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Abstract: Most statistical methods that adjust analyses for dietary 
measurement error treat an individual’s usual intake as a fixed quantity. 
However, usual intake, if defined as average intake over a few months, 
varies over time. We describe a model that accounts for such varia-
tion and for the proximity of biomarker measurements to self-reports 
within the framework of a meta-analysis, and apply it to the analysis of 
data on energy, protein, potassium, and sodium from a set of five large 
validation studies of dietary self-report instruments using recovery bio-
markers as reference instruments. We show that this time-varying usual 
intake model fits the data better than the fixed usual intake assumption. 
Using this model, we estimated attenuation factors and correlations 
with true longer-term usual intake for single and multiple 24-hour 
dietary recalls (24Hrs) and food frequency questionnaires (FFQs) 
and compared them with those obtained under the “fixed” method. 
compared with the fixed method, the estimates using the time-varying 
model showed slightly larger values of the attenuation factor and cor-
relation coefficient for FFQs and smaller values for 24Hrs. in some 
cases, the difference between the fixed method estimate and the new 
estimate for multiple 24Hrs was substantial. With the new method, 
while four 24Hrs had higher estimated correlations with truth than 
a single FFQ for absolute intakes of protein, potassium, and sodium, 
for densities the correlations were approximately equal. accounting 
for the time element in dietary validation is potentially important, and 
points toward the need for longer-term validation studies.

(Epidemiology 2015;26: 925–933)

An extensive literature exists on statistical methods for 
dealing with dietary measurement error. Most methods 

specify a model linking an individual’s self-reported intake to 
his/her true usual intake, which is treated as a fixed quantity.1

However, usual or average intake in dietary research is 
often not defined clearly. a precise definition would require 
specifying the period over which the average is taken, but often 
such specification is absent. this can lead to vagueness of 
definition in measures of accuracy of self-report instruments. 
For example, consider the correlation with true usual intake 
of reported intakes from multiple 24-hour recalls (24Hrs) 
taken over 2 weeks. this correlation may vary according to 
whether usual intake is defined as the average over the month, 
3 months, year, or several years that are proximal to the time 
of the recalls. clearly, the longer the usual intake period, the 
lower the expected correlation is between the report and usual 
intake. this is because dietary intakes on any 2 days tend to 
be closer, the closer are the 2 days in time2 (cyclical varia-
tions between weekdays and weekends and between seasons 
excepted).

three notable exceptions to the fixed usual intake 
approach are described by rosner et al.,3 Keogh et al.,4 and 
Prentice and Huang.5 We discuss these approaches in the eap-
pendix, Supplemental Digital content 1, at the end of the 
section entitled “Statistical analysis, model and estimation of 
parameters” (http://links.lww.com/eDe/a967).

in this article, we describe a model where short-term 
usual (i.e., average) intake varies from one short-term period 
(we use 3 months) to the next. the targeted longer-term usual 
intake is then an average of several short-term usual intakes 
(we choose four, giving a targeted usual intake period of  
1 year). the modeling requires (1) assuming no systematic 
trend in average intake over the targeted period and (2) esti-
mating the correlation between intakes in any two separate 
short-term periods. However, in any single study, there are 
often only two repeats chosen to be approximately equally 
spaced, thus limiting the correlations that can be estimated. 
to overcome this, we analyze several different studies, each 
of which uses a different period between repeat biomarker 
evaluations; overall, we are thus able to cover the targeted 
1-year period. We therefore describe our model within a 
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meta-analysis framework, so as to apply it to data that come 
from the Validation Studies Pooling Project (VSPP),6,7 com-
prising five large dietary validation studies that used recov-
ery biomarkers.7 in the “Methods” section, we describe the 
VSPP and the statistical model and methods. in the “results” 
section, we describe the results of applying the method to 
VSPP data and compare them with results obtained assuming 
a fixed usual intake. in the “Discussion” section, we discuss 
the implications of our results.

METHODS

The Validation Studies Pooling Project
Dietary intake recovery biomarkers8 that provide accu-

rate assessments of short-term intakes provide the most 
acceptable method of evaluating dietary self-report instru-
ments.9 However, these biomarkers are expensive or inconve-
nient, and exist for only a limited set of dietary components 
(energy, protein, potassium, and sodium). in 2009, investiga-
tors of five larger (>200 participants) validation studies using 
such biomarkers agreed to pool their data for common analy-
sis. the resulting VSPP aims to clarify the nature and mag-
nitude of reporting errors in food frequency questionnaires 
(FFQs) and 24Hrs.6,7

the five VSPP studies included diverse populations 
within the US.6 the Observing Protein and energy study 
(OPen)10 and the automated Multiple Pass Method (aMPM) 
validation study11 both included adult volunteers, ages 40–69 
years, residing in Maryland. the energetics study included 
younger white and african-american adults residing in cali-
fornia.12 the nutrition Biomarker Study (nBS) included 
women participants in the Dietary Modification trial,13 
and the nutrition and Physical activity assessment Study 
(nPaaS) women participants in the Observational cohort 
of the Women’s Health initiative.14 these participants were 
mostly over 60 years, residing throughout the US. Further 
details are in references 9–13.

each study included administering a FFQ to each par-
ticipant. although repeat administrations were sometimes 
performed, this analysis includes only the first administra-
tion. the FFQs queried intake over the past year in OPen, 
energetics and aMPM, and the past 3 months in nBS and 
nPaaS. three versions of FFQ were used15–18 (see eappen-
dix, Supplemental Digital content 1, Section entitled “Further 
details of the design of the VSPP studies”; http://links.lww.
com/eDe/a967).

each study included two or more 24Hr assessments, 
administered to all participants in four studies, and to a 20% 
subset in nBS. Different versions of 24Hr were used10–19 (see 
eappendix, Supplemental Digital content 1, Section entitled 
“Further details of the design of the VSPP studies”; http://
links.lww.com/eDe/a967).

each study included the recovery biomarkers: doubly-
labeled water for energy intake,20 24-hour urinary nitrogen 

for protein,21 24-hour urinary potassium for potassium,22 and 
24-hour urinary sodium for sodium.23

Doubly-labeled water measures energy expenditure over 
a 10- to 14-day period and, assuming individuals are in energy 
balance, is used to measure average daily energy intake.20

the 24-hour urinary markers assess intake over a 
24-hour period.22,23 For details of the methods and laborato-
ries, see eappendix, Supplemental Digital content 1, Section 
entitled “Further details of the design of the VSPP studies” 
(http://links.lww.com/eDe/a967). three studies included 
repeat determinations in the main protocol, approximately 5 
days apart; nBS and nPaaS included repeat determinations 
in a 20% sub-study (see below), about 6 months later. the tim-
ing of the different measurements varied across studies (see 
eappendix, Supplemental Digital content 1, Section entitled 
“Further details of the design of the VSPP studies”; http://
links.lww.com/eDe/a967).

Urinary nitrogen in grams was divided by 0.81 to con-
vert to dietary nitrogen,21 and multiplied by 6.25 to convert 
dietary nitrogen to dietary protein. Urinary potassium was 
divided by 0.8 to convert to dietary potassium,24 and urinary 
sodium by 0.86 to convert to dietary sodium.25

each study included a sub-study, of varying size, to 
examine reliability of self-reports and biomarkers. the time 
between main and sub-study administrations ranged from 
2 weeks in OPen, to approximately 6 months in energet-
ics, nBS, and nPaaS, and to 10–23 months in aMPM. the 
extent of the substudy data collection also varied. in OPen, 
only doubly-labeled water was repeated, while other stud-
ies repeated biomarkers and self-reports. For example, nBS 
and nPaaS repeated the entire study protocol in a 20% sub-
sample. Our analysis included repeat biomarker and 24Hr 
assessments.

Statistical Methods
We report on seven dietary components: energy, pro-

tein, potassium, sodium, protein density, potassium density, 
and sodium density. Protein density is defined as the percent 
of total energy from protein; potassium and sodium densities 
are defined as the ratio of nutrient intake (mg) to energy intake 
(1,000 kcal).

When relating longer-term average intake of some 
dietary component to a health outcome, we should be inter-
ested in how well our self-report instruments capture longer-
term average intake. Here, we choose to target a 12-month 
average, although our method is easily adapted to other peri-
ods within the compass of the data collected. We call this 
12-month average the targeted true usual intake.

two important measures of a self-report instrument are 
the attenuation factor and the correlation with targeted true 
usual intake. the attenuation factor (usually between 0 and 1) 
is the multiplicative bias or shrinkage factor in the estimated 
regression coefficient when a health outcome is regressed on 
continuous self-reported rather than true usual intake.
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the correlation coefficient between reported and true 
intake is used to measure loss of statistical power to detect 
diet–health associations when using reported instead of true 
intake.26 in simple models, it can also serve to de-attenuate 
relative risks between two intake categories.27 low values of 
attenuation factor and correlation, e.g., less than 0.4, are unde-
sirable, although there is no sharp cut-off. an attenuation fac-
tor of 0.4 leads to a true relative risk of 2.0 being attenuated 
to 20.4 = 1.32.

We now describe estimating attenuation factors and 
correlations, using the time-varying usual intake model.

Statistical Modeling
in four of the five studies, participants completed the 

first FFQ at the beginning of the study, and in the remaining 
study toward its end. We set the completion of this FFQ as the 
common time point. relative to this FFQ, other instruments 
were completed from 450 days beforehand to 450 days after-
wards. We divided this overall period into 10 subperiods of 90 
days each, with the FFQ being completed at the beginning of 
the 6th period (Figure 1).

For modeling, each type of observation, 24Hr, FFQ, 
and biomarker was considered an error prone measurement 
of true intake. a statistical model describes how each of them 
relates to true intake.

We used the same model for each sex and each dietary 
component, and the modeling of each sex and component was 
performed separately. all dietary variables were logarithmi-
cally transformed, including the unobserved true intake. We 
excluded urinary marker values from analysis only if partici-
pants declared missing two or more voids during 24-hour col-
lection.28 For more details on this, on exclusion of outliers, 
and for precise details of the statistical model see eappendix, 
Supplemental Digital content 1, Section entitled “Statistical 
analysis, model and estimation of parameters” (http://links.
lww.com/eDe/a967).

the model has four parts; each is a meta-analysis 
model that specifies study-specific parameters. the first 
three parts specify a linear regression relationship between 
the biomarker, 24Hr and FFQ, respectively, and true intake; 
the instrument is the dependent variable and true intake the 
explanatory variable. the fourth part specifies how true 
intake varies over time.

Biomarker Model
Biomarkers were assumed to measure true intake on the 

day of the assessment (or for energy during the 10- to 14-day 
assessment) without bias (intercept = 0, slope = 1) but with 
independent random error. the error variance was estimated 
through repeat assessments performed within the same 90-day 
subperiod.

24HR Model
24Hr-reported intake was assumed to measure true 

intake on the day before assessment with constant system-
atic and also intake-related bias. a person-specific bias and 
a within-person random error term were included, as in Kip-
nis et al.29 For developing calibration equations for predict-
ing true usual intake, extra covariates representing personal 
characteristics such as log body mass index (BMi) were intro-
duced as linear terms. the within-person random error terms 
were assumed mutually independent, and independent of true 
intake, all person-specific biases, and within-person random 
errors in other parts of the model.

FFQ Model
FFQ-reported intake was assumed to measure true aver-

age intake over the past year with constant systematic and 
also intake-related bias. a person-specific bias and a within-
person random error term were included. the person-specific 
bias terms of FFQ and 24Hr could be correlated. as with 
the 24Hr, covariates could be included as extra linear terms, 
depending on the purpose of the analysis. theoretically, for the 
regression calibration approach to measurement error adjust-
ment, covariates that are included in the disease model should 
also be included in such a prediction.1 However, it has been 
customary to omit extra covariates when estimating attenua-
tion factors and correlations. We examined both.

Time-varying True Intake Model
a stochastic structure for true intake was required. We 

assumed that:
(1) a person’s true intake varied over time, but the group aver-

age and variance, on a single day and in each 90-day sub-
period, remained constant for a given study;

(2) the ratio of the single-day variance to the 90-day usual 
intake variance, which we call the intake–variance ratio, 
was common across studies;

(3) the correlation structure between usual intakes in different 
subperiods was common across studies, and was autore-
gressive of order 1, compound symmetry, or degenerate (all 
1’s). the autoregressive of order 1 structure has correlation 
between two subperiods j and k = ρ| |j k− , where − ≤ ≤1 1ρ ;  
with compound symmetry this correlation equals ρ . the 
structure was decided according to the best model fit, using 
akaike’s information criterion. the degenerate option, 
together with assuming that the intake-variance ratio equals 
1, corresponds to the fixed usual intake (no variation over 

-450 -360 -270 -180 -90 0 90 180 270 360 450
Time (days)

Sub-period:   1   2  3 4  5 6  7 8       9     10

FFQ Administration

FIGURE 1. Subdivision of time period into subperiods.
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time) model. We used this to compare estimates obtained 
under the fixed versus the time-varying model.

We assumed study-specific model parameters, with 
the following exception. the biomarker error variance was 
assumed equal for each study, since there were insufficient 
replications of some biomarker measurements within sub-
periods to provide study-specific estimates. Model param-
eters were estimated using maximum likelihood, assuming 
log biomarker, 24Hr, and FFQ values to be normally distrib-
uted (conditional on covariates, if included). However, when 
first and second moments are correctly specified, parameters 
are consistently estimated without the normality assumption. 
Using the nonparametric bootstrap for estimating standard 
errors also obviates the need to assume normality. estimation 
was performed using a custom-built SaS30 program (eappen-
dix, Supplemental Digital content 1, Section entitled “exam-
ples of SaS code”; http://links.lww.com/eDe/a967).

We estimated attenuation factors and correlations with 
longer-term true usual intake for each study, sex, instrument, 
and dietary component via the estimated model parameters. 
See eappendix, Supplemental Digital content 1, Section enti-
tled “Statistical analysis, model and estimation of parameters” 
(http://links.lww.com/eDe/a967) for the equations. Weighted 
averages of attenuation factors and correlations across the five 
studies were calculated, with weights inversely proportional to 
the nonparametric bootstrap variance of the estimates.

Model fit was investigated using akaike’s informa-
tion criterion, and comparing empirical correlations between 
repeat biomarkers with those predicted from the model.

Calibration Equations
calibration equations for predicting the targeted true 

usual intake using self-report and personal characteristics were 
calculated from parameter estimates of the model. For more 
details, see eappendix, Supplemental Digital content 1, Sec-
tion entitled “calibration equations” (http://links.lww.com/
eDe/a967). We illustrate the method using FFQ-reported 
intakes, and the characteristics: age group (<40 years, 40–49, 
50–59, 60–69, 70–79, ≥80), log BMi, race (african-american 
vs. other), and education (high school, college, postgraduate). 
comments on choosing covariates in the calibration model are 
given in the “Discussion.”

RESULTS

Model Fit
For each sex and dietary component, the correlation 

structure with the best model fit (lowest akaike information 
criterion) is shown in table 1. also presented, are estimates 
of the correlation parameter ρ  and the intake–variance ratio 
(see “Methods”). in most cases, the autoregressive structure 
provided the best fit, which, comparing akaike information 
criterion values, was far superior to that provided by the fixed 
intake model.

examples of comparing empirical correlations between 
repeat biomarker measurements with their model-predicted 
values are shown for energy and protein density in Figures 2 
and 3. Many of the empirical correlations were estimated with 
less than 20 pairs of observations, so error bars were wide. 
the model-based estimates fell within the error bars in all 
cases except one (protein density for women, measurements 
four subperiods apart), meaning that the model appeared con-
sistent with the data.

Attenuation Factors and Correlations with 
Targeted Usual Intake

tables 2 and 3 present attenuation factors and correlations 
with targeted usual intake, estimated from the fixed and time-
varying intake models. across-study average estimates are pro-
vided for FFQs, single 24Hrs, and the average of four 24Hrs.

the same pattern was observed for all dietary compo-
nents and both sexes. estimated attenuation factors and cor-
relations for FFQs were similar or slightly larger under the 
time varying than under the fixed model. However, for 24Hrs, 
the estimates were smaller under the time varying than under 
the fixed model. the difference between estimates was larger 
for the average of four 24Hrs, and was substantial for women 
reporting protein density and sodium density. this pattern was 
quite consistent across the five studies.

as a result, whereas under the fixed model, four 24Hrs 
had larger estimated attenuation factors and correlations than a 
single FFQ for all dietary components, under the time-varying 
model this was true for absolute intakes of protein, potassium, 
and sodium, but not their densities. For these densities, under 
the time-varying intake model, estimated attenuation factors 
and correlations for four 24Hrs appeared similar to those for 
a single FFQ.

Calibration Equations
the coefficients of personal characteristics variables 

in FFQ-based calibration equations estimated from the time-
varying model (see eappendix, Supplemental Digital con-
tent 1, etables a1–a6; http://links.lww.com/eDe/a967) 
were similar to those for the fixed model (see references 6, 
7). However, the coefficient of the FFQ-report estimated from 
the time-varying model displayed the same pattern as did the 
attenuation factors in relation to estimates based on the fixed 
model. For example, with a single 24Hr, the time-varying 
model coefficient estimates were on average 21% lower than 
those from the fixed model. Similarly the estimated R2 val-
ues were on average 14% lower under the time-varying model 
than under the fixed model. For FFQs, there was little differ-
ence between the calibration equations estimated under the 
two models.

With either model, the covariates that were important 
for predicting intakes were: for energy and protein: age, BMi, 
and race; for protein density: age and race; for potassium: age, 
race, and education; for potassium density: age, BMi, race, and 
education; for sodium: age and BMi; and for sodium density: 
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BMi and race. Multiple correlations were considerably higher 
for the full calibration model compared with the instrument-
only model for energy, protein and sodium, but the difference 
was smaller for potassium and the nutrient densities.

DISCUSSION
We have described a time-varying usual intake model 

for analyzing dietary validation data that incorporates differ-
ent types of instrument and accounts for the relative timing 
of biomarker measurements to self-report instruments and the 
time between repeated measurements. applying the method 
to VSPP data showed that this model provided a better fit to 
the data than assuming a fixed intake, and led to reductions in 
estimates of attenuation factor and correlation with targeted 
true usual intake for 24Hrs, sometimes substantially, com-
pared with the fixed intake method. We think this difference in 
estimates was related to a design feature of some of the valida-
tion studies (see below).

Preis et al.31 reported investigating whether the timing of 
repeat biomarkers influences estimates of attenuation factor and 
correlation. they used data from OPen and aMPM, and a fixed 
intake model, and applied estimates of within-person biomarker 
variance found in aMPM to OPen. they reported that estimated 
correlations decreased when based on biomarker repeats close in 
time and increased when based on repeats spaced further apart, 
although this was disputed by Dodd et al.32 Our results in tables 
2 and 3 showed a different pattern, where estimated correlations 
for FFQs were relatively unaffected by using a fixed model, 
whereas those for 24Hrs were overestimated.

apparently, this differential result was mostly due to a 
design feature of some of our studies, performing biomarker 

measurements a day before 24Hrs, thus measuring the same 
day’s intake. if biomarker and 24Hr assessments had not 
been so timed, it seems likely that 24Hr correlations esti-
mated by the fixed method would have had less bias. How-
ever, both proximity of self-report to biomarker determination 
and time between repeat biomarker measurements influence 
the estimates of attenuation factor and correlation using the 
fixed method, and both should be accounted for using a time-
varying intake model.

the pattern of differences between the time-varying and 
fixed model estimates was the same across all of the nutrients 
examined. it therefore seems likely that, were recovery biomark-
ers available for other nutrients, one would see the same pattern.

as mentioned in the “introduction,” there is previous 
study3–5 that did not assume a fixed usual intake value. Some 
details of each are provided in the eappendix, Supplemental 
Digital content 1, end of Section entitled “Statistical analy-
sis, model and estimation of parameters” (http://links.lww.
com/eDe/a967). Our proposed model is related to these 
approaches, but, unlike them, specifically models the correla-
tion of true intake across time and estimates attenuation fac-
tors and correlations for a longer-term average intake.

a central assumption behind our modeling is that recov-
ery biomarkers are unbiased for individual usual intake, and 
that errors in their measurements are random. there is a litera-
ture supporting this claim (see references 33, 34 for reviews), 
although some discussion continues regarding urinary potas-
sium and sodium. Freisling et al.35 reviewed the literature and 
reported conversion factors for potassium that varied from 
0.76 to 0.89. although there is not complete agreement, the 
appropriate conversion factor, in the context of this article, 

TABLE 1. Correlation Structure for Each Dietary Component and Sex

Sex Dietary Component
Correlation 
Structure

Parameter 
ρ  (SE)

Intake Variance 
Ratio: Day vs. Sub- 

period (SE) AICa

AIC for Fixed Usual 
Intake Model

Men energy ar(1) 0.94 (0.02) -b 908 916

Protein cS 0.87 (0.07) 1.30 (0.09) 2,046 2,070

Potassium ar(1) 0.87 (0.06) 1.47 (0.12) 2,352 2,404

Sodium ar(1) 0.92 (0.05) 1.46 (0.18) 3,417 3,435

Protein density cS 0.89 (0.08) 1.44 (0.13) −66 −34

Potassium density ar (1) 0.92 (0.04) 1.43 (0.10) 907 969

Sodium density ar(1) 0.91 (0.05) 1.50 (0.20) 1,323 1,341

Women energy ar(1) 0.85 (0.03) - 2,003 2,025

Protein ar(1) 0.83 (0.05) 1.50 (0.11) 5,525 5,603

Potassium ar(1) 0.94 (0.02) 1.42 (0.11) 5,947 5,993

Sodium cS 0.55 (0.10) 1.39 (0.15) 8,333 8,387

Protein density ar(1) 0.79 (0.05) 1.50 (0.16) 682 748

Potassium density ar(1) 0.91 (0.03) 1.31 (0.11) 2,821 2,863

Sodium density cS 0.47 (0.12) 1.43 (0.20) 3,295 3,334

aakaike information criterion = −2 × log likelihood + 2×(no. parameters in model) (smaller is better).
bcould not be estimated, because the biomarker (doubly labeled water) does not assess a single day’s intake.
aic indicates akaike information criterion; ar(1), autoregressive model of order 1; cS, compound symmetric model; Se, standard error.
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this choice does not impact our results. as we use the log 
biomarker level, the conversion factor translates to a simple 
additive constant that does not affect estimates of attenuation 
factors or correlations.

More recently, turban et al.36 have reported that potas-
sium excretion was lower among black than white par-
ticipants in the Dietary approaches to Stop Hypertension 
(DaSH) trial who were fed the high sodium diet. this find-
ing challenges the conventional assumption that the fraction 
of potassium intake excreted in urine is independent of per-
sonal characteristics, and further investigations (for exam-
ple, feeding studies) are warranted. For a discussion of the 
urinary sodium biomarker, see the “Discussion” section of 
Freedman et al.7

Our model assumes no systematic secular trends in 
intake. this seems reasonable considering the short duration 
of the studies. Secular trends could bias estimates based on 
our model. in particular, the timing of biomarker measure-
ments relative to FFQ administration would be a concern. 
Since FFQs inquire about past intake, one might expect bio-
marker measurements taken beforehand to correlate better 
with FFQ reports than those taken after. to check this, we 
compared such correlations for our studies, and found little 
difference between them. For example, the across-study 

mean correlation of FFQ energy with doubly-labeled water 
taken before the FFQ was 0.28 versus 0.27 for doubly-labeled 
water taken after the FFQ.

We also investigated calibration equations for pre-
dicting usual intakes, taking, as an example, equations that 
included the covariates available to us (age, BMi, race/ethnic-
ity, and education). choosing the covariates in a calibration 
model is complex. covariates appearing in the disease model 
should also be included in the calibration model.1 However, 
there is debate whether covariates in the calibration model 
should always be included in the disease model. BMi is par-
ticularly difficult because, while it is an important predic-
tor of some intakes (e.g., energy, protein, and sodium), it is 
unclear whether it is a confounder that should be included in 
the disease model or a mediator that requires special meth-
ods.5,37 Zheng et al.38 discuss this issue and suggest that, 
alternatively, BMi be viewed as a marker for energy intake. 
Whichever view is taken, use of the time-varying model 
could better reflect the contribution of the self-report to the 
calibration equation.

the attenuation factors and correlations presented 
here are calculated assuming that the calibration models 
(see eappendix, Supplemental Digital content 1, models 
[a2] and [a3]; http://links.lww.com/eDe/a967) have zero 

FIGURE 2. Empirical  and  time-varying  usual  intake  model-
based  estimates  of  correlation  between  biomarker measure-
ments  for  energy  intake  according  to  the  time  difference 
between them (measured in 3-month time periods). The error 
bars  shown  are  95%  confidence  intervals  for  the  empirical 
correlations.

FIGURE 3. Empirical  and  time-varying  usual  intake  model-
based  estimates  of  correlation  between  biomarker  mea-
surements  for  protein  density  intake  according  to  the  time 
difference  between  them  (measured  in  3-month  time  peri-
ods). The error bars  shown are 95% confidence  intervals  for 
the empirical correlations.

http://links.lww.com/EDE/A967
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coefficients for the covariates (Z). While this assumption 
could cause bias, we have found our attenuation factor esti-
mates to be essentially unchanged when nonzero regression 
coefficients are allowed for these covariates. this happens 
because self-reported energy is only weakly associated with 
covariates, such as BMi, so the self-report coefficient esti-
mates are little affected by including those covariates in the 
calibration model, leading to a close correspondence with 
the attenuation factors presented.

Our study has implications for nutritional epidemiol-
ogy. First, it highlights the need to consider the period defin-
ing usual intake. Such consideration, in its broadest sense, 
involves focusing on the period/s of life in which dietary 
intake is most expected to influence the health outcome of 
interest. this could impact on the choice of study popula-
tion and the method of measuring intake. in most cohort 
studies of chronic disease, it is assumed that intake cumu-
lated over adult life is the main interest, and thus the usual 
intake period will greatly exceed 1 year and may be closer to 
30–50 years. However, we can assess attenuation factors and 
correlations only for periods as long as the validation stud-
ies that we conduct. as noted previously,38 longer-term vali-
dation studies are needed to understand better longer-term 
variations in true intake, and the ability of our instruments 
to capture longer-term usual intake. the 6-year valida-
tion study conducted as part of the nurses’ Health Study39 

moves in this direction. Our study provides a framework for 
analysis of such longer-term studies.

Second, validation studies should pay attention to the timing 
of biomarker measurements relative to self-reports. Biomarker 
measurements and short-term self-reports should be spread over 
the targeted usual intake period, and the FFQ administered toward 
its end to compare with past diet as measured by the biomarkers. 
Furthermore, one should avoid taking self-reports and biomarker 
measurements of intakes on the same day (or otherwise close in 
time), as this leads to overestimating the correlation between self-
report and usual intake under the fixed model.

third, since attenuation factors and correlations for 
multiple 24Hrs may be somewhat lower than previously 
estimated, there is even greater need to study combinations 
of multiple 24Hrs with FFQs to achieve better accuracy.40

allowing for variation in time of an exposure could be 
important in other areas of epidemiology. these include the 
study of physical activity, measurements of serum cholesterol 
and other biological precursors of heart disease, and second-
hand smoke exposure. the study described here, together with 
rosner et al.,3 Keogh et al.,4 Prentice and Huang,5 and Zheng 
et al,38 represents a general move to including the role of time 
in studying measurement error and its effects. this study 
should help to pave the way for dealing with future datasets 
that include longer-term longitudinal information on individu-
als’ dietary intakes and life-course events.

TABLE 2. Estimates of Overalla Attenuation Factors and Correlations with Truth for the Fixed and Time-varying Usual Intake 
Models Without Covariates (Standard Errors in Parentheses): Energy, Protein, and Protein Density

Dietary Component Instrument Sex

Attenuation Factor Correlation with Truth

Fixed Model Time-varying Model Fixed Model Time-varying Model

energy FFQb M 0.044 (0.020) 0.046 (0.019) 0.092 (0.046) 0.095 (0.045)

F 0.072 (0.011) 0.074 (0.011) 0.217 (0.032) 0.207 (0.032)

1 × 24Hrc M 0.103 (0.015) 0.100 (0.014) 0.276 (0.035) 0.257 (0.032)

F 0.084 (0.010) 0.072 (0.010) 0.219 (0.027) 0.178 (0.025)

4 × 24Hrd M 0.186 (0.026) 0.180 (0.025) 0.374 (0.046)  0.349 (0.042)

F 0.165 (0.020) 0.144 (0.019) 0.307 (0.037) 0.251 (0.034)

Protein FFQ M 0.168 (0.026) 0.163 (0.026) 0.295 (0.045) 0.298 (0.047)

F 0.169 (0.016) 0.180 (0.017) 0.329 (0.030) 0.336 (0.032)

1 × 24Hr M 0.207 (0.019) 0.182 (0.019) 0.413 (0.030) 0.355 (0.032)

F 0.222 (0.015) 0.201 (0.015) 0.397 (0.023) 0.340 (0.025)

4 × 24Hr M 0.423 (0.035) 0.344 (0.033) 0.594 (0.037) 0.491 (0.047)

F 0.463 (0.029) 0.376 (0.026) 0.580 (0.030) 0.476 (0.031)

Protein density FFQ M 0.423 (0.052) 0.420 (0.052) 0.390 (0.045) 0.396 (0.048)

F 0.396 (0.033) 0.439 (0.036) 0.422 (0.035) 0.450 (0.039)

1 × 24Hr M 0.266 (0.026) 0.240 (0.025) 0.365 (0.031) 0.328 (0.032)

F 0.235 (0.020) 0.184 (0.021) 0.356 (0.027) 0.263 (0.031)

4 × 24Hr M 0.612 (0.055) 0.481 (0.048) 0.554 (0.042) 0.483 (0.042)

F 0.534 (0.042) 0.384 (0.041) 0.537 (0.037) 0.382 (0.043)

aWeighted average over studies, where weights are the inverse of the variance.
bFood frequency questionnaire.
cSingle 24-hour recall.
daverage of four repeats of a 24-hour recall.
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