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Vitamin D measurements are influenced by seasonal variation and specific assay used. Motivated by multicenter
studies of associations of vitamin D with cancer, we formulated an analytic framework for matched case–control
data that accounts for seasonal variation and calibrates to a reference assay. Calibration data were obtained from
controls sampled within decile strata of the uncalibrated vitamin D values. Seasonal sine–cosine series were fit
to control data. Practical findings included the following: (1) failure to adjust for season and calibrate increased
variance, bias, and mean square error and (2) analysis of continuous vitamin D requires a variance adjustment
for variation in the calibration estimate. An advantage of the continuous linear risk model is that results are
independent of the reference date for seasonal adjustment. (3) For categorical risk models, procedures based
on categorizing the seasonally adjusted and calibrated vitamin D have near nominal operating characteristics;
estimates of log odds ratios are not robust to choice of seasonal reference date, however. Thus, public health rec-
ommendations based on categories of vitamin D should also define the time of year to which they refer. This work
supports the use of simple methods for calibration and seasonal adjustment and is informing analytic approaches
for the multicenter Vitamin D Pooling Project for Breast and Colorectal Cancer. Published 2016. This article has
been contributed to by US Government employees and their work is in the public domain in the USA.
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1. Introduction

Measurements of 25-hydroxyvitamin D, which we call vitamin D, are influenced by seasonal variation
and assay calibration. Vitamin D blood concentrations increase in response to sun exposure, inducing
seasonal changes. These factors need to be taken into account in the analysis of matched case–control
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studies to associate vitamin D with disease risk. Although previous case–control analyses have used sine–
cosine series to account for seasonal variation [1, 2], as we do, we have not found studies that allow for
both calibration and seasonal adjustment. In this paper, we present a framework for such analyses. This
framework, and parameters based on real studies, underlie our simulations to evaluate the performance
of various procedures to estimate log odds ratios.

This work was motivated by collaboration on the Vitamin D Pooling Project of Breast and Colorec-
tal Cancer (hereafter, Vitamin D Pooling Project), which includes 21 cohort studies in North America,
Europe, and Asia. Because vitamin D is stable in stored frozen blood samples, such samples can be used
to study associations with cancers that develop years later. Vitamin D was measured in previously stored
blood from incident breast or colon cancer cases in these cohorts and from their matched controls. In some
studies, the controls were tightly matched to cases on date of blood draw, but not in all studies. More-
over, different assays were used in various studies. Hence, calibration against a reference laboratory was
required to put measurements from various studies on a common scale. In each study, reference labora-
tory measurements were obtained from 29 control bloods, selected by stratified random sampling within
strata defined by deciles of the uncalibrated control vitamin D measurements. To control for effects of
seasonal variation in within-study comparisons of cases and controls, study-specific seasonal adjustment
was required. The intent of using calibration and study-specific seasonal adjustment is to transform the
original data so that every measurement, regardless of when it was drawn and regardless of study assay,
could be thought of as having been measured on the same reference date by the reference laboratory.

This work has several novel features. It provides a statistical framework to accommodate both cali-
bration and seasonal adjustment. Using this framework, we assess procedures for inference on log odds
ratios, both for continuous and categorical vitamin D risk models, in realistic simulations based on data
from the Vitamin D Pooling Project. Finally, we identify practical recommendations for analysis and
interpretation to inform the work of the Vitamin D Pooling Project. In particular, our analyses show the
following: (1) failure to adjust for calibration and seasonal trend can inflate variance, bias, and mean
square error of estimated vitamin D effects; (2) simple analytic methods can be recommended for contin-
uous and categorical risk models (and perform even better than a theoretically appealing normal model
for categorical risk); (3) with the stratified sampling design for calibration samples, there is surprisingly
little increase in the variance of log odds ratio estimates from calibration and seasonal adjustment; and
(4) unlike continuous vitamin D risk models, categorical models are not robust to the choice of refer-
ence date for seasonal adjustment. This finding implies that public heath recommendations for desirable
vitamin D levels may need to be season specific.

Section 2 describes models and statistical methods. Section 3 describes simulation studies in which
the logit of disease risk is linear or categorical in vitamin D. Section 4 presents analyses of data from
three nested case–control studies, and Section 5 has concluding remarks. Technical results are given in an
Appendix, and additional methods, simulations, and examples are given in the supporting information.

2. Methods

2.1. Motivating data

We base our simulations (Section 3) on two typical data sets, one a nested case–control study of colorectal
cancer from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study [3], hereafter ATBC, and
the second, a nested case–control study of breast cancer from the Prostate, Lung, Colorectal and Ovarian
Cancer Screening Trial or PLCO [4]. We use only data from controls from these studies as the basis of
our simulations, and we specify the exposure effects. Figure 1 depicts vitamin D measurements in ATBC
controls as a function of the week the blood sample was drawn ranging from week 1 (January 1–7) to
week 52. The solid line represents a sine/cosine series fit to these data, described fully in Section 2.3. No
samples were collected between weeks 24 and 32. The maximum value of the fitted curve is at week 35
(the third week in September) and the fitted values at the beginning and end of the year agree, as would
make sense because they represent the same time of year. Another plot of this type is given for the PLCO
data as Figure S1. In addition to the vitamin D measurements that are available from the study-specific
laboratory on all subjects, we have calibration measurements from a reference laboratory on a sample of
29 controls, selected as described in Section 2.4.

We also estimated disease associations with vitamin D from cases and controls in three studies, ATBC
(Table V), and two studies of breast cancer, the New York University Women’s Health Study (NYUWHS)
(Table SX) and the Cancer Prevention Study II Nutrition Cohort (CPSII) (Table SXI).
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Figure 1. Seasonal trends in vitamin D measurements in controls from the Alpha-Tocopherol, Beta-Carotene
study.

Descriptive data for these four cohorts are in Table SI.

2.2. Statistical framework for calibration and seasonal trend models

The following notation is for a single study. Let w(t) = 𝜍(t) + w be the true value of the study-specific
(or ‘local’) assay for an individual measured at week t, where 𝜍(t) is the seasonal trend in the population
and w ∼ Normal(0, 𝜏2) represents the deviation of the individual’s value from the trend. The observed
local assay value is W(t) = w(t) + uW , where uW ∼ Normal(0, 𝜎WW) represents measurement error. We
assumed a linear calibration curve because the regression of reference vitamin D measurements against
local laboratory measurements was usually linear in Vitamin D Pooling Project studies, and in those
few instances where a quadratic component was detected, differences in predictions between the linear
and quadratic models were small. Under linear calibration, we denote the true value for the reference
laboratory as x(t) = a + bw(t), where a and b represent the true calibration intercept and slope. The
observed reference laboratory measurement would be X(t) = x(t) + uX , where uX ∼ Normal(0, 𝜎XX) is
measurement error. Assuming that (w, uW , uX)T are trivariate normal with cov(w, uX) = cov(w, uW) = 0
and cov(uX , uW ) = 𝜎XW , it follows that the observable variables {W(t),X(t)}T are bivariate normal with
means {𝜍(t), a + b𝜍(t)}T and covariance matrix

𝚺 =
(

𝜏2 + 𝜎WW b𝜏2 + 𝜎XW
b𝜏2 + 𝜎XW b2𝜏2 + 𝜎XX

)
.

Hence, the regression of X(t) on W(t) is

E{X(t)|W(t)} = a + b𝜍(t) + (b𝜏2 + 𝜎XW )(𝜏2 + 𝜎WW )−1{W(t) − 𝜍(t)}

= a + 𝜍(t)
{

b − (b𝜏2 + 𝜎XW)(𝜏2 + 𝜎WW)−1
}

+ (b𝜏2 + 𝜎XW)(𝜏2 + 𝜎WW)−1W(t).

(1)

If we assume that 𝜎XW = 0, as is reasonable because measurements in the local and reference laboratories
on the same sample are usually performed in different locations and/or times, the regression reduces to
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E{X(t)|W(t)} = E{x(t)|W(t)} = a + b𝜍(t) + b𝜅W{W(t) − 𝜍(t)}, (2)

where 𝜅W = 𝜏2(𝜏2+𝜎WW )−1 is an attenuation factor (or intraclass correlation) from measurement error in
W(t). Local assay values W(t) are available on all samples, whereas reference laboratory values X(t) are
available only on a sample of controls, as described in Section 2.4. We assume 𝜎XX and 𝜎WW are known
from reliability studies in which the same sample is repeatedly analyzed on different days in the reference
and local laboratories. Data from the studies in the Vitamin D Pooling Project indicate that (𝜎XX)1∕2 and
(𝜎WW)1∕2 each ranged from 0.5 to 9 nmol/L, with most values in the range of 2–4. To estimate 𝜏2 and
hence 𝜅W , we subtracted 𝜎WW from the empirical variance of {W(t) − 𝜍̂(t)} in controls, where 𝜍̂(t) is the
estimated periodic trend in W(t). Because 𝜏2 was much larger than 𝜎WW , results were little changed in
sensitivity analyses as 𝜎XX and 𝜎WW ranged from 4 to 36. In Section 2.3, we describe how we fit the trend.

2.3. Fitting the trend

We used data on W(t) from controls to estimate the seasonal trend 𝜍(t) by fitting the model

W(t) = 𝜍(t) + 𝜀, (3)

𝜍(t) = 𝛾0 + 𝛾1 sin(2𝜋t∕52) + 𝛾2 cos(2𝜋t∕52) + 𝛾3 sin(4𝜋t∕52) + 𝛾4 cos(4𝜋t∕52), (4)

where 𝜀 ∼ Normal(0, 𝜎2) is independent of 𝜍(t) and t is in weeks. Such periodic series have been studied
previously (e.g., [5]) and shown to fit vitamin D data as an outcome variable with t in days [6] and as an
exposure in case–control analyses with t in months [1, 2]. Those vitamin D analyses used only the first
three terms in Equation (4), but we found that five terms were needed to fit the data well in each of the 21
Vitamin D Pooling Project studies. Figure 1 shows the fit to data from the controls in the ATBC colorectal
case–control study. This approach has the advantages that only 5 degrees of freedom are used to fit the
trend, which has little impact on the variance of risk estimates (Supporting Information Appendices A.5
and A.6), and the trend gives similar values on December 31 as on January 1, as is desirable. When we
tried other more flexible fitting methods, such as splines with many knots or LOESS regression, the trends
were not necessarily equal at the beginning and end of the year, and the variance of estimates of vitamin
D effects were inflated, as previously noted [7]. Controls were used for fitting seasonal trends because,
for low-incidence diseases like breast or colorectal cancer, controls are representative of the general
population (see the rare disease assumption in the Supporting Information Appendix A.1). Matching
controls to cases on cancer risk factors such as age changes the age distribution in controls but would not
alter the seasonal vitamin D pattern in controls appreciably unless this was strongly associated with age.

2.4. Estimating the calibration parameters (a and b)

The Vitamin D Pooling Project included calibration samples from controls within each study. For each
study, the control values of W(t) were grouped into deciles, and from each decile, three controls were
selected at random. (In fact, 29 controls were usually selected this way, rather than 30, but for the simula-
tions later, we selected three from each decile.) Blood samples from the selected controls were then sent
to the reference laboratory for measurement of X(t). Thus, the {X(t),W(t)} pairs are a stratified random
sample with strata defined by deciles of W(t).

We considered three estimates of the calibration parameters a and b.

• Estimates â1 and b̂1 are obtained from simple linear regression of X(t) on W(t) in the calibration data.
These quantities are not consistent for a and b, in view of Equation (2).

• From Equation (2), a somewhat more refined estimate (â2, b̂2)T is obtained by regressing X(t) on
𝜅W{W(t) − 𝜍̂(t)}.

• The most justifiable estimate, in view of Equation (2), is (â3, b̂3)T, which is obtained by regressing
X(t) on 𝜍̂(t)(1 − 𝜅W ) + 𝜅WW(t). For 𝜅W equal 1, this procedure reduces to the regression of X(t)
on W(t).

We evaluated each of these approaches in simulations.

2.5. Risk models and estimators

2.5.1. Continuous risk models. For modeling continuous vitamin D, we assumed that the logit of the
disease risk is
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logit{pr(Y = 1)} = 𝛼0 + 𝛼1x0, (5)

where x0 ≡ x(t0) = a + bw(t0) is the value that the true reference laboratory would have produced if it
had been measured on the reference date t0 instead of the date t. Each matched case–control pair makes
the following contribution to the conditional likelihood:

exp{𝛼1(x0,case − x0,control)}∕[exp{𝛼1(x0,case − x0,control)} + 1]. (6)

However, we only get to observe W(t), not x0. One approach is to replace x0 by its conditional
expectation given W(t) in Equation (2), which we estimate by

x̂0 = â + b̂𝜍̂(t0) + b̂𝜅W{W(t) − 𝜍̂(t)} = â + b̂{𝜍̂(t0) − 𝜅W 𝜍̂(t)} + b̂𝜅WW(t). (7)

The estimates 𝜍̂(⋅), â, and b̂ are described in Sections 2.3 and 2.4. Then (7) leads to the estimated
difference

x̂0,case − x̂0,control = b̂𝜅W{W(tcase) − W(tcont) − 𝜍̂(tcase) + 𝜍̂(tcont)}. (8)

Under the rare disease assumption, and using Equation (8), if one substitutes {W(tcase) − W(tcont) −
𝜍̂(tcase) + 𝜍̂(tcont)} for (x0,case − x0,control) in Equation (6) and maximizes the conditional likelihood with
respect to 𝛼1, one obtains the estimate 𝛼∗

1 of 𝛼∗
1 = 𝛼1b𝜅W . Thus, we estimate 𝛼1 by 𝛼1 = 𝛼∗

1∕(b̂𝜅W).
The asymptotic behavior of 𝛼1 is derived in the Supporting Information Appendix A.6. A simple esti-

mate of its variance is obtained as follows. First, estimate the variance of 𝛼∗
1 by the inverse of the Hessian

of the conditional log-likelihood, and call this V̂ar(𝛼∗
1 ). Then, by the delta method, 𝛼1 has approximate

variance estimate V̂ar(𝛼1) = (b̂𝜅W)−2V̂ar(𝛼∗
1 ) + (𝛼∗

1∕b̂2𝜅W)2V̂ar(b̂) where V̂ar(b̂) is estimated from the
regressions in Section 2.4. In this calculation, we use the fact that 𝛼∗

1 and b̂ are independent, and we
assume that the variation from estimates of trend and 𝜅W is numerically negligible (Supporting Informa-
tion Appendix A.6). Some intuition is obtained by considering the ATBC example. Even if the case and
control had tcase = tcont, Var[{W(tcase)−W(tcont)}] ⩾ 2𝜏2 = 2×240.9 = 481.8, which greatly exceeds the
variance of the difference in trend estimates. For example, Var{𝜍̂(39∕52) − 𝜍̂(1∕52)} = 10.9, which is
much smaller than 481.8. Likewise, the standard error of 𝜅W was 0.0066 in simulations, implying small
variation about 𝜅W = 0.9377 with 𝜎WW = 16.

Importantly, none of these calculations depend on the calibration intercept a. The seasonal adjustment
in Equation (8) vanishes if the case and control are matched on the date of blood draw so that tcase = tcont.
Also, the seasonal adjustment in (8) does not depend on the reference date, t0. Ignoring calibration and
measurement error in W(t) is equivalent to using 𝛼∗

1 instead of 𝛼1.

2.5.2. Categorized risk models. For categorical vitamin D, we assume

logit{P(Y = 1)} = 𝜇 +
5∑

i=1

I(ci−1 ⩽ x0 < ci)𝛽i, (9)

where c0 = 0 and 𝛽1 = 0. For 1:1 nested case–control matching, the corresponding conditional likelihood
contribution from a case–control pair is

exp
{
𝜷TC1(x0)

}
∕
[
exp

{
𝜷TC1(x0)

}
+ exp

{
𝜷TC0(x0)

}]
, (10)

where C𝓁(x) is a 5× 1 vector of indicators in (9) for cases (𝓁 = 1) and controls (𝓁 = 0) and 𝜷 is the
corresponding vector of log odds ratios, 𝛽i. A linear trend risk model sets 𝛽i = (i − 1)𝛽, where 𝛽 is the
log odds increase in risk per exposure category increase. The contribution to the likelihood for the linear
model is Equation (10) with (i − 1)𝛽 replacing 𝜷TC𝓁(x0). The cut-points ci could be externally defined
levels, such as those given by the Institute of Medicine for vitamin D [8]. They could also be study-wide
quantiles of vitamin D estimated from controls from all participating studies. In the simulations in Section
3.3, they were quintiles of x0 values among controls from the particular study on which the simulations
were based. In particular, we set x0 = a + b{W(t) − 𝜍̂(t) + 𝜍̂(t0} where W(t) and 𝜍̂(⋅) were from controls
from that study.
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If x0 were known, we could estimate 𝜷 or 𝛽 by maximizing the product of conditional likelihoods
(10) with respect to 𝜷 or 𝛽 and obtain model-based estimates of their covariance from the Hessian of the
log-likelihood. With x̂0 defined in (7), we proceeded by substituting x̂0 for x0 in Equation (10) and by esti-
mating covariances from the Hessian as if x0 were known. We investigated the operating characteristics
of this approach in simulations.

Although the preceding estimation procedures are easy to describe and implement, they do not take
full advantage of the assumed normal distributions, nor do they acknowledge the uncertainty in assigning
risk category based on x̂0 instead of x0. Given a, b, 𝜍(⋅), and W(t), x0 ∼ Normal[a+b𝜍(t0)+b𝜅W{W(t)−
𝜍(t)}, 𝜂2

≡ b2𝜎WW𝜅W]. Hence,

pr
{

x0 in category i|W(t)
}
≡ E

{
I(ci−1 ⩽ x0 < ci)|a, b, 𝜍(⋅),W(t)

}
= Φ(zi) − Φ(zi−1), (11)

where zi = [ci − a − b𝜍(t0) − b𝜅W{W(t) − 𝜍(t)}]∕𝜂 and Φ(⋅) is the standard normal distribution function.
For a rare disease, the conditional likelihood corresponding to a matched case–control set is shown in
Appendix A.1 to be

5∑
i=1

exp(𝛽i)pr{x0,case in category i|W(tcase)}

5∑
i=1

exp(𝛽i)pr{x0,case in category i|W(tcase)} +
5∑

i=1
exp(𝛽i)pr

{
x0,control in category i|W(tcont)

} . (12)

The product of such terms over case–control pairs can be maximized with respect to 𝜷 in the gen-
eral model or 𝛽 (the per category log odds ratio) in the linear trend model to obtain estimates and their
model-based estimated covariance. We substituted estimates 𝜍̂(⋅), â, and b̂ to compute pr{x0 in i|W(t)}
in Equation (11). A more precise analysis might maximize the average likelihood over the distribution of
𝜍̂(⋅), â, and b̂. A numerical approach would be to draw repeated samples of 𝜍̂(⋅), â, and b̂ to compute
an average likelihood and maximize this quantity, but we have not pursued it because unreported simu-
lations indicated that substitution of 𝜍̂(⋅), â, and b̂ yields similar operating characteristics as using the
exact quantities 𝜍(⋅), a, and b.

3. Simulations

3.1. Simulation setup

In this section, we describe methods to simulate realistic case–control samples based on controls from
the colorectal cancer case–control study in ATBC. We also used these methods for simulations based on
the breast cancer case–cohort study in PLCO. We describe the analytic procedures for continuous and
categorical risk models.

Data from the controls were used to estimate the distribution of times of blood draw, the trend 𝜍(t),
and 𝜏2. In particular we estimated 𝜏2 = 240.89 assuming 𝜎WW = 16. The estimated coefficients in the
seasonal trend Equation (4) were 39.425, −5.837, −4.485, 1.440, and −0.444.

We generated 10,000 case–control studies based on the original ATBC data. For each simulated study,
we generated a large (N = 50,000) source population as follows. First, draw a date t of blood by sampling
with replacement from the dates in the original controls. Then, generate w(t) = 𝜍(t)+w by sampling from
w ∼ Normal(0, 𝜏2). Set x0 = a+bw(t0) = a+b{𝜍(t0)+w} and generate the disease status indicator Y from
Equation (5) for continuous vitamin D and from Equation (9) for categorical vitamin D. Generate the
observed local vitamin D measurement from W(t) = w(t) + uW by drawing from uW ∼ Normal(0, 𝜎WW),
where 𝜎WW is assumed known, and independently generate reference laboratory measurements X(t) =
x(t) + uX = a + bw(t) + uX by drawing from uX ∼ Normal(0, 𝜎XX) with 𝜎XX known. Implicitly, we are
assuming 𝜎XW = 0. At this stage, we have N triples {Y ,W(t),X(t)}T .

To obtain the case–control data, we randomly selected n triples from among the triples with Y = 1
(cases) and n triples from among those with Y = 0 (controls). However, we observed X(t) only in the
calibration sample, which is obtained by arranging the W(t) values of controls into decile groups and
selecting three controls at random from among the controls in each decile group. For these 30 controls,
which we call the calibration sample, we observed {Y ,W(t),X(t)}T , but in all other cases and controls,
we only observed {Y ,W(t)}T . These triplets and doublets constituted the case–control data available for
analysis. The effects of matching variables on risk cancel from the conditional logistic likelihood. We
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assumed that the matching variables have no effect on risk in these simulations, because there are no
matching effects in Equations (5) and (9). Hence, we randomly matched cases with controls to obtain n
pairs, regardless of season.

Analysis of each such simulated data set for continuous vitamin D proceeded as follows. First, obtain
𝜍̂(t) by fitting Equation (3) to the n control values of W(t). Next estimate 𝜏2 by subtracting 𝜎WW from
the variance of W(t) - 𝜍̂(t) in controls. Use 𝜏2 and the assumed known value 𝜎WW to calculate 𝜅W . Let 𝛼∗

1
be the estimate obtained from conditional logistic regression (CLR) using the residuals {W(t) − 𝜍̂(t)}.
We described three estimates of (a, b)T in Section 2.4 and used these results to produce three estimates
of 𝛼1, namely, 𝛼1 = 𝛼∗

1∕b̂𝜅W , with b̂ being b̂1, b̂2, or b̂3. We also present estimates from CLR with raw
values W(t) and with only seasonally adjusted values, {W(t) − 𝜍̂(t)}. Finally, we present an estimate
based on calibration only that is obtained by dividing the estimate from the raw values, W(t), by b̂1𝜅W .
All these estimates were compared with estimates obtained by inserting the true values x0 from the case
and matched control into the CLR. None of these estimates depends on a standard reference date, t0.

For categorical vitamin D, values of Y were generated from Equation (9) based on quintiles of x0
from the study on which the simulation was based, as described in Section 2.5.2 . A benchmark analysis
used the perfect categories in Equation (10) based on the true x0, which is unknown in practice. We also
categorized the raw values W(t) without seasonal adjustment or calibration for use in Equation (10), as
well as the seasonally adjusted but not calibrated values, W(t) − 𝜍̂(t) + 𝜍̂(t0) and the calibrated but not
seasonally adjusted values â1 + b̂1W(t). Two more principled estimates x̂0 were used for categorization in
Equation (10). We call them x̂01 = â1+ b̂1𝜍̂(t0)+ b̂1𝜅W{W(t)− 𝜍̂(t)} and x̂03 = â3+ b̂3𝜍̂(t0)+ b̂3𝜅W{W(t)−
𝜍̂(t)}. A final estimate of log odds ratios, called the ‘normal model’ estimate, was based on Equations (11)
and (12) with â3 + b̂3𝜍̂(t0) + b̂3𝜅W{W(t) − 𝜍̂(t)} and 𝜂 = b̂3(𝜎WW𝜅W)1∕2 substituted for corresponding
parameters to compute zi.

3.2. Analysis of continuous vitamin D

In this section, we compare procedures with calibration and/or seasonal adjustment for analyzing contin-
uous vitamin D. Table I contains comparisons for the various estimators of slope under the null hypothesis
𝛼1 = 0.The logistic intercept was 𝜇 = −4. The parameters were chosen to provide a severe test of the vari-
ous procedures. In particular, there were only n = 100 case–control pairs; larger numbers of n make it eas-
ier to estimate trends and reduce small sample bias in estimators. The values a = 5 and b = 1.4 represent
more severe miscalibration of the local assay than found in most Vitamin D Pooling Project studies. The
estimated measurement error variances 𝜎XX = 𝜎WW = 16 are representative of values found in replication

Table I. Simulation performance of procedures for conditional logistic regression analysis of continuous
vitamin D based on data from the Alpha-Tocopherol, Beta-Carotene study at the null hypothesis 𝛼1 = 0,
with n = 100 case–control pairs.

Bias of SE (𝛼1) SE Var MSE
𝛼1 (× 10 5) CI% (× 10 2) ratio ratio ratio

Exposure x measured without error 7.24 94.51 0.687 1.032 1.000 1.000
Calibration/season: estimate (â1, b̂1) 3.82 94.51 0.723 1.053 1.108 1.108
by regressing X(t) on W(t)
Calibration/season: estimate (â2, b̂2) 4.31 94.90 0.725 1.050 1.114 1.114
by regressing X(t) on 𝜅W{W(t) − 𝜍̂(t)}
Calibration/season: estimate (â3, b̂3) by regressing

3.87 94.51 0.731 1.053 1.130 1.130
X(t) on 𝜍̂(t)(1 − 𝜅W ) + 𝜅WW(t); see (2)
Raw data 9.14 95.13 0.886 1.028 1.665 1.664
Seasonal adjustment only 4.39 94.39 0.950 1.052 1.912 1.912
Calibration only 7.65 95.28 0.675 1.029 0.964 0.965

n is the number of case–control pairs; a is the calibration curve intercept (a = 5); b is the calibration curve slope
(b = 1.4); CI% is the estimated coverage of a 95% nominal confidence interval for 𝛼1; 𝛼1 is the log odds ratio
increase per increase in vitamin D by one standard deviation (𝜏 = 15.5206); 𝜎XX = 𝜎WW is the measurement error
variances (𝜎WW = 16); ‘SE’ is the empirical estimate of standard error based on simulations; ‘SE ratio’ is the ratio
of the empirical SE estimate to the mean model-based estimate of standard error; ‘Var ratio’ is the square of the
ratio of the empirical SE for an estimator to the empirical SE of the estimate based on known exposure; ‘MSE ratio’
is the ratio of the mean square error from a given procedure to that based on known exposure; ‘Calibration only’ is
defined in Section 3.1.
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studies. All the estimates (even those based on the true values x0) were very slightly upwardly biased,
with most bias values near 4× 10−5, but biases were about twice this high in analyses of the true (but
unknown) x0 values, of raw vitamin D data, and of calibrated data without seasonal adjustment. All the
biases were small, however, in comparison with the empirical estimates of the standard error of the esti-
mates; see the column headed ‘SE(𝛼1)’. The squared ratios of empirical standard error to the empirical
standard error for the true data x0 (see column headed ‘Var ratio’) were near 1.1 for each of the meth-
ods that adjusted for both seasonality and calibration, 0.964 for the method based on calibration only,
1.912 for the method that adjusted for season only, and 1.665 for the raw data. Thus, there was about a
10% efficiency loss, measured as a variance ratio, for the methods that adjust for season and calibration.
The corresponding ratios of mean square errors were almost identical to the variance ratios, because the
bias was negligible. All procedures yielded coverage near the nominal 95% level. However, with 10,000
simulations, the 95% confidence interval is approximately equal to the estimated coverage plus or minus
0.43%. Hence, some of the coverage rates are statistically significantly less than 95%, although only very
slightly less than nominal. This probably reflects the fact that the ratios of the empirical estimates from
simulations of the standard error of 𝛼1 to the average model-based estimates of standard error range from
1.028 to 1.053 (see the column headed ‘SE ratio’). For example, if the ratio of the true SE to the esti-
mated SE is 1.04, the coverage of the nominal 95% confidence interval at the null hypothesis would be
Φ(1.96∕1.04)−Φ(−1.96∕1.04) = 0.9405, whereΦ is the standard normal distribution function. Although
the model-based variance estimates allow for variability in estimates of calibration parameters, they do
not take variability in estimation of the trend into account. With n = 200 case–control pairs, this problem
disappeared, as shown in Table SII, where all coverages were within 0.43% of the nominal 95%. With
the larger samples, the efficiency loss from calibration and seasonal adjustment was again about 10%
(Table SII).

In summary, under the null hypothesis, all procedures had nominal coverage for n = 200 and very
near nominal coverage for n = 100. The efficiency loss from calibration and seasonal adjustment was
about 10%, compared with the ideal situation with known x0, but the loss in efficiency was much greater
for procedures that do not calibrate the local assay data.

Table II contains comparisons under the alternative 𝛼1 = −0.04466, which corresponds to a halving of
risk for an increase in vitamin D of 𝜏 = 15.52 nmol/L, which is the estimated standard deviation of w in
the ATBC data. The coverages of all procedures that adjust for season and calibration were within 0.43%
of the nominal 95% level and therefore did not deviate statistically significantly from it. Analyses of the
raw vitamin D data, data that are seasonally adjusted but not calibrated, and data that are calibrated but not
seasonally adjusted led to coverage significantly below nominal levels. Such coverages are even smaller
with n = 200 case–control pairs (Table SIII). Biases from failure to calibrate contributed importantly

Table II. Simulation performance of procedures for conditional logistic regression analysis of continuous
vitamin D based on data from the Alpha-Tocopherol, Beta-Carotene study at the alternative hypothesis
𝛼1 = −0.04466, with n = 100 case–control pairs.

Bias of SE (𝛼1) SE Var MSE
𝛼1 (× 10 3) CI% (× 10 2) ratio ratio ratio

Exposure x measured without error −173 95.11 1.028 1.052 1.000 1.000
Calibration/season: estimate (â1, b̂1) −153 95.06 1.084 1.061 1.112 1.103
by regressing X(t) on W(t)
Calibration/season: estimate (â2, b̂2) −163 95.43 1.122 1.030 1.192 1.184
by regressing X(t) on 𝜅W{W(t) − 𝜍̂(t)}
Calibration/season: estimate (â3, b̂3) by regressing −199 95.11 1.099 1.065 1.143 1.148
X(t) on 𝜍̂(t)(1 − 𝜅W ) + 𝜅WW(t); see (2)
Raw data −1042 92.06 1.254 1.044 1.489 2.447
Seasonal adjustment only −1607 83.92 1.374 1.060 1.786 4.113
Calibration only using (â1, b̂1) 276 90.76 0.991 1.048 0.929 0.974

Here, CI% represents the actual coverage of a 95% nominal confidence interval. Also, 𝛼1 is the log odds ratio per
increase in vitamin D by one standard deviation (𝜏 = 15.5206); 𝜎XX = 𝜎WW is the measurement error variances
(𝜎WW = 16); a = 5; b = 1.4. ‘SE’ is the empirical estimate of standard error based on simulations. ‘SE ratio’ is the
ratio of the empirical SE estimate to the mean model-based estimate of standard error. ‘Var ratio’ is the square of
the ratio of the empirical SE for an estimator to the empirical SE of the estimate based on known exposure. ‘MSE
ratio’ is the ratio of the mean square error from a given procedure to that based on known exposure.
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to the mean squared error ratios (Tables II and SIII). With n = 100, all the procedures that adjusted for
seasonality and calibration had comparatively small bias and losses in efficiency compared with analysis
with known x0, with variance ratios ranging from 1.112 to 1.192 (Table II). With n = 200, the variance
ratios ranged from 1.207 to 1.385 (Table SIII).

Unreported simulations indicated similar results when 𝜎WW was misspecified as 36 when the true value
was 16 and for other values of the calibration parameters.

These simulations suggest that simple procedures that adjust for seasonality and calibration will per-
form well in practice. In particular, the deattenuated estimates 𝛼1 = 𝛼∗

1∕b̂1𝜅W and 𝛼1 = 𝛼∗
1∕b̂3𝜅W had

favorable bias and efficiency characteristics.

3.3. Analysis of categorical vitamin D

Recall that for j = 1, 2, 3, x̂0j = âj + b̂j𝜍̂(t0) + b̂j𝜅W{W(t) − 𝜍̂(t)}, and 𝛽 is the log odds per
category increase.

The cut-points used to generate the relative risks from Equation (9) were the quintiles of the control
values x0 for t0 = 39 in ATBC, namely, 49.6, 58.7, 70.8, and 86.9 nmol/L (Section 2.5.2). The intercept
was𝜇 = −4.Table III summarizes performance under the null hypothesis with n = 100 cases and matched
controls. As for the continuous vitamin D analyses, we assumed realistic estimates of measurement error,
𝜎XX = 𝜎WW = 16, and substantial miscalibration with intercept a = 5 and b = 1.4. In Tables III and IV,
the labels ‘CLR using (10) with x̂01’ and ‘CLR using (10) with x̂03’ denote procedures that substitute the
calibrated and seasonally adjusted estimates of x0, namely, x̂01 and x̂03, into the conditional likelihood
Equation (10). The ‘normal model’ procedure used Equations (11) and (12). These three procedures that
adjust for season and calibration had near nominal coverage for 𝛽2, 𝛽5, and 𝛽 (Table III) as well as for
the log odds 𝛽3 and 𝛽4 (not shown). Adjustment for calibration alone yielded near nominal coverage.
Coverage for 𝛽5 was above nominal levels for analyses of raw values and for seasonal adjustment only.

Table III. Simulation performance of procedures for conditional logistic regression analysis of categorical
vitamin D based on data from the Alpha-Tocopherol, Beta-Carotene study at the null hypothesis 𝛽i = (i−1)𝛽 =
0, with n = 100 case–control pairs.

Coverage (%) Bias× 10 2 SE MSE ratio

𝛽2 𝛽5 𝛽 𝛽2 𝛽5 𝛽 𝛽2 𝛽5 𝛽 𝛽2 𝛽5 𝛽

Category
95.32 94.93 95.14 −1.031 −0.665 −0.024 0.588 0.493 0.106 1 1 1measured

without error

CLR using (10)
94.95 95.10 94.98 −10.6 −5.39 −0.687 0.631 0.522 0.111 1.285 1.133 1.352with x̂01 defined

using (â1, b̂1)
CLR using (10)

95.16 95.20 95.01 −9.11 −1.38 −0.379 0.562 0.505 0.109 1.013 1.047 1.067with x̂03 defined
using (â3, b̂3)
Normal model

94.74 95.63 95.11 −17.8 −1.76 −0.337 1.071 0.583 0.114 3.684 1.398 1.168
using (11) and (12)

Raw data 95.78 100 95.96 0.444 −0.219 −0.096 0.461 1.592 0.199 0.682 10.4 3.510

Seasonal
95.76 100 95.27 −2.74 31.5 2.178 0.391 2.073 0.157 0.807 18.1 10.9adjustment

only

Calibration only
95.65 95.92 95.32 0.692 −0.849 −0.104 1.067 0.492 0.113 0.762 0.996 0.915

using
(

â1, b̂1

)
Here, (â1, b̂1) and (â3, b̂3) are different calibration parameter estimates as described in Section 2 and Table I. Here, a =
5 and b = 1.4 are the calibration curve intercept and slope, respectively; 𝜎XX = 𝜎WW = 16 are the measurement error
variances. ‘SE’ is the empirical estimate of standard error based on simulations. ‘MSE ratio’ is the ratio of the mean
square error from a given procedure to that based on known exposure. 𝛽2, 𝛽5, and 𝛽 are respectively the log odds ratios
corresponding to the second quintile group, fifth quintile group, and per quintile category increase (trend). The reference
date was t0 = 39/52 (week 39). The 20th, 40th, 60th, and 80th percentiles of control measurements adjusted to t0 were
49.61, 58.73, 70.80, and 86.89 nmol/L, respectively.
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Large bias was seen for seasonal adjustment alone for 𝛽 and 𝛽5. Standard errors for 𝛽5 and 𝛽 were larger for
the raw data analysis and for seasonal adjustment alone than for CLR using (10) with x̂01 or x̂03. The mean
square error ratios (compared with the analysis with perfect x0 data) indicated poor performance for raw
data and seasonal adjustment only. For estimating 𝛽2, the normal model had higher mean square error than
CLR using (10) with x̂01 or x̂03, primarily because it had larger standard error. The higher variability of 𝛽2
from the normal model is not the result of estimating trend parameters, calibration parameters, or 𝜅W , as
shown in unreported simulations using known values for these parameters. Similar results were obtained
with n = 200 cases and controls (Table SIV), except that subnominal coverage of 𝛽2 was found for the raw
data and seasonal adjustment only. These results were obtained with the reference date t0 = 39 weeks.
Similar results were obtained with t0 = 1, in which quintiles were re-estimated to correspond to the new
reference date (unreported data). Results were little affected if the variances for measurement error were
mistakenly set at 𝜎XX = 𝜎WW = 36, when in fact 𝜎XX = 𝜎WW = 16 (unreported data).

Under the alternative 𝛽i = (i − 1)𝛽, with 𝛽 = −0.25log(2) = −0.17329, similar results were found.
With n = 100 cases and controls (Table IV), the coverage was near the nominal 95% level except for some
analyses with raw data and with seasonal adjustment only. Bias was comparatively large for analysis of
the raw data, seasonal adjustment only, and the normal model. Standard errors were comparatively large
for the normal model. The mean square error ratios were large for raw data analysis, seasonal adjustment
only, and the normal model for 𝛽2. Similar results were found for n = 200 cases and controls (Table
SV). Results were little affected by misspecifying 𝜎XX = 𝜎WW = 36, when in fact 𝜎XX = 𝜎WW = 16
(unreported data).

Additional simulations based on PLCO data support these findings for continuous and categorical
analyses and are in Tables SVI–SIX.

To summarize, CLR using (10) with x̂01 and CLR using (10) with x̂03 outperformed other procedures.
CLR using (10) with x̂03 usually had smaller MSE than CLR using (10) with x̂01, however, not only under

Table IV. Simulation performance of procedures for conditional logistic regression analysis of categorical
vitamin D based on data from the Alpha-Tocopherol, Beta-Carotene study at the alternative hypothesis 𝛽i =
(i − 1)𝛽, with 𝛽 = −0.25log(2) = −0.17329 and with n = 100 case–control pairs.

Coverage (%) Bias× 10 2 SE MSE ratio

𝛽2 𝛽5 𝛽 𝛽2 𝛽5 𝛽 𝛽2 𝛽5 𝛽 𝛽2 𝛽5 𝛽

Category
95.63 95.20 95.33 −0.921 −3.60 −0.347 0.524 0.507 0.107 1 1 1measured

without error

CLR using (10)
94.95 95.10 94.98 −2.76 −1.21 −0.083 0.595 0.522 0.111 1.282 1.075 0.965with x̂01 defined

using (â1, b̂1)
CLR using (10)

94.97 94.95 95.29 −5.47 2.55 0.528 0.533 0.505 0.109 1.032 1.041 0.977with x̂03 defined
using (â3, b̂3)
Normal model

94.75 95.33 95.45 −16.0 2.95 −0.337 1.014 0.599 0.114 3.727 1.396 1.080
using (11) and (12)

Raw data 94.86 100 95.64 −18.4 53.3 −4.02 0.492 1.518 0.226 1.901 10.0 26.2

Seasonal
94.49 100 94.90 −18.3 67.2 −1.06 0.406 2.014 0.173 2.230 17.5 37.5adjustment

only

Calibration only
95.48 94.66 94.04 −4.94 8.05 −0.506 0.477 0.534 0.105 0.847 1.131 1.364

using
(

â1, b̂1

)
Here, (â1, b̂1) and (â3, b̂3) are different calibration parameter estimates as described in Section 2 and in Table I. Here,
a = 5 and b = 1.4 are the calibration curve intercept and slope, respectively; 𝜎XX = 𝜎WW = 16 are the measurement
error variances. ‘SE’ is the empirical estimate of standard error based on simulations. ‘MSE ratio’ is the ratio of the
mean square error from a given procedure to that based on known exposure. 𝛽2, 𝛽5, and 𝛽 are respectively the log odds
ratios corresponding to the second quintile group, fifth quintile group, and per quintile category increase (trend). The
reference date was t0 = 39/52 (week 39). The 20th, 40th, 60th, and 80th percentiles of control measurements adjusted
to t0 were 49.61, 58.73, 70.80, and 86.89 nmol/L, respectively.
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the null hypothesis (Tables III, SIV, and SVIII) but also under the alternative (Tables IV, SV, and SIX).
Thus, we recommend CLR using (10) with x̂03.

4. Examples of analyses of three studies

We present analyses for the colorectal case–control study in ATBC [3] and for two case–control studies
of breast cancer, the NYUWHS [9] and a study from the CPSII Nutrition Cohort [10]. Table V presents
categorical analyses for the ATBC data compared with the Institute of Medicine cut-points (<30, [30, 50),
[50, 75), ⩾75 nmol/L), as well as analyses of continuous vitamin D as a linear effect. The categories cor-
respond respectively to vitamin D deficiency, probable insufficiency, adequacy, and no increased benefit.
The ATBC study included 146 colorectal cancer cases and 290 matched controls. Estimates 𝜏, â1, and b̂1
and estimates of the seasonal trend parameters are in the footnote of Table V. Conditional likelihoods
(6), (10), and (12) were modified to accommodate varying numbers of matched controls per case. We
analyzed the data with two different reference dates for seasonal adjustment to assess the robustness of
the conclusions. With week 39 as the reference date, the preferred analyses of the categorical data based
on CLR using (10) with x̂03 indicated a strong protective effect of increased vitamin D with a statisti-
cally significant odds ratio of exp(−1.97)= 0.139 for the highest category (⩾75 nmol/L). Indeed, the log
odds ratios for all categories above the reference category (<30 nmol/L) were statistically significantly
less than 0; the categorical trend with odds per category increase of exp(−0.175)= 0.839 was not sta-
tistically significant. Analyses based on CLR using (10) with x̂01 were not stable because only six cases
and two controls were categorized below 30 nmol/L. Note that analyses without any adjustment, with
seasonal adjustment alone and with calibration alone also indicated protective trends, but the parameter
estimates were smaller and usually not statistically significantly different from 0 in the absence of sea-
sonal adjustment. The continuous trend analysis, which does not depend on a reference date, indicated
a statistically significant protective odds ratio of exp(−0.143)= 0.866 per 10 nmol/L increase in vitamin
D concentration. When these data were re-analyzed using week 1 as the reference date, the magnitudes
of the protective effects in categorical analyses were smaller, but the qualitative conclusion of a signifi-
cant protective effect remained unchanged. For example, the estimated protective odds ratio for vitamin
D ⩾75 nmol/L was exp(−1.25)= 0.287, instead of the previous 0.139. Analyses based on a linear trend
in continuous vitamin D were unchanged.

Categorical analyses of the NYUWHS breast cancer data (893 cases and 1642 controls) with a refer-
ence date of week 39 suggested a slight favorable effect from increasing vitamin D levels, in line with
the analysis based on a linear trend in continuous vitamin D (Table SX). Re-analysis with week 1 as the
reference date yielded similar small favorable categorical effects that were not statistically significant.
Analyses of continuous vitamin D were unchanged.

We performed similar analyses for breast cancer data from CPSII (515 cases and 515 controls)
(Table SXI). With week 39 as the reference date, categorical analyses suggested a slight protective
effect of increasing vitamin D, whereas the continuous analysis indicated a slight adverse effect. None
of these effects were statistically significant, however. With week 1 as the reference date, categorical
effects were less protective. However, all these estimates were consistent with the null hypothesis of no
vitamin D effect.

These examples illustrate that for externally selected cut-points, such as the Institute of Medicine
guidelines, estimates of category-specific log odds ratios are affected by the choice of reference date for
seasonal adjustment, unlike analyses of a continuous linear trend.

5. Discussion

We presented a framework for seasonal adjustment and calibration of matched case–control data and used
this framework to evaluate analytic procedures for continuous and categorical vitamin D risk models.
We evaluated the procedures though simulations based on the Vitamin D Pooling Project data. Several
practical conclusions and recommendations follow from this work: (1) adjustment for calibration and
seasonal trends yields more nearly nominal coverage of confidence intervals, less bias, smaller variance,
and reduced mean square error than unadjusted analyses; (2) simple procedures are available to adjust
for calibration and seasonal trend; (3) for calibration samples obtained by stratified random sampling,
as in the Vitamin D Pooling Project, there is surprisingly little inflation in the variance of estimates of
vitamin D effects, even with only 30 calibration measurements; and (4) estimates for the logit of risk for
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continuous vitamin D are independent of a reference date for seasonal adjustment. In contrast, estimates
for a categorical risk model depend on the reference date. Thus, public health recommendations based
on vitamin D categories may need to be season specific. We elaborate on some of these points.

Simple procedures are available for seasonal adjustment and calibration to estimate the slope, 𝛼1, of
a linear trend in vitamin D on the logit of risk. First, one estimates the slope 𝛼∗

1 by using seasonally
detrended values {W(t) − 𝜍̂(t)} in place of vitamin D measurements in CLR. Then, one deattenuates and
corrects for calibration by setting 𝛼1 = 𝛼∗

1∕b̂3𝜅W . Our methods do not adjust variances for estimating
seasonal trend parameters. Nonetheless, even with n = 100 cases and controls, estimating the five seasonal
trend parameters had little impact on the coverage of confidence intervals for 𝛼1, and with n = 200, there
was no evidence of impact. In Supporting Information Appendix A.6, we justify this result asymptotically.
There is some loss of efficiency in estimating 𝛼1 from estimating the calibration curve, but the additional
variance is accounted for in constructing confidence intervals (Section 2.5.1).

For categorical data, CLR (10) with the estimate x̂03 can be recommended. In this procedure, the cal-
ibration estimates obtained by regressing X(t) on 𝜍̂(t)(1 − 𝜅W) + 𝜅WW(t) are used, together with the
seasonal trend estimate, to compute x̂03 from Equation (7). Then, x̂03 is categorized as if it were x0, and
the analysis proceeds using standard CLR. No special calculations were used to accommodate varia-
tion from estimating seasonal trend or calibration parameters. This procedure with x̂01 in place of x̂03
worked nearly as well but is less theoretically justified because it does not take seasonal adjustment and
𝜅W into account (Equation (2)) and usually has larger mean square error. For 𝜅W = 1, however, the two
procedures are equivalent. The normal model method has theoretical appeal but tended to yield more
variable estimates of log odds parameters, especially 𝛽2. This loss of efficiency seems inherent in the
likelihood based on Equation (12). Unreported simulations show that even if the parameters a, b, and 𝜅W
are known, the normal model method yields more variable estimates than the procedures that use x̂01 or
x̂03 in Equation (10).

The sine–cosine series in Equation (4) fit the data well, required only five parameters, and forced the
estimated trend to be periodic. Flexible procedures such as LOESS do not yield periodic trends, are more
sensitive to gaps in the data, and can require many parameters, leading to increased variance of estimates
of vitamin D effects [7].

We assumed normal distributions in our analytical framework (Section 2.2). More work is needed to
assess the performance of our recommended procedures for other distributions.

An important practical issue was brought out by the examples in Section 4. The Institute of Medicine
guidelines for categories of vitamin D levels do not specify the time of year the blood sample was drawn.
In the examples, vitamin D levels fluctuated by about 16 nmol/L between the highest values, which
occurred in September–October, and the lowest values, which occurred in January–April. Thus, a person
might be categorized in the highest Institute of Medicine category in September but lower in February.
The intent of seasonal adjustment is to transform each person’s vitamin D value to the value that person
would have had if measured on a common reference date, such as week 39 or week 1. This improves
comparability between cases and controls, especially in studies without matching on date of blood draw.
The odds ratios depend on the choice of reference date (Appendix A.2). Thus one should specify the
reference date used for categorical analyses applied to fixed cut-points. If, instead of using externally
determined cut-points such as the Institute of Medicine categories, one standardizes the control data to
{W(t) − 𝜍̂(t) + 𝜍̂(t0)} and chooses study-specific cut-points as percentiles of the standardized control
data, then the categorical analysis is much less sensitive to choice of reference date, t0, as indicated by
unreported simulations. Analysis of continuous vitamin D as a linear trend is not affected by choice of
reference date.

An alternative to picking a particular reference date, t0, is to average the seasonal estimate 𝜍̂(t0) over
the 52 weeks of the year. Because integrated sinusoidal terms vanish over the year, this is equivalent
to replacing 𝜍̂(t0) by 𝛾̂0, the estimated intercept in Equation (4). The resulting log odds estimates for
Q2,Q3, and Q4 for the data in Table V from Equation (10) with x̂03 were −1.176, −1.160, and −1.582,
respectively, and are intermediate between the values shown in Table V for reference weeks t0 = 39 (high
vitamin D levels) and t0 = 1 (low vitamin D levels).

To summarize, simple methods for calibration and seasonal adjustment yield reliable inference for
matched case–control data on vitamin D, with only modest loss of statistical efficiency, compared with
analyses with perfectly known vitamin D. These findings are informing analytic approaches for the
Vitamin D Pooling Project.
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Appendix A

A.1. Justification for the normal model Equation (12)

Let the categories be (C1,… ,C5), and write the risk model (9) as

pr(Y = 1|x) = H

(
5∑

j=1

I(x ∈ Cj)𝛽j

)
=

5∑
j=1

H(𝛽j)I(x ∈ Cj),

where H(u) = {1 + exp(−u)}−1 is the logistic function. Assuming that Y is conditionally independent of
W(t) given that x is in category c,

pr{Y = 1|W(t)} =
5∑

j=1

H(𝛽j)pr{x ∈ Cj|W(t)}.

Consider the matched pairs problem, with the matching effect 𝛼i belonging to the ith matched pair, with
responses (Yi1,Yi2), predictors (xi1, xi2), and {Wi1(t),Wi2(t)}. We have that

pr(Yik = 1|xik) =
5∑

j=1

H(𝛼i + 𝛽j)I(xik ∈ Cj);

pr{Yik = 1|Wik(t)} =
5∑

j=1

H(𝛼i + 𝛽j)pr{xik ∈ Cj|Wik(t)}.

Under the rare disease approximation H(𝛼i + 𝛽j) ≈ exp(𝛼i + 𝛽j). It follows that

pr{Yi1 = 1,Yi2 = 0|Wi1(t),Wi2(t),Yi1 + Yi2 = 1}

≈
∑5

j=1 exp(𝛽j)pr
{
(xi1 ∈ Cj|Wi1(t)

}
∑5

j=1 exp(𝛽j)pr
{
(xi1 ∈ Cj|Wi1(t)

}
+
∑5

j=1 exp(𝛽j)pr{xi2 ∈ Cj|Wi2(t)}
,

which equals Equation (12).

A.2. Impact of seasonal trend adjustment, miscalibration, and variation in cut-points on categorical
odds ratios

If fixed cut-points are used to define categories of exposure, then a change in the cut-points, a change in
the reference date for seasonal adjustment, or miscalibration will induce bias in odds ratios with respect
to the original model.
Changing the cut-points
For simplicity, we assume only two categories, but the arguments extend to multiple categories. We
assume initially that the true exposure at reference date t0, namely, x0 = x + 𝜍(t0), is known (no mea-
surement error and no miscalibration). Suppose that x0 > c defines the high-risk group and x0 ⩽ c the
low-risk group. Let p1 be the risk of disease in the high-risk group and p0 be the risk of disease in the
low-risk group. The odds ratio is OR = {p1∕(1 − p1)}∕{p0∕(1 − p0)}. Now, suppose we choose another
cut-point c∗. Let F be the distribution of x0 in the population and f be the density of x0. Suppose that the
risk in the population is determined by the model

P(x0,Y = 1) = f (x0){p1I(x0 > c) + p0I(x0 ⩽ c)}, (A.1)

where Y = 1 indicates diseased. The portion in curly brackets is a special case of Equation (9) of the
paper. If we use a new cut-point, c∗, and assume c∗ > c,
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OR∗ = {P(x0 > c∗,Y = 1)∕P(x0 > c∗,Y = 0)}∕{P(x0 ⩽ c∗,Y = 1)∕P(x0 ⩽ c∗,Y = 0)}

=
[{P(x0 ⩽ c,Y = 0) + P(c < x0 ⩽ c∗,Y = 0)}{1 − F(c∗)}p1∕{1 − F(c∗)}(1 − p1)]

{P(x0 ⩽ c, Y = 1) + P(c < x0 ⩽ c∗,Y = 1)}

=
[{1 − F(c∗)}p1∕{1 − F(c∗)}(1 − p1)]

[{F(c)p0 + {F(c∗) − F(c)}p1)]∕[F(c)(1 − p0) + {F(c∗) − F(c)}(1 − p1)]

=
[p1∕(1 − p1)]

[{F(c)p0 + {F(c∗) − F(c)}p1)]∕[F(c)(1 − p0) + {F(c∗) − F(c)}(1 − p1)]
.

(A.2)

For example, if F is a standard normal distribution, c = 0, p1 = 0.05, and p0 = 0.01, then OR = 5.21.
If, instead, c∗ = 1.645, the 95th percentile of F, then

OR∗ = (0.05∕0.95)∕(0.5 × 0.01 + 0.45 × 0.05∕0.5 × 0.99 + 0.45 × 0.95) = 0.05263∕0.0298 = 1.765,

which is severely downwardly biased. Thus, changing the cut-point changes the odds ratios if
Equation (A.1) is the correct model. A similar argument can be used to compute OR∗ if c∗ ⩽ c
(Equation (A.3)).

Seasonal adjustment
Suppose we chose a different date for seasonal adjustment, t∗0 . This would lead to x∗0 = x+𝜍(t∗0) > c,which
is equivalent to x0 > c − 𝜍(t∗0) + 𝜍(t0) ≡ c∗. Thus, assuming the model based on t0 is correct, we can
compute the bias from using t∗0 by substituting c∗ in Equation (A.2), provided c∗ > c. If c∗ ⩽ c,

OR∗ = {P(x0 > c∗,Y = 1)∕P(x0 > c∗,Y = 0)}∕{P(x0 ⩽ c∗,Y = 1)∕P(x0 ⩽ c∗,Y = 0)}

=
{P(c∗ < x0 ⩽ c,Y = 1) + P(c < x0,Y = 1)}∕{P(c∗ < x0 ⩽ c, Y = 0) + P(c < x0,Y = 0)}

{P(x0 ⩽ c∗,Y = 1)}∕{P(x0 ⩽ c∗,Y = 0)}

=
[{F(c) − F(c∗)}p0 + {1 − F(c)}p1]∕[{F(c) − F(c∗)}(1 − p0) + {1 − F(c)}(1 − p1)]

{p0∕(1 − p0)}
.

(A.3)
Miscalibration
Suppose we use a miscalibrated variable z0 = a+bx0 instead of x0 but retain the cut-point c for x0. Then,
if b > 0, the event z > c is equivalent to x0 > (c − a)∕b ≡ c∗. Hence, the biased OR∗ can be computed
from Equation (A.2) or (A.3) accordingly as c∗ > c or c∗ ⩽ c. If b < 0, then z > c is equivalent to
x0 < (c − a)∕|b| ≡ c∗. If c∗ < c and F is continuous at cut-points, then OR∗ can be calculated from

OR∗ = {P(x0 < c∗,Y = 1)∕P(x0 < c∗,Y = 0)}∕{P(x0 ⩾ c∗,Y = 1)∕P(x0 ⩾ c∗, Y = 0)}

=
F(c∗)p0∕F(c∗)(1 − p0)

{P(x0 ⩾ c,Y = 1) + P(c∗ ⩽ x0 < c, Y = 1)}∕{P(x0 ⩾ c,Y = 0) + P(c∗ ⩽ x0 < c,Y = 0)}

=
[{1 − F(c∗)}p1∕{1 − F(c∗)}(1 − p1)]

[{F(c)p0 + {F(c∗) − F(c)}p1)]∕[F(c)(1 − p0) + {F(c∗) − F(c)}(1 − p1)]

=
[p0∕(1 − p0)]

[{1 − F(c)}p1 + {F(c) − F(c∗)}p0)]∕[{1 − F(c)}(1 − p1) + {F(c) − F(c∗)}(1 − p0)]
.

(A.4)
If c∗ ⩾ c,

OR∗ = {P(x0 < c∗,Y = 1)∕P(x0 < c∗,Y = 0)}∕{P(x0 ⩾ c∗,Y = 1)∕P(x0 ⩾ c∗, Y = 0)}

=
{P(x0 < c,Y = 1) + P(c ⩽ x0 < c∗,Y = 1)}∕{P(x0 < c,Y = 0) + P(c ⩽ x0 < c∗,Y = 0)}

P(x0 ⩾ c∗,Y = 1)∕{P(x0 ⩾ c∗,Y = 0)

=
[F(c)p0 + {F(c∗) − F(c)}p1)]∕[{F(c)}(1 − p0) + {F(c∗) − F(c)}(1 − p1)]

p1∕(1 − p1)
.

(A.5)
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Miscalibration and seasonal adjustment
If z∗0 = a + bx∗0 = a + b{x + 𝜍(t∗0)} = a + b{x0 − 𝜍(t0) + 𝜍(t∗0)}, then z∗0 > c is equivalent to x0 >
{(c − a)∕b} + 𝜍(t0) − 𝜍(t∗0) ≡ c∗ provided b > 0. Hence, OR∗ can be computed from (A.2) or (A.3)
accordingly as c∗ > c or c∗ ⩽ c. If b < 0, the condition is x0 < {(c − a)∕|b|} + 𝜍(t0) − 𝜍(t∗0) ≡ c∗. Then,
OR∗ can be computed from (A.4) or (A.5) accordingly as c∗ < c or c∗ ⩾ c.

Summary
These calculations indicate that for categorical analyses the definition of the odds ratio of interest depends
on the reference date for seasonal adjustment. They also indicate that miscalibration will affect the
categorical odds ratio.
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