi,α1,α2]
)
.
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Define

Uib(λ) = S∗[βb(λ), Yi,X
∗
i +

√
λgssr{vec(Σe)}eib∗, Z∗

i ,Wi,α1,α2],

and also define

Fβ(λ) = −E
(
∂Uib(λ)/∂β

T
)
;

FΣ(λ) = E
(
∂Uib(λ)/∂vec

T(Σe)
)
;

Fα,1(λ) = E
(
∂Uib(λ)/∂α

T
1

)
;

Fα,2(λ) = E
(
∂Uib(λ)/∂α

T
2

)
.

Then, by standard estimating equation calculations, we see that

n1/2Fβ(λ){β̂b(λ)− βb(λ)} = n−1/2
∑n

i=1,i∈MUib(λ) + FΣ(λ)n
1/2{vec(Σ̂e)− vec(Σe)}

+Fα,1(λ)n
1/2(α̂1 −α1) + Fα,2(λ)n

1/2(α̂2 −α2) + op(1).

Using (A.5)-(A.7), define

Vib(λ) = FΣ(λ){vec(eieTi )− vec(Σe)}+ Fα,1(λ)C−1
1

{
Z∗

i − 1−H(XT
i α1)

}
+Fα,2(λ)C−1

2

{
Z∗

i −H(XT
i α2)

}
.

Then we have that

n1/2{β̂b(λ)− βb(λ)} = F−1
β (λ)n−1/2

∑n
i=1,i∈MUib(λ)

+(n/m)1/2F−1
β (λ)n−1/2

∑n
i=1,i∈MVib(λ) + op(1). (A.8)

If we define Ũi(λ) = F−1
β (λ)B−1

∑B
b=1Uib(λ), Ṽi(λ) = F−1

β (λ)B−1
∑B

b=1Vib(λ), and β(λ) =

B−1
∑B

b=1 βb(λ), we have shown that

n1/2{β̂(λ)− β(λ)} = n−1/2
∑n

i=1,i∈MŨi(λ)

+(n/m)1/2n−1/2
∑n

i=1,i∈MṼi(λ) + op(1). (A.9)

There is a known function gasimex(·), which is explicit in the case of polynomial extrapo-

lation, such that β̂asimex = gasimex{β̂(λ1), ..., β̂(λM)}. Let
gj,asimex = ∂gasimex{β(λ1), ...,β(λM)}/∂βT(λj).

Then, by the delta-method,

n1/2(β̂asimex − βasimex) =
∑M

j=1 gj,asimexn
1/2{β̂(λj)− β(λj)}+ op(1),

where βasimex = {βT(λ1), · · · ,βT(λM)}T.
Define

Gi =
∑M

j=1 gj,asimexŨi(λj); Hi =
∑M

j=1 gj,asimexṼi(λj).

Using (A.9), this means that

n1/2(β̂asimex − βasimex) = n−1/2
∑n

i=1,i∈MGi + (n/m)1/2n−1/2
∑n

i=1,i∈MHi

+op(1). (A.10)

By the central Limit Theorem, (A.10) converges in distribution to Normal(0,Σasimex) as
n → ∞, where Σasimex = cov(Gi)+ρcov(Hi), and ρ = limn→∞(n/m). The limiting covariance
matrix Σasimex can be estimated by replacing all population terms by their sample versions

to form Ĝi and Ĥi.
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Küchenhoff, H., Mwalili, S. M. and Lesaffre, E. (2006). A general method for dealing with
misclassification in regression: The misclassification SIMEX. Biometrics, 62, 85-96.

Liang, H. (2009). Generalized partially linear mixed-effects models incorporating mismea-
sured covariates. Annals of the Institute of Statistical Mathematics, 61, 27-46.

Liang, H. and Wang, N. (2005). Partially linear single-index measurement error models.
Statistica Sinica, 15, 99-116.

Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for clustered data
when the predictor is measured without/with error. Journal of the American Statistical
Association, 95, 520-534.

Ma, Y. and Ronchetti, E. (2011). Saddlepoint test in measurement error models. Journal
of the American Statistical Association, 106, 147-156.

Ma, Y. and Tsiatis, A. A. (2006). Closed form semiparametric estimators for measurement
error models. Statistica Sinica, 16, 183-193.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd edition. London:
Chapman and Hall.

Nakamura, T. (1990). Corrected score functions for errors-in-variables models: methodology
and application to generalized linear models. Biometrika, 77, 127-137.

Nusser, S. M., Carriquiry, A. L., Dodd, K. W. and Fuller, W. A. (1996). A semiparamet-
ric transformation approach to estimating usual intake distributions. Journal of the
American Statistical Association, 91, 1440–1449.

Pierce, D. A, Stram, D. O., Vaeth , M. and Schafer, D. (1992). Some insights into the errors
in variables problem provided by consideration of radiation dose-response analyses for
the A-bomb survivors. Journal of the American Statistical Association, 87, 351-359.

Potischman, N., Carroll, R. J., Iturria, S., Mittl, B., Curtin, J., Thompson, F. and Brinton,
L. (1999). Comparison of the 60- and 100-item NCI-block questionnaires with validation
data. Nutrition and Cancer, 34, 70-85.

Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control
studies. Biometrika, 66, 403-411.

Rosner, B., Spiegelman, D., and Willett, W. C. (1990). Correction of logistic regression rel-
ative risk estimates and confidence intervals for measurement error: the case of multiple
covariates measured with error. American Journal of Epidemiology, 132, 734-745.

29



Rosner, B., Spiegelman, D., and Willett, W. C. (1992). Correction of logistic regression
relative risk estimates and confidence intervals for random within-person measurement
error. American Journal of Epidemiology, 136, 1400-1413.

Rosner, B. A., Willett, W. C. and Spiegelman, D. (1989). Correction of logistic regression
relative risk estimates and confidence intervals for systematic within-person measurement
error. Statistics in Medicine, 8, 1051-1070.

Spiegelman, D., Rosner, B. and Logan, R. (2000). Estimation and inference for logistic re-
gression with covariate misclassification and measurement error in main study/validation
study designs. Journal of the American Statistical Association, 95, 51-61.

Spiegelman, D., Zhao, B. and Kim, J. (2005). Correlated errors in biased surrogates: study
designs and methods for measurement error correction. Statistics in Medicine, 24, 1657-
1682.

Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores in general-
ized linear measurement error models. Biometrika, 74, 703-716.

Stubbendick, A. L. and Ibrahim, J. G. (2003). Maximum likelihood methods for nonignorable
missing responses and covariates in random effects models. Biometrics, 59, 1140–1150.

Sugar, E. A., Wang, C.-Y. and Prentice, R. L. (2007). Logistic regression with exposure
biomarkers and flexible measurement error. Biometrics, 63, 143-151.

Tsiatis, A. A. and Ma, Y. (2004). Locally efficient semiparametric estimators for functional
measurement error models. Biometrika, 91, 835-848.

Wang, C. Y., Huang, Y., Chao, E. C. and Jeffcoat, M. K. (2008). Expected estimating
equations for missing data, measurement error, and misclassification, with application
to longitudinal nonignorable missing data. Biometrics, 64, 85-95.

Wang, N. and Davidian, M. (1996). A note on covariate measurement error in nonlinear
mixed models. Biometrics, 83, 801-812.

White, H. (1982) Maximum likelihood estimation of misspecified models. Econometrica, 50,
1-25.

Yi, G. Y. (2008). A simulation-based marginal method for longitudinal data with dropout
and mismeasured covariates. Biostatistics, 9, 501-512.

Yi, G. Y., Liu, W. and Wu, L. (2011). Simultaneous inference and bias analysis for longi-
tudinal data with covariate measurement error and missing responses. Biometrics, 67,
67-75.

Yi, G. Y., Ma, Y. and Carroll, R. J. (2012). A functional generalized method of moments
approach for longitudinal studies with missing responses and covariate measurement
error. Biometrika, 99, 151-165.

Zucker, D. M. and Spiegelman, D. (2004). Inference for the proportional hazards model with
misclassified discrete-valued covariates. Biometrics, 60, 324-334.

Zucker, D. M. and Spiegelman, D. (2008). Corrected score estimation in the proportional
hazards model with misclassified discrete covariates. Statistics in Medicine, 27, 1911-
1933.

30



β0 βz

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7

−1

−0.5

0

0.5

1 2 3 4 5 6 7

βx βw

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7

−0.4

−0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7

Figure 1: Boxplots of the biases of the seven estimators for β0, βz, βx and βw in Simulation

1. The seven estimators are respectively pseudo-likelihood (1) , estimating function (2)

and regression calibration (3) estimators under uniform distribution model for X, pseudo-

likelihood (4), estimating function (5) and regression calibration (6) estimators under normal

distribution model for X, and SIMEX estimator (7).
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Table 1: Results of Simulation 1 in Section 6.1 based on 1,000 data sets, m = 500, n = 1000
and X is normal. Here (β0, βz, βx, βw) are defined in (13). Mean (est), standard deviation

(sd), the average of the estimated standard deviation (ŝd) and 95% confidence interval cover-
age are reported for likelihood methods, estimating function methods, regression calibration
methods, all based on both uniform and normal latent variable distribution models. SIMEX
estimation results are reported in the left last block. The true latent variable distribution is
uniform.

β0 βz βx βw β0 βz βx βw

true 0.1 -1.0 0.7 0.5 0.1 -1.0 0.7 0.5

maximum likelihood
uniform normal

est 0.101 -1.012 0.707 0.511 0.049 -1.019 0.818 0.516
sd 0.184 0.303 0.060 0.170 0.184 0.305 0.073 0.172
ŝd 0.183 0.299 0.060 0.166 0.184 0.300 0.073 0.168
95%CI 95.2% 94.8% 95.7% 95.4% 94.1% 94.9% 67.3% 95.4%

estimating function
uniform normal

est 0.107 -1.027 0.709 0.511 0.107 -1.027 0.709 0.511
sd 0.194 0.313 0.064 0.176 0.194 0.314 0.066 0.176
ŝd 0.185 0.300 0.063 0.174 0.185 0.300 0.063 0.174
95%CI 93.8% 94.5% 95.6% 95.8% 93.8% 94.4% 95.2% 95.9%

regression calibration
uniform normal

est 0.088 -0.936 0.666 0.472 0.039 -0.930 0.759 0.472
sd 0.170 0.277 0.050 0.157 0.168 0.274 0.058 0.157
ŝd 0.169 0.273 0.050 0.153 0.167 0.270 0.057 0.153
95%CI 95.2% 93.4% 88.3% 94.9% 93.2% 93.3% 84.4% 94.8%

simulation extrapolation

est 0.103 -0.970 0.665 0.495 0.103 -0.970 0.665 0.495
sd 0.178 0.287 0.055 0.165 0.178 0.287 0.055 0.165
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Figure 2: Boxplots of the biases of the seven estimators for β0, βz, βx and βw in Simulation

2. The seven estimators are respectively pseudo-likelihood (1) , estimating function (2)

and regression calibration (3) estimators under uniform distribution model for X, pseudo-

likelihood (4), estimating function (5) and regression calibration (6) estimators under normal

distribution model for X, and SIMEX estimator (7).
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Table 2: Results of Simulation 2 in Section 6.1 based on 1,000 data sets, m = 500, n = 1000
and X is uniform. Here (β0, βz, βx, βw) are defined in (13). Mean (est), standard deviation

(sd), the average of the estimated standard deviation (ŝd) and 95% confidence interval cover-
age are reported for likelihood methods, estimating function methods, regression calibration
methods, all based on both uniform and normal latent variable distribution models. SIMEX
estimation results are reported in the left last block. The true latent variable distribution is
normal.

β0 βz βx βw β0 βz βx βw

true 0.1 -1.0 0.7 0.5 0.1 -1.0 0.7 0.5

maximum likelihood
uniform normal

est 0.231 -1.008 0.433 0.500 0.100 -1.034 0.721 0.514
sd 0.158 0.256 0.061 0.146 0.166 0.265 0.113 0.151
ŝd 0.161 0.257 0.060 0.146 0.167 0.266 0.109 0.150
95%CI 89.6% 96.0% 1.8% 94.7% 95.8% 96.1% 95.3% 94.5%

estimating function
uniform normal

est 0.104 -1.049 0.723 0.513 0.104 -1.049 0.724 0.514
sd 0.177 0.284 0.122 0.166 0.178 0.284 0.129 0.167
ŝd 0.170 0.271 0.118 0.161 0.170 0.272 0.118 0.161
95%CI 94.5% 95.9% 95.7% 94.8% 94.1% 95.7% 93.9% 94.6%

regression calibration
uniform normal

est 0.221 -0.968 0.419 0.480 0.093 -0.967 0.675 0.481
sd 0.152 0.244 0.055 0.140 0.156 0.244 0.094 0.140
ŝd 0.155 0.245 0.054 0.140 0.156 0.245 0.088 0.140
95%CI 90.2% 95.5% 0% 94.1% 95.9% 95.5% 91.6% 94.2%

simulation extrapolation

est 0.191 -0.992 0.500 0.492 0.191 -0.992 0.500 0.492
sd 0.157 0.252 0.068 0.145 0.157 0.252 0.068 0.145
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Figure 3: Boxplots of the biases of the seven estimators for β0, βz, βx and βw in Simulation

3. The seven estimators are respectively pseudo-likelihood (1) , estimating function (2)

and regression calibration (3) estimators under uniform distribution model for X, pseudo-

likelihood (4), estimating function (5) and regression calibration (6) estimators under normal

distribution model for X, and SIMEX estimator (7).
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Table 3: Results of Simulation 3 in Section 6.1 based on 1,000 data sets, m = 200, n = 2000
and X is normal. Here (β0, βz, βx, βw) are defined in (13). Mean (est), standard deviation

(sd), the average of the estimated standard deviation (ŝd) and 95% confidence interval cover-
age are reported for likelihood methods, estimating function methods, regression calibration
methods, all based on both uniform and normal latent variable distribution models. SIMEX
estimation results are reported in the left last block. The true latent variable distribution is
uniform.

β0 βz βx βw β0 βz βx βw

true 0.1 -1.0 0.7 0.5 0.1 -1.0 0.7 0.5

maximum likelihood
uniform normal

est 0.101 -1.016 0.705 0.504 0.078 -1.017 0.753 0.505
sd 0.116 0.162 0.036 0.114 0.117 0.162 0.040 0.114
ŝd 0.112 0.160 0.037 0.114 0.112 0.160 0.041 0.114
95%CI 94.6% 95.6% 94.7% 94.2% 93.7% 95.6% 77.9% 94.2%

estimating function
uniform normal

est 0.105 -1.022 0.704 0.504 0.105 -1.022 0.704 0.504
sd 0.118 0.163 0.037 0.115 0.119 0.163 0.038 0.115
ŝd 0.107 0.149 0.036 0.114 0.107 0.149 0.036 0.114
95%CI 92.9% 93.3% 94.6% 94.5% 92.9% 93.2% 93.8% 94.5%

regression calibration
uniform normal

est 0.097 -0.985 0.686 0.488 0.074 -0.983 0.730 0.488
sd 0.113 0.157 0.033 0.110 0.113 0.156 0.036 0.110
ŝd 0.108 0.154 0.034 0.110 0.108 0.153 0.036 0.110
95%CI 94.6% 94.2% 93.3% 94.7% 93.5% 94.2% 87.2% 94.9%

simulation extrapolation

est 0.101 -1.011 0.701 0.502 0.101 -1.011 0.701 0.502
sd 0.116 0.160 0.036 0.114 0.116 0.160 0.036 0.114
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Figure 4: Boxplots of the biases of the seven estimators for β0, βz, βx and βw in Simula-

tion 4. The seven estimators are respectively pseudo-likelihood (1), estimating function (2)

and regression calibration (3) estimators under uniform distribution model for X, pseudo-

likelihood (4), estimating function (5) and regression calibration (6) estimators under normal

distribution model for X, and SIMEX estimator (7).
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Table 4: Results of Simulation 4 in Section 6.1 based on 1,000 data sets, m = 200, n = 2000
and X is uniform. Here (β0, βz, βx, βw) are defined in (13). Mean (est), standard deviation

(sd), the average of the estimated standard deviation (ŝd) and 95% confidence interval cover-
age are reported for likelihood methods, estimating function methods, regression calibration
methods, all based on both uniform and normal latent variable distribution models. SIMEX
estimation results are reported in the left last block. The true latent variable distribution is
normal.

β0 βz βx βw β0 βz βx βw

true 0.1 -1.0 0.7 0.5 0.1 -1.0 0.7 0.5

maximum likelihood
uniform normal

est 0.163 -1.003 0.570 0.504 0.095 -1.008 0.708 0.507

sd 0.124 0.207 0.049 0.102 0.125 0.208 0.065 0.103

ŝd 0.124 0.204 0.047 0.103 0.125 0.206 0.062 0.103

95%CI 0.944% 0.950% 0.228% 0.957% 0.946% 0.951% 0.947% 0.955%

estimating function
uniform normal

est 0.105 -1.021 0.704 0.507 0.104 -1.021 0.704 0.507

sd 0.140 0.218 0.065 0.108 0.140 0.219 0.069 0.108

ŝd 0.115 0.180 0.061 0.108 0.115 0.180 0.061 0.108

95%CI 0.905% 0.916% 0.937% 0.955% 0.905% 0.916% 0.924% 0.955%

regression calibration
uniform normal

est 0.158 -0.979 0.557 0.492 0.092 -0.979 0.688 0.492

sd 0.121 0.201 0.046 0.100 0.122 0.200 0.060 0.100

ŝd 0.122 0.199 0.044 0.100 0.121 0.198 0.055 0.100

95%CI 0.946% 0.936% 0.122% 0.958% 0.944% 0.935% 0.908% 0.958%

simulation extrapolation

est 0.117 -0.998 0.656 0.502 0.117 -0.998 0.656 0.502
sd 0.123 0.205 0.057 0.102 0.123 0.205 0.057 0.102
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Table 5: Analysis of the WISH Study. Estimates (est) and estimated standard deviations

(ŝd) are reported for likelihood methods, estimating function methods, regression calibra-
tion methods, based on uniform (uniform) and normal (normal) latent variable distribution
models. Naive and SIMEX results are also included. Here (βz, βx, βw) are the coefficients for
Z, X and W , respectively.

βz βx βw βz βx βw

maximum likelihood
normal uniform

est -0.586 -0.589 0.251 -0.575 -0.236 0.244
ŝd 0.476 0.329 0.077 0.458 0.127 0.074

estimating function
normal uniform

est -0.571 -0.576 0.245 -0.572 -0.568 0.240
ŝd 0.218 0.399 0.076 0.254 0.440 0.077

regression calibration
normal uniform

est -0.556 -0.564 0.239 -0.560 -0.231 0.239
ŝd 0.442 0.279 0.072 0.443 0.117 0.072

naive (treat x∗ as x) naive (treat x∗, z∗ as x, z)
est -0.555 -0.105 0.239 -0.195 -0.105 0.237
ŝd 0.442 0.052 0.072 0.148 0.051 0.072

simulation extrapolation
est -0.633 -0.184 0.240 -0.633 -0.184 0.240
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