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A statistical model for measurement
error that incorporates variation over
time in the target measure, with
application to nutritional epidemiology
Laurence S. Freedman,a,b*† Douglas Midthune,c Kevin W. Dodd,c
Raymond J. Carrolld and Victor Kipnisc

Most statistical methods that adjust analyses for measurement error assume that the target exposure T is a fixed
quantity for each individual. However, in many applications, the value of T for an individual varies with time. We
develop a model that accounts for such variation, describing the model within the framework of a meta-analysis
of validation studies of dietary self-report instruments, where the reference instruments are biomarkers. We
demonstrate that in this application, the estimates of the attenuation factor and correlation with true intake, key
parameters quantifying the accuracy of the self-report instrument, are sometimes substantially modified under
the time-varying exposure model compared with estimates obtained under a traditional fixed-exposure model. We
conclude that accounting for the time element in measurement error problems is potentially important. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. Introduction

There is now an extensive literature on statistical methods for dealing with measurement error in a target
measure (denoted T). Most of the methods assume that T is a fixed quantity for each individual and
model the relationship between an error-prone measurement (denoted W) and T [1]. However, in many
applications, T really varies with time.

In these circumstances, statisticians usually re-define T as the long-term average and treat the variation
over time as part of the measurement error. Correlation over time between repeated values is either ignored
or sometimes modeled as correlation between error terms. When the number of repeat measurements is
limited, the correlation is most commonly ignored. Potentially important information is thereby lost.

Rosner et al. [2] did explicitly model data from a nutritional cohort study with two sets of measure-
ments taken 4 years apart and allowed the target measure (usual intake of vitamin C) to differ at the two
time points. Keogh et al. [3] also modeled true intake that varies with time. However, neither work dis-
tinguishes between shorter-term and longer-term instruments, nor attempts to estimate the relationship
between a dietary report and the longer-term average intake.

In this paper, we model a target measure T that can change from one short-term period to the next over
a limited number of periods. We aim to estimate the relationship between dietary self-reports of different
types and longer-term true average intake. We describe the model within a meta-analysis framework,
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so as to apply it to data from a pooling project, described in Section 2. In Section 3, we describe the
statistical model, theory, and methods. In Section 4, we give a simplified example, showing the bias of
estimates based on the usual model in which T is fixed, using theory and simulations. In Section 5, we
describe the results of applying the method to a pooling project of validation studies. In Section 6, we
discuss limitations of our approach and extensions.

Our studies span a relatively short time period (at most 2 years) and do not include health outcome
data. Thus, we do not tackle here the important problem discussed by Frost and White [4] in which an
error-prone time-varying exposure’s relationship with a health outcome is of interest.

2. Application

The Validation Studies Pooling Project (VSPP) [5] combines data from five validation studies of dietary
self-report instruments for assessing individuals’ dietary intake. Three studies include men and women,
while two include only women. Two types of self-report instrument, 24-hour recalls (24HRs) and food
frequency questionnaires (FFQs), were validated against recovery biomarkers, that is, biomarkers known
to provide nearly-unbiased measurements of dietary intake. We focus here on two such biomarkers, dou-
bly labeled water (DLW) for energy intake and 24-hour urinary nitrogen (UN) for protein intake, and
investigate reported intake of protein, energy, and their ratio, known as protein density.

The 24HRs query intake on a single day, the one previous to its administration; the FFQs enquire about
average intake over the recent past, usually the previous 12 months. We wish to estimate the measurement
error properties of these self-report instruments, when viewed as targeting longer-term average intake,
which we will define here as the average over 12 months. Note that the biomarker measurements, like
the 24HR, measure short-term intake, either the previous day (UN) or average intake over the past 10–14
days (DLW).

Each of the studies in VSPP included between 250 and 550 individuals who completed at least one
FFQ, 24HR, and DLW assessment and UN assessment. The majority completed more than one 24HR and
more than one UN. Each study also incorporated a sub-study where a subgroup of individuals repeated
main study assessments, at varying times after the main study: 3 weeks in one study, approximately 6
months in three studies, and 10–23 months in one study.

3. Statistical Methods

3.1. Aim

We focus on estimating the attenuation factor, λ, and the correlation with truth, ρWT. They are defined as
follows. If an outcome variable is related to an exposure T in a linear regression model and the coefficient
of T is βT, and we substitute for T an error-prone measure, W, then the coefficient for W, βW, equals λβT.
When W and T are normally distributed, λ can be shown to equal cov(W,T)/var(W). The correlation with
truth, ρWT, is the correlation of W with T. We estimate these quantities for 24HRs and FFQs, for men and
women, separately.

In addition, we also estimate calibration (prediction) equations [6] for T that include both W and
personal characteristics Z related to T. In our application, Z comprises age group (<40y, 40–49, 50–59,
60–69, 70–79, ⩾ 80), log of body mass index, race (African-American vs. other), and education (high
school, college, and postgraduate). These covariates serve as an illustrative example of our method. For
comments on choosing the set of covariates in practice, see Section 6 .

3.2. Time

In all studies but one, participants completed the FFQ at the beginning of the study; in the remaining
study they completed the FFQ at the end. We set the completion of the FFQ as the common time point.
Relative to this time, other instruments were completed from between 450 days beforehand to 450 days
afterward. We divided this period into 10 sub-periods of 90 days each, labeled by subscript j ( j=1,…,10),
with the FFQ placed at the beginning of the sixth period.

3.3. Statistical models

Instead of a single error-prone measurement W, three error-prone measurements, 24HR (denoted R), FFQ
(denoted Q), and biomarker (denoted M), are modeled separately in relation to true intake T. The models
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for R, Q, and M form a multi-part measurement error model, commonly used in nutrition applications.
The same model is used for energy, protein, and protein density, but the modeling is performed separately
for each. All dietary variables are modeled on the logarithmic scale, including the unobserved true intake,
as follows.

(a) Biomarker

Denote the kth repeat biomarker assessment in the jth sub-period (j=1,…,10) on the ith individual of
study h (h=1,..,5) by Mhijk. Then

Mhijk = Thijk + δhijk (1)

where Thijk is true intake on the day of the marker assessment and δhijk is random error independent
of T. Correlation between repeat biomarker values is thus assumed to occur through the correla-
tion between true intakes at those times, and biomarker measurements are assumed to have classical
measurement error.

(b) 24-hour recall

For the same (h,i,j,k), denote the 24HR assessment by Rhijk. Then

Rhijk = βR0h + βR1hThijk + βt
R2hZRhijk + uRhi + εRhijk (2)

where Thijk is true intake on the day corresponding to the 24HR assessment, ZRhijk is a vector of explana-
tory variables, uRhi is a random error term representing subject-specific bias [7], and εRhijk is independent
random error not correlated over time. The correlation between repeat 24HRs thus occurs through the
correlation between true intakes at those times and through the subject-specific bias. The covariates ZR
are included for estimating calibration equations, but are omitted for estimating attenuation factors and
correlations with truth, since traditionally these measures of an instrument’s quality are reported without
covariate adjustment. Covariates ZR have subscripts j and k and may vary with time, but in our application,
they do not.

(c) Food frequency questionnaire

Denote the single FFQ assessment of individual i in study h by Qhi. Then

Qhi = βQ0h + βQ1hThi + βt
Q2hZQhi + uQhi + εQhi (3)

where Thi is the average true intake over the sub-period of the FFQ administration and the three previous
sub-periods, the assumed target of the FFQ. Covariates ZQ may differ from ZR, but in our application,
they are the same; uQhi and εQhi are random error terms representing subject-specific bias and independent
random error, respectively. Model (3) is not completely identifiable when each individual has only a
single FFQ, because the variances of uQhi and εQhi cannot be estimated separately; however, the variance
of their sum can be estimated.

In models (1)–(3), the error terms (δ, ε) and the subject-specific biases (u) are assumed to be mutually
independent, except for uRhi and uQhi. The correlation between uRhi and uQhi and the variances of uQhi,

Table I. Bias in the estimated attenuation factor and correlation with true usual intake based on a fixed-intake
model when a time-varying intake model pertains – a simple examplea

ωϕ 0.1 0.5 2.0

ρ12 0.9 0.5 0.1 0.9 0.5 0.1 0.9 0.5 0.1

True λR 0.32 0.25 0.19 0.30 0.24 0.17 0.24 0.19 0.14
Bias of λ̂RF (%)b 2.6 3.7 4.4 12.9 16.6 22.2 52.5 66.8 90.9
Asymptotic relative bias (%) 2.6 3.3 4.5 13.2 16.7 22.7 52.6 66.7 90.9

True ρR 0.40 0.36 0.31 0.39 0.35 0.30 0.35 0.31 0.27
Bias of ρ̂RF (%)b 0.0 −10.2 −22.4 10.0 0.9 −9.5 48.8 44.5 41.7
Asymptotic relative bias (%) 0.0 −10.5 −22.5 10.3 1.0 −9.0 48.8 44.3 41.6

a For details of the example, see Section 4.
b Relative bias: [(Mean of estimate – true value)/true value] ×100%.
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εQhi, uRhi, and εRhijk may differ by study. In our application, the variance of δhijk is assumed constant,
because insufficient replications of DLW biomarker measurements prevented study-specific estimation.

(d) True intake

Denote true average intake in sub-period j by Thij. The distribution of Thij, conditional on covariates ZThij,
has first and second moments:

E
(
Thij|ZThij

)
= γT0h + γt

T1hZThij

var
(
Thij|ZThij

)
= 𝜎2

Thj

corr
(
Thij,Thij′ |ZThij

)
= ρjj′

(4)

Furthermore, for a single day’s intake within a sub-period j:

Thijk = Thij + ϕhijk

where var(ϕhijk) = ωϕ𝜎
2
Thj and ϕhijk are independent of each other and of Thij and ZThij. The covariates

ZT may differ from ZR or ZQ, but in our application, they are the same. The mean and variance of T may
vary with time (i.e., with subscript j), but in our application do not; we write 𝜎2

Thj as 𝜎2
Th and ZThij as ZThi.

The correlations ρjj′ have one of the following structures: banded Toeplitz, autoregressive model order
1 (AR(1)), compound symmetry, or degenerate (all 1s), whichever provides the best fit to the model as
judged by the Akaike Information Criterion (AIC). The degenerate structure option, together with setting
ωϕ = 0, corresponds to the fixed-intake model, and we use it to compare estimates under this model with
estimates under a time-varying intake model.

Table II. Estimates of random effects (standard errors in parentheses) and goodness of fit for the time-varying
and fixed-intake models without covariates.

Protein Protein Density

Time-varying Time-varying
Gender Parameter intake Fixed-intake intake Fixed-intake

Men Correlation structure Compound symmetry – Compound symmetry –
AIC 2045.8 2070.0 −65.8 −34.1
𝜎2

T1 0.043 (0.004) 0.043 (0.006) 0.032 (0.004) 0.029 (0.004)
𝜎2

T2 0.082 (0.012) 0.065 (0.012) 0.074 (0.011) 0.066 (0.013)
𝜎2

T3 0.054 (0.006) 0.052 (0.006) 0.054 (0.005) 0.053 (0.006)
𝜎2
δ 0.015 (0.005) 0.034 (0.002) 0.009 (0.006) 0.032 (0.002)

ωϕ 0.301 (0.090) 0 0.438 (0.128) 0
ρ12 0.873 (0.073) 1 0.885 (0.079) 1
ρ13 0.873 1 0.885 1
ρ14 0.873 1 0.885 1
ρ15 0.873 1 0.885 1
ρ16 0.873 1 0.885 1

Women Correlation Structure AR(1) – AR(1) –
AIC 5525.4 5603.2 682.3 747.9
𝜎2

T1 0.058 (0.006) 0.042 (0.006) 0.052 (0.006) 0.038 (0.006)
𝜎2

T2 0.101 (0.011) 0.086 (0.012) 0.080 (0.009) 0.058 (0.009)
𝜎2

T3 0.050 (0.004) 0.055 (0.007) 0.055 (0.005) 0.061 (0.008)
𝜎2

T4 0.051 (0.004) 0.038 (0.005) 0.041 (0.004) 0.023 (0.005)
𝜎2

T5 0.057 (0.004) 0.050 (0.006) 0.047 (0.005) 0.028 (0.005)
𝜎2
δ 0.007 (0.006) 0.045 (0.002) 0.009 (0.010) 0.049 (0.002)

ωϕ 0.495 (0.109) 0 0.499 (0.162) 0
ρ12 0.918 (0.029) 1 0.792 (0.052) 1
ρ13 0.843 1 0.627 1
ρ14 0.774 1 0.497 1
ρ15 0.711 1 0.394 1
ρ16 0.652 1 0.312 1

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3590–3605
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Under model (4), the correlation between true intakes on different days in the same sub-period is
1/(1+ωϕ) and between true intakes on days in periods j and j’ is ρjj′∕(1+ωϕ). Also, 24HRs and biomarkers
measuring the same day’s intake have covariance (conditional on covariates Z) βR1h𝜎

2
Th(1+ωϕ), compared

Table III. Estimates of regression slopes (standard errors in parentheses) and partitions of the variance of
self-reportsa for the time-varying and fixed-intake models without covariates.

Protein Protein density

Gender Parameter Study Time-varyingintake Fixed-intake Time-varyingintake Fixed-intake

1 0.75 (0.14) 0.69 (0.11) 0.69 (0.12) 0.72 (0.11)
βR1 2 0.24 (0.15) 0.32 (0.18) 0.32 (0.08) 0.36(0.09)

3 0.70 (0.07) 0.81 (0.08) 0.35 (0.05) 0.42 (0.05)

1 0.72 (0.16) 0.68 (0.15) 0.49 (0.09) 0.52 (0.09)
βQ1 2 0.39 (0.20) 0.40 (0.19) 0.30 (0.11) 0.27 (0.09)

3 0.41 (0.12) 0.40 (0.11) 0.28 (0.07) 0.26 (0.06)

1 1.5 1.9 0.7 0.6
Men 𝜎2

uR∕β
2
R1𝜎

2
T 2 20.5 14.0 0.9 0.7

3 0.8 0.4 1.7 1.1

1 3.5 4.6 3.2 4.0
𝜎2
εR∕β

2
R1𝜎

2
T 2 43.5 30.0 13.0 11.9

3 3.2 2.7 6.8 5.2(
𝜎2

uQ + 𝜎2
εQ

)
∕β2

Q1𝜎
2
T 1 7.0 7.8 3.6 3.5

2 13.8 16.4 5.5 7.7
3 11.6 12.6 6.9 8.1

1 0.42 (0.12) 0.47 (0.13) 0.34 (0.10) 0.35 (0.11)
2 0.53 (0.08) 0.60 (0.11) 0.32 (0.06) 0.46 (0.09)

βR1 3 0.61 (0.07) 0.77 (0.08) 0.36 (0.05) 0.46 (0.06)
4 0.91 (0.15) 1.12 (0.19) 0.43 (0.14) 0.78 (0.23)
5 0.55 (0.07) 0.63 (0.08) 0.37 (0.06) 0.62 (0.12)

1 0.57 (0.17) 0.61 (0.18) 0.42 (0.11) 0.40 (0.10)
2 0.12 (0.18) 0.10 (0.16) 0.56 (0.12) 0.46 (0.10)

βQ1 3 0.49 (0.13) 0.46 (0.12) 0.37 (0.08) 0.27 (0.06)
4 0.73 (0.11) 0.83 (0.13) 0.51 (0.08) 0.68 (0.14)
5 0.84 (0.13) 0.85 (0.14) 0.43 (0.08) 0.49 (0.11)

1 3.1 3.3 2.4 2.7
2 2.3 2.0 2.9 1.7

Woman 𝜎2
uR∕β

2
R1𝜎

2
T 3 1.4 0.6 1.7 0.6

4 0.4 0.1 2.2 0.7
5 1.5 1.2 2.0 0.9

1 11.6 13.4 10.7 14.5
2 5.9 5.8 9.7 6.7

𝜎2
εR∕β

2
R1𝜎

2
T 3 4.9 3.0 7.6 4.5

4 1.5 1.8 7.2 4.2
5 5.0 4.7 8.0 5.2

1 9.0 10.8 4.1 6.6
2 188.0 310.3 1.9 4.5(

σ2
uQ + σ2

εQ

)
∕β2

Q1σ
2
T 3 10.0 10.7 3.8 7.0

4 4.5 4.6 2.6 2.5
5 4.8 5.3 3.4 4.4

σ2
uR∕β

2
R1σ

2
T = ratio of subject-specific variance to "true signal" variance in 24HR.

σ2
εR∕𝛽

2
R1σ

2
T = ratio of within-person variance to “true signal” variance in 24HR.

(σ2
uQ + σ2

εQ)∕β
2
Q1σ

2
T = ratio of subject-specific variance plus within-person variance to “true signal” variance in FFQ.
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with the smaller βR1h𝜎
2
Th if they measure different days in the same sub-period, and the even smaller

βR1h𝜎
2
Thρjj′ if measured in different sub-periods, j and j’.

3.4. Estimating attenuation factor λ and correlation with truth ρWT

The target exposure is defined as average true intake over 12 months. However, the timing of these
12 months differs according to self-report instrument. A 24HR reports current intake, so the target
exposure is

Thi =
j+1∑

j′=j−2

Thij′∕4, (5)

the average intake during and surrounding sub-period j. An FFQ reports past intake, so the target is

Thi =
j∑

j′=j−3

Thij′∕4, (6)

the average intake during and before sub-period j. These definitions impact the estimation of attenuation
factors and correlations with true intake, as indicated in the succeeding text. Other definitions of the target
exposure may be used, each resulting in a different estimate of attenuation and correlation.

(a) 24-hour recall

The attenuation factor, λRh, for a single 24HR in study h is cov(Rhijk,Thi)/var(Rhijk), with Thi defined in
(5). From model (2) without covariates Z and model (4),

λRh =
βR1h𝜎

2
Th

(
1 + ρj,j−2 + ρj,j−1 + ρj,j+1

)
4
(
β2

R1h𝜎
2
Th(1 + ωϕ) + 𝜎2

uRh + 𝜎2
εRh

) .

Table IV. Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake
models without covariates (standard errors in parentheses): protein intake among men.

Time-varying intake model Fixed-intake model

Attenuation Correlation Attenuation Correlation
Instrument Study factor with truth factor with truth

FFQ a 1 0.158 (0.033) 0.338 (0.069) 0.166 (0.035) 0.337 (0.067)
2 0.160 (0.082) 0.249 (0.126) 0.146 (0.071) 0.240 (0.114)
3 0.178 (0.050) 0.269 (0.074) 0.184 (0.049) 0.271 (0.069)

Weighted mean 0.163 (0.026) 0.298 (0.047) 0.168 (0.026) 0.295 (0.045)
p d 0.944 0.721 0.899 0.693

1 × 24HR b 1 0.192 (0.032) 0.380 (0.058) 0.196 (0.032) 0.367 (0.055)
2 0.058 (0.037) 0.118 (0.074) 0.069 (0.039) 0.149 (0.084)
3 0.246 (0.030) 0.415 (0.046) 0.302 (0.031) 0.494 (0.039)

Weighted mean 0.182 (0.019) 0.355 (0.032) 0.207 (0.019) 0.413 (0.030)
p < 0.001 0.001 < 0.001 < 0.001

4 × 24HRc 1 0.327 (0.047) 0.495 (0.067) 0.364 (0.059) 0.500 (0.071)
2 0.115 (0.072) 0.166 (0.103) 0.138 (0.078) 0.211 (0.117)
3 0.452 (0.047) 0.562 (0.054) 0.593 (0.052) 0.692 (0.046)

Weighted mean 0.344 (0.033) 0.491 (0.047) 0.423 (0.035) 0.594 (0.037)
p < 0.001 0.002 < 0.001 < 0.001

a Food frequency questionnaire.
b Single 24-hour recall.
c Average of 4 repeats of a 24-hour recall.
d p-value for heterogeneity across studies.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3590–3605
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Similarly, for the correlation with true average intake,

ρRh =
βR1h𝜎Th

(
1+ρj,j−2+ρj,j−1+ρj,j+1

)√(
β2

R1h𝜎
2
Th(1+ωϕ)+𝜎2

uRh+𝜎
2
εRh

) (
4+2ρj−1,j−2 + 2ρj,j−2 + 2ρj+1,j−2 + 2ρj,j−1 + 2ρj+1,j−1 + 2ρj+1,j

) .
To compute these quantities for the mean of m 24HRs (m > 1), 𝜎2

εRh in the aforementioned equations is
replaced by 𝜎2

εRh∕m.

(b) Food Frequency Questionnaire

The attenuation factor for an FFQ, λQh, may be computed from model (3) without covariates and Thi
defined in (6) as follows:

λQh =
βQ1h𝜎

2
Th

(
4 + 2ρj−2,j−3 + 2ρj−1,j−3 + 2ρj,j−3 + 2ρj−1,j−2 + 2ρj,j−2 + 2ρj,j−1

)
β2

Q1h𝜎
2
Th

(
4 + 2ρj−2,j−3 + 2ρj−1,j−3 + 2ρj,j−3 + 2ρj−1,j−2 + 2ρj,j−2 + 2ρj,j−1

)
+ 16𝜎2

uQh + 16𝜎2
εQh

,

and the correlation with truth, ρQh, as follows:

ρQh =

√
β2

Q1h𝜎
2
Th

(
4 + 2ρj−2,j−3 + 2ρj−1,j−3 + 2ρj,j−3 + 2ρj−1,j−2 + 2ρj,j−2 + 2ρj,j−1

)
√

β2
Q1h𝜎

2
Th

(
4 + 2ρj−2,j−3 + 2ρj−1,j−3 + 2ρj,j−3 + 2ρj−1,j−2 + 2ρj,j−2 + 2ρj,j−1

)
+ 16𝜎2

uQh + 16𝜎2
εQh

.

They were estimated under the time-varying intake model or the fixed-intake model by substituting the
maximum likelihood estimates of the parameters into the aforementioned equations. Variances of the esti-
mates were obtained using the nonparametric bootstrap. Overall attenuation factors and correlations were
calculated by taking weighted averages of the estimates across the five studies, with weights inversely
proportional to the estimates’ variances.

3.5. Estimating the model parameters

Parameters were estimated using maximum likelihood (conditional likelihood given fixed covariates Z),
assuming that Qhi, Rhijk, and Mhijk have a conditional multivariate normal distribution given Zhi (we drop
the subscript Q, R, or T assuming the three sets of covariates coincide). The conditional means, variances
and covariances of Qhi, Rhijk, and Mhijk, given Zhi, are provided in Appendix A. Actually, if the first and
second moments are correctly specified, all parameters are consistently estimated, even if the normality
assumption fails. The use of the nonparametric bootstrap for inference also provides robustness to non-
normality. Estimation was performed using a custom-built program written in sas [8].

Model fit was investigated in two ways. First, AIC was used to choose the most appropriate correla-
tion structure for true intake and to distinguish between models. Second, empirical correlations between
biomarker values obtained in different sub-periods were compared with those predicted from the model
(Appendix B).

3.6. Calibration Equations

Calibration equations predict the target average intake, Thi. In a fixed-intake model, they are most natu-
rally obtained by regressing the mean biomarker value on the reported intake and covariates Z. However,
when intake varies with time, one needs to fit models (1)–(4), estimate the parameters and then derive
the equations. Some technical details of the derivation for the FFQ follow.

The conditional expectation of target average intake given Q is

E(Thi|Qhi,Zhi) = λQh
{

Qhi − E(Qhi|Zhi)
}
+ γT0h + γt

T1hZhi, (7)

where

E(Qhi|Zhi) = βQ0h + βQ1h
(
γT0h + γt

T1hZhi
)
+ βt

Q2hZhi.

Formula (7) can be used to calculate the calibration equation for any single study h.
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If an overall calibration equation is required for use in new studies employing a similar FFQ in a
similar population to the ones used in the five studies, then one may use in place of λQh and γT0h their
weighted averages over the five studies, and the estimate of γT1 from a model that sets γt

T1hequal for
all studies, after testing for between-study heterogeneity. The only quantity in (7) that would remain
to be determined is E(Qhi|Zhi), which could be estimated from the new study, because both Q and Z
are observed.

4. A simple example

Consider the case where there is only one study (h=1), two sub-periods (j=1,2), and each individual
(i=1,..,n) has two 24HRs, one in each period, and two markers that are performed in the first period, one
on the same day as the 24HR. We show in Appendix C that under both the time-varying intake model
and the fixed-intake model the maximum likelihood estimators of the attenuation and correlation with
truth for a single 24HR can be obtained from explicit functions of the second moments, whenever those
estimates fall within the parameter space, and that the estimates of attenuation and correlation with truth
for the 24HR can then be estimated under each model.

To demonstrate the potential bias in the estimate based on the fixed-intake model, we present the rel-
ative bias, based on its asymptotic expectation (see Appendix C for the expression) and on simulations
of finite sample estimates with parameters taking the following values: 𝜎2

T = 0.05; βR1 = 0.5; 𝜎2
u =

0.01; 𝜎2
ε = 0.05, 𝜎2

δ = 0.0005, ρ12 = 0.1, 0.5, 0.9; ωϕ = 0.1, 0.5, 2.0. The parameters βR0 and γT0 have
no influence on the estimates of attenuation or correlation and are assigned arbitrarily to zero. Data were
simulated under the time-varying intake model described in the previous section with the nine possi-
ble combinations of parameters for 500 individuals, and estimates of attenuation and correlation were
obtained using the method described in Appendix C. Each scenario was simulated 1000 times.

Table V. Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake
models without covariates (standard errors in parentheses): protein intake among women.

Time-varying intake model Fixed-intakemodel

Instrument Study Attenuation factor Correlation with truth Attenuation factor Correlation with truth

FFQ a 1 0.161 (0.045) 0.302 (0.085) 0.139 (0.039) 0.291 (0.080)
2 0.039 (0.056) 0.069 (0.099) 0.031 (0.047) 0.057 (0.086)
3 0.168 (0.043) 0.288 (0.072) 0.187 (0.047) 0.292 (0.071)
4 0.231 (0.032) 0.410 (0.054) 0.218 (0.031) 0.424 (0.056)
5 0.188 (0.028) 0.397 (0.058) 0.186 (0.028) 0.398 (0.057)

Weighted mean 0.180 (0.017) 0.336 (0.032) 0.169 (0.016) 0.329 (0.030)
p d 0.052 0.029 0.015 0.005

1 × 24HRb 1 0.137 (0.038) 0.241 (0.065) 0.121 (0.034) 0.238 (0.063)
2 0.179 (0.032) 0.311 (0.049) 0.189 (0.035) 0.337 (0.056)
3 0.194 (0.024) 0.348 (0.040) 0.283 (0.032) 0.466 (0.042)
4 0.304 (0.039) 0.531 (0.071) 0.304 (0.040) 0.584 (0.076)
5 0.207 (0.025) 0.341 (0.039) 0.229 (0.027) 0.381 (0.040)

Weighted Mean 0.201 (0.015) 0.340 (0.025) 0.222 (0.015) 0.397 (0.023)
p 0.029 0.036 0.002 0.002

4 × 24HRc 1 0.295 (0.072) 0.354 (0.087) 0.282 (0.078) 0.363 (0.094)
2 0.330 (0.053) 0.422 (0.061) 0.375 (0.065) 0.475 (0.074)
3 0.365 (0.040) 0.477 (0.049) 0.561 (0.057) 0.657 (0.051)
4 0.456 (0.053) 0.650 (0.064) 0.565 (0.079) 0.797 (0.090)
5 0.389 (0.039) 0.468 (0.047) 0.472 (0.053) 0.547 (0.055)

Weighted mean 0.376 (0.026) 0.476 (0.031) 0.463 (0.029) 0.580 (0.030)
p 0.264 0.022 0.019 0.003

FFQ, food frequency questionnaire.
a Food frequency questionnaire.
b Single 24-hour recall.
c Average of four repeats of a 24-hour recall.
d p-value for heterogeneity across studies.
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Results are shown in Table I. Biases can be appreciable depending on the values of ρ12 and ωϕ. In gen-
eral, there are two sources of the bias. The first is that Cov(R̄i., M̄i1.) overestimates the covariance between
the self-report and true usual intake, because of the first self-report and marker being performed on the
same day. The second is that Cov(Mi11, Mi12) overestimates the variance of true usual (average) intake,
because of both markers being performed in the same sub-period. The attenuation factor λ̂RF is overes-
timated if ωϕ > 0. The correlation with true usual intake ρ̂RF may be overestimated or underestimated
depending on the values of ωϕ (ωϕ > 0) and ρ12(0 < ρ12 < 1).

5. Application to Validation Studies Pooling Project

5.1. Model fit and parameter estimates

We present results of applying our method to intakes of protein and protein density for men and women
separately. Models (1)–(4) were first fitted without covariates Z. The correlation structure that led to the
lowest AIC was compound symmetry for men and AR(1) for women. The fixed-intake model (ρj,j′ =
1,ωϕ = 0) was also fit. Table II compares estimates of parameters related to random effects from the
two models.

The time-varying intake model provided a better fit than the fixed-intake model, as seen from the
differences in AIC between the two models. The estimate of biomarker within-person variance was con-
siderably smaller under the time-varying model compared with the fixed-intake model, because under
the former model, this variance is estimated only from biomarker values repeated within the same sub-
period. Estimated correlations between average intakes in different sub-periods were quite high, except
for protein density among women more than 6 months apart.

Table III displays estimates of the regression coefficients under the same two models. The estimated
coefficients of the 24HR variable were mostly smaller under the time-varying model than under the
fixed-intake model, especially for women reporting protein density. However, this trend was not seen
with coefficients of the FFQ. Table III also shows ratios of error components of variance to the ‘signal’
component in self-reported intake. The larger are these ratios, the smaller will be the attenuation factors
and correlations with truth. In most cases, the ratios for the 24HR increased when changing from the
fixed-intake to the time-varying intake model, whereas for the FFQ, the ratios decreased. The increases

Table VI. Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake
models without covariates (standard errors in parentheses): protein density intake among men.

Time-varying intake model Fixed-intake model

Instrument Study Attenuation factor Correlation with truth Attenuation factor Correlation with truth

FFQ a 1 0.411 (0.067) 0.449 (0.069) 0.425 (0.070) 0.470 (0.070)
2 0.479 (0.160) 0.378 (0.124) 0.427 (0.148) 0.339 (0.111)
3 0.418 (0.094) 0.342 (0.075) 0.418 (0.093) 0.331 (0.069)

Weighted mean 0.420 (0.052) 0.396 (0.048) 0.423 (0.052) 0.390 (0.045)
p d 0.927 0.551 0.998 0.321

1 X 24HR b 1 0.248 (0.038) 0.414 (0.057) 0.252 (0.037) 0.425 (0.055)
2 0.187 (0.051) 0.244 (0.062) 0.206 (0.055) 0.271 (0.064)
3 0.258 (0.042) 0.303 (0.045) 0.328 (0.045) 0.372 (0.044)

Weighted mean 0.240 (0.025) 0.328 (0.032) 0.266 (0.026) 0.365 (0.031)
p 0.438 0.132 0.206 0.187

4 X 24HRc 1 0.457 (0.058) 0.562 (0.063) 0.538 (0.080) 0.621 (0.076)2
2 0.514 (0.121) 0.404 (0.091) 0.597 (0.145) 0.461 (0.101)
3 0.529 (0.078) 0.433 (0.058) 0.709 (0.089) 0.546 (0.058)

Weighted mean 0.481 (0.048) 0.483 (0.042) 0.612 (0.055) 0.554 (0.042)
p 0.711 0.229 0.362 0.435

FFQ, food frequency questionnaire.
a Food frequency questionnaire.
b Single 24-hour recall.
c Average of four repeats of a 24-hour recall.
d p-value for heterogeneity across studies.
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Table VII. Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake
models without covariates (standard errors in parentheses): protein density intake among women.

Time-varying intake model Fixed-intake model

Instrument Study Attenuation factor Correlation with truth Attenuation factor Correlation with truth

FFQ a 1 0.370 (0.094) 0.396 (0.097) 0.330 (0.082) 0.362 (0.085)
2 0.509 (0.095) 0.535 (0.098) 0.398 (0.081) 0.428 (0.079)
3 0.454 (0.100) 0.408 (0.086) 0.470 (0.098) 0.355 (0.069)
4 0.442 (0.061) 0.476 (0.065) 0.417 (0.056) 0.532 (0.072)
5 0.426 (0.076) 0.428 (0.074) 0.375 (0.068) 0.430 (0.074)

Weighted Mean 0.439 (0.036) 0.450 (0.039) 0.396 (0.033) 0.422 (0.035)
p d 0.890 0.805 0.836 0.420

1 × 24HRb 1 0.164 (0.051) 0.240 (0.073) 0.156 (0.045) 0.235 (0.068)
2 0.179 (0.040) 0.245 (0.052) 0.232 (0.047) 0.327 (0.057)
3 0.205 (0.037) 0.279 (0.046) 0.356 (0.040) 0.405 (0.045)
4 0.173 (0.055) 0.278 (0.089) 0.215 (0.057) 0.411 (0.102)
5 0.186 (0.032) 0.270 (0.046) 0.226 (0.035) 0.375 (0.052)

Weighted Mean 0.184 (0.021) 0.263 (0.031) 0.235 (0.020) 0.356 (0.027)
p 0.955 0.970 0.055 0.279

4 × 24HRc 1 0.367 (0.094) 0.359 (0.096) 0.387 (0.118) 0.369 (0.104)
2 0.370 (0.077) 0.353 (0.069) 0.497 (0.091) 0.479 (0.078)
3 0.433 (0.073) 0.405 (0.063) 0.789 (0.099) 0.604 (0.061)
4 0.344 (0.095) 0.392 (0.113) 0.459 (0.117) 0.600 (0.143)
5 0.387 (0.057) 0.390 (0.060) 0.505 (0.072) 0.561 (0.074)

Weighted Mean 0.384 (0.041) 0.382 (0.043) 0.534 (0.042) 0.537 (0.037)
p 0.914 0.961 0.063 0.325

FFQ, food frequency questionnaire.
a Food frequency questionnaire.
b Single 24-hour recall.
c Average of four repeats of a 24-hour recall.
d p-value for heterogeneity across studies.

were particularly large for women reporting protein density on a 24HR and were governed largely by the
corresponding decrease in the regression coefficients.

5.2. Attenuation factors and correlations with truth

Tables IV–VII compare estimated attenuation factors and correlations with truth for the time-varying
and fixed-intake models for protein and protein density intakes in men and women. The same trends
are seen in each table. Under the time-varying model, FFQ estimates were slightly larger and 24HR
estimates were smaller. For protein intake (Tables IV and V), despite this trend, under both models,
a single 24HR had slightly higher estimated attenuation factors and correlations than an FFQ, and the
mean of four 24HRs had markedly higher estimates than an FFQ. However, for protein density (Tables VI
and VII), the fixed-intake model gave estimates for the mean of four 24HRs that were higher than
that for an FFQ, while the time-varying intake model gave estimates that were comparable for the
two instruments.

5.3. Calibration equations

Models (1)–(4) with covariates Z were fitted with the restriction that γt
T1h did not differ across stud-

ies. Table VIII displays an example of the results, with estimates of γT1, λQh for each study, and the
weighted average of γT0h, for FFQ-reported intakes of protein and protein density for women. Values
of λQh appeared quite homogeneous across studies, lending support to using the weighted average value
in new studies. Also, estimates of λQh were similar to those obtained without covariates Z in the model
(compare with Tables V and VII). Age, race, and body mass index strongly predicted protein intake, but
only age and race strongly predicted protein density. Tests for between-study heterogeneity of γt

T1hwere
not formally significant (although there was an indication of heterogeneity for protein density). Overall,
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Table VIII. Calibration equationsa for usual intakes of protein and protein density in women, using FFQ-
reported protein and protein density, respectively.

Protein Protein density

Covariate Regression coefficient Regression coefficient
(SE) p (SE) p

Intercept (weighted average of γ𝐓𝟎𝐡) 4.441 (0.115) 2.596 (0.118)
λ𝐐𝐡: Study 1 0.132 (0.041) 0.419 (0.092)

Study 2 0.039 (0.050) 0.528 (0.094)
Study 3 0.149 (0.040) 0.425 (0.102)
Study 4 0.191 (0.029) 0.426 (0.061)
Study 5 0.162 (0.025) 0.412 (0.076)
Weighted average 0.152 (0.016) 0.436 (0.037)

Heterogeneity b 0.116 0.886
γ𝐓𝟏:
Age (years): 40 vs. 50–59 0.059 (0.034) 0.027 (0.035)

40–49 vs. 50–59 0.023 (0.027) −0.033 (0.029)
60–69 vs. 50–59 0.021 (0.030)

<0.001
0.048 (0.032)

<0.004
70–79 vs. 50–59 –0.048 (0.034) 0.037 (0.036)
80 vs. 50–59 –0.177 (0.043) -0.051 (0.044)

Log BMI 0.371 (0.035) <0.001 −0.012 (0.036) <0.744
Race: African-American vs. other d −0.116 (0.019) <0.001 –0.072 (0.020) <0.001
Education: High school vs. college −0.030 (0.018)

<0.001
–0.016 (0.018)

0.220
Postgrad vs. college 0.014 (0.016) 0.018 (0.016)

Heterogeneity c 0.579 0.054
aSee Equation 7 in text.
bp-value for heterogeneity of adjusted ‘attenuation coefficient’ for FFQ across studies.
cp-value for heterogeneity of regression coefficients for other(γTlh).
dOther includes non-Hispanic white people.

the results support using these calibration equations for new studies with a similar FFQ and population
to those in the VSPP.

6. Discussion

We have described a measurement error model for dietary intake that accounts for the timing of biomarker
measurements in relation to self-report instruments, for the target measure of each instrument, and for
the time between repeat biomarker measurements. Application to dietary validation study data showed
some substantial changes in the estimates of attenuation and correlation with truth for self-report instru-
ments. Estimates of attenuation factors and correlations with truth were slightly increased for FFQs and
decreased for 24HRs.

Our method required subdividing the time into sub-periods of 90 days. The length of the sub-period
should be chosen with care and should be short enough to capture the variation in dietary intakes, but
not so short that measurements within a sub-period are very sparse. Ultimately, the choice depends on
the study design and the available data. Alternatively, one could try to model the true intake in contin-
uous time. Such an approach may improve our parameterization in which correlations between intakes
change abruptly at discrete times. However, a continuous model would require specifying weekly cyclical
variations in diet, which we preferred to avoid.

Preis et al. [9] have reported investigating the influence of timing of repeat biomarkers on estimates of
attenuation factor and correlation with truth. Using data from two of the five VSPP studies (Observing
Protein and Energy Nutrition (OPEN) and Automated Multiple-pass Method (AMPM)), they adopted a
fixed-intake model and applied estimates of within-person biomarker variance found in the AMPM study
to that of the OPEN study. They reported that the time between repeat biomarkers impacted materially
on estimated correlations, tending to decrease them when based on biomarker repeats close in time and
increase them when based on repeats spaced further apart, although this was disputed by Dodd et al. [10].
Our results in Tables IV–VII show a different pattern, with estimated correlations for FFQs relatively
unaffected by the adoption of a fixed-intake or time-varying intake model and correlations for 24HRs
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that were overestimated by the fixed-intake model. This overestimation seemed particularly strong in
study 3 (the AMPM Validation Study). In this study, two of the 24HRs coincided with the day of the
biomarker determination, and also the time between repeat biomarkers was 10–23 months, the longest
period between repeats of the five studies. Both aspects, proximity of 24HR to biomarker determination
and extended time between repeat biomarker measurements, tend to spuriously increase the fixed-intake
model estimates of attenuation and correlation with truth in a fixed-intake model and receive proper
treatment only in a time-varying model.

Choosing which covariates to include in a calibration equation is complex. A covariate appearing in the
health outcome model should also be included in the calibration model, unless it is uncorrelated with both
true intake and dietary measurement error [1]. However, there is a debate regarding whether covariates in
the calibration equation should be included in the health outcome model. If the covariate included in the
calibration model is known to be independent of health outcome conditional on other covariates in the
health outcome model, then it can be safely omitted from the health outcome model, but otherwise not
[11]. Further research is needed to establish valid modeling principles in other settings. Body mass index
is particularly problematic because, while it is an important predictor of intakes such as energy, protein,
and sodium, it is unclear whether it is a confounder (that should be included in the disease model) or a
mediator, which requires special methods [12], [13]. Zheng et al. [14] provide further discussion. Our
aim here is simply to show how to use the time-varying intake model for estimating calibration equations.

This work has several implications for the design of dietary validation studies. The timing of biomarker
measurements relative to the administration of the self-report instruments needs more attention. The
period of the targeted long-term average intake must be defined and may be considerably longer than
the usual 6–9 months. Having decided on a relevant period, the biomarker measurements and short-term
self-reports (such as 24HRs) should be spread out over that period, and the FFQ administered towards
the end, so as to compare it with past diet measured by biomarkers.

Because correlations with truth for multiple 24HRs appear to be somewhat lower than previously
estimated, there is a need to study the combination of multiple 24HRs with FFQs to achieve higher
correlations. Such combination has recently been proposed by Carroll et al. [15].

Allowing for variation in time of a target measure could be important in other areas of epidemiology
and medicine that involve quantities measured with error. These include studies of association of physical
activity with health outcomes, longitudinal studies of serum cholesterol and other biological precursors of
heart disease, and interventions to affect behavioral outcome variables such as exposure to second-hand
smoke. The work described in this paper, together with Rosner et al. [2] and Keogh et al. [3], represents
a more general move to acknowledge the role of time in the study of measurement error and its effects.

Appendix A

Conditional means, variances and covariances of Q, R, and M, given Z, and identifiabilty
of parameters

Using the same notation as in Section 3 of the main text, the conditional means, variances, and covariances
of Qhi, Rhijk, and Mhijk, given Zhi, are as follows:

E
(
Qhi|Zhi

)
= βQ0h + βQ1hE(Thi|Zhi) + βt

Q2hZhi

E
(
Rhijk|Zhi

)
= βR0h + βR1hE(Thijk|Zhi) + βt

R2hZhi

E
(
Mhijk|Zhi

)
= E(Thijk|Zhi) = γT0h + γt

T1hZhi,

Var
(
Qhi|Zhi

)
= β2

Q1h𝜎
2
Th

(
2 +

6∑
j=3

6∑
j′=j+1

ρjj′

)
∕8 + 𝜎2

uQh + 𝜎2
εQh,

Var
(
Rhijk|Zhi

)
= β2

R1h𝜎
2
Th

(
1 + ωϕ

)
+ 𝜎2

uRh + 𝜎2
εRh,

Var
(
Mhijk|Zhi

)
= 𝜎2

Th

(
1 + ωϕ

)
+ 𝜎2

δh,

Cov
(
Qhi,Mhijk|Zhi

)
= βQ1h𝜎

2
Th

(
6∑

j′=3
ρjj′

)
∕4,

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 3590–3605

3601



L. S. FREEDMAN ET AL.

Table A1. Comparison of empirical with model-based estimates of the correlation between repeat biomarker
measurements as a function of the time between the repeats: protein density in men and women.

Empirical Model-based

Difference in Total no. Estimated 95% CI 95% CI Estimated
Gender time periods individuals correlation lower limit upper limit correlation

Men 0 500 0.591 0.531 0.645 0.626
1 19 0.604 0.207 0.830 0.554
2 16 0.706 0.323 0.890 0.554
3 12 0.831 0.490 0.951 0.554
4 9 0.880 0.521 0.975 0.554
5 32 0530 0.222 0.741 0.554
6 0 — — — 0.554
7 8 0.480 −0.339 0.885 0.554

Women 0 550 0.604 0.548 0.654 0.602
1 109 0.367 0.192 0.519 0.477
2 126 0.217 0.043 0.377 0.377
3 20 0.120 −0.341 0.534 0.299
4 11 0.772 0.321 0.938 0.237
5 20 0.483 0.051 0.762 0.188
6 1 — — — 0.149
7 12 −0.259 −0.725 0.370 0.118

Cov
(
Qhi,Rhijk|Zhi

)
= βQ1hβR1h𝜎

2
Th

(
6∑

j′=3
ρjj′

)
∕4 + Cov

(
uQhi, uRhi

)
,

Cov
(
Rhijk,Rhij′k′ |Zhi

)
= β2

R1h𝜎
2
Thρjj′ + 𝜎2

uRh,

Cov
(
Rhijk,Mhij′k′ |Zhi

)
= βR1h𝜎

2
Th

(
ρjj′ + I[DRhijk = DMhij′k′ ]ωϕ

)
Cov

(
Mhijk,Mhij′k′ |Zhi

)
= 𝜎2

Thρjj′ ,

where ρjj′ = 1 if j = j’, I[c] is the indicator function and DRhijk and DMhij′k′ are the days (time units)
for which Rhijk and Mhij′k′ measure intake, respectively. Whether or not the parameters are identifiable
depends on the data available and on the parameterization of the correlation matrix {ρjj′}. If we have
repeat biomarker data, M, in all combinations of periods j and j’, then we can estimate the ρjj′ individually.
If the repeats are restricted to certain combinations of j and j’, then we may still be able to estimate
all ρjj′ if the structure of the correlation matrix is suitably parsimonious, for example, autoregressive of
order 1. The term ωϕ can be estimated if we have recalls R and biomarkers M that are measured on the
same day, and other combinations of R and M that are measured in the same period j, but not on the
same day.

Appendix B

Comparison of model-based estimates with empirical estimates of correlations between repeat
biomarkers

One way of checking the goodness of fit of models (1)–(4) is to compare the empirical correlations
between repeated biomarker measurements and their model-based estimates.

Because there were a limited number of repeat biomarker measurements, and they were not performed
in all the possible combinations of periods j and j’ (j, j’ = 1,….,10), we consider the pairwise correlations
as a function of the time difference, |j-j’|.

As in the modeling, we assumed that these pairwise correlations did not differ across studies. Accord-
ingly, the empirical correlations were calculated for each study and then combined in a weighted average.
Times between repeats differed across studies, so one study would contribute information on |j-j’|=0,
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others would contribute to |j-j’|=1, 2, or 3, and yet another study only to |j-j’|=3 up to 7. The model-based
correlations were calculated according to the following formula:

cor̂r(Mhijk,Mhij′k′ ) = ̂̄𝜎2
T ρ̂jj′∕

{
̂̄𝜎2
T
(
1 + ω̂ϕ

)
+ �̂�2

δ

}
, where ̂̄𝜎2

T is the mean of the estimates �̂�2
Th

across studies.

As an example of the results, we present in Table A1 the comparisons for protein density, for men
and women separately. It can be seen that the data are rather sparse except for |j-j’|=0 for men and |j-
j’|=0 up to 2 for women. The model-based correlations for |j-j’|=0 agree very well with the empirical
estimates. For other time differences, the model-based estimates fall within the 95% confidence intervals
of the empirical estimates, except for |j-j’|=4 for women, where the empirical estimate seems to be a
rogue value, larger even than the correlation for |j-j’|=0. Thus, overall, the model appears to provide a
reasonable fit to the data based on the comparison of empirical with model-based estimates of correlation.
A similar picture was obtained when absolute protein intake was considered.

Appendix C

A simple example

The equations for the conditional means and variances that are provided in Appendix 1 simplify to the
following in the simple example presented in the Section 4 of the main text entitled “A simple example”.
In that example, there is only one study (h=1), 2 sub-periods ( j=1,2), no covariates Z, no FFQ, and each
individual has two 24HRs, one in sub-period 1 and one in sub-period 2, and two markers, both in the first
sub-period, with one on the same day as the first 24HR. Since there is only one study, the subscript h is
suppressed throughout; and since there are no repeat 24HRs within the same sub-period, the subscript k
is suppressed for R.

E(R̄i.) = βR0 + βR1 γT0
E(M̄i1.) = γT0
Var(R̄i.) = β2

R1𝜎
2
T(1 + ωϕ) + 𝜎2

uR + 𝜎2
εR∕2

Var(M̄i1.) = 𝜎2
T(1 + ωϕ) + 𝜎2

δ∕2

Cov(Ri1,Ri2) = β2
R1𝜎

2
Tρ12 + 𝜎2

uR

Cov(Ri1,Mi11) = βR1𝜎2
T(1 + ωϕ)

Cov(Ri1,Mi12) = βR1𝜎2
T

Cov(Ri2, M̄i1.) = βR1𝜎
2
Tρ12

Cov(Mi11,Mi12) = 𝜎2
T

There are nine equations for the nine unknown parameters: γT0, βR0, βR1, 𝜎2
T, ωϕ, ρ12, 𝜎2

uR, 𝜎
2
εR, and 𝜎2

δ .
These equations provide unique solutions for the parameters and when the solutions fall within the param-
eter space, they coincide with the maximum likelihood estimates under the assumptions of normality
stated in the main text.

The expressions for the attenuation factor and correlation with truth for the 24HR in this case are
as follows:

λRT =
βR1𝜎

2
T(1 + ρ12)

2(β2
R1𝜎

2
T(1 + ωϕ) + 𝜎2

uR + 𝜎2
εR)

,

ρRT =
βR1𝜎T

√
1 + ρ12√

2(β2
R1𝜎

2
T(1 + ωϕ) + 𝜎2

uR + 𝜎2
εR)

.
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Their estimates are obtained by plugging in the estimates of each parameter obtained from the
aforementioned equations.

These estimates may be compared with those derived from the fixed-intake model. Under that model,
ωϕ =0 and ρ12 =1; the estimating equations are as follows:

E(R̄i.) = βR0 + βR1 γT0E(M̄i1.) = γT0
Var(R̄i.) = β2

R1𝜎
2
T + 𝜎2

uR + 𝜎2
εR∕2

Var(M̄i1.) = 𝜎2
T + 𝜎2

δ∕2

Cov(Ri1,Ri2) = β2
R1𝜎

2
T + 𝜎2

uR
Cov(R̄i., M̄i1.) = βR1𝜎2

T

Cov(Mi11,Mi12) = 𝜎2
T

Here, again, the equations provide unique solutions for the parameters and when the solutions fall
within the parameter space, they coincide with the maximum likelihood estimates. The expressions for
the attenuation factor and correlation with truth for the 24HR are as follows:

λRF =
βR1𝜎

2
T

β2
R1𝜎

2
T + 𝜎2

uR + 𝜎2
εR

,

ρRF =
βR1𝜎T√

β2
R1𝜎

2
T + 𝜎2

uR + 𝜎2
εR

.

Their estimates are obtained by plugging in the estimates of each parameter obtained from the equations
above. It can then be shown that the estimators of λRF and ρRF have asymptotic expectations that are
not equal to λRT and ρRT, respectively, as one would wish, but instead λRT

1+ρ12+ωϕ∕2

1+ρ12
and ρRT

1+ρ12+ωϕ∕2√
2(1+ρ12)

.

Note that when ωϕ =0 and ρ12 =1, both multiplicative factors equal 1. In general, there are two sources
of the biases in these estimates. The first is that Cov(R̄i., M̄i1.) overestimates the covariance between the
self-report and true usual intake, because of the first self-report and marker being performed on the same
day. The second is that Cov(Mi11, Mi12) overestimates the variance of true usual intake, because of both
markers being performed in the same sub-period. The attenuation factor λ̂RF is overestimated ifωϕ>0. The
correlation with true usual intake ρ̂RF may be overestimated or underestimated depending on the values
of ωϕ (ωϕ>0) and ρ12 (0<ρ12<1). Table I of the main text shows the magnitude of the bias for selected
values of ωϕ and ρ12.
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