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Constrained Maximum Likelihood Estimation for
Model Calibration Using Summary-Level Information

From External Big Data Sources
Nilanjan CHATTERJEE, Yi-Hau CHEN, Paige MAAS, and Raymond J. CARROLL

Information from various public and private data sources of extremely large sample sizes are now increasingly available for research
purposes. Statistical methods are needed for using information from such big data sources while analyzing data from individual studies
that may collect more detailed information required for addressing specific hypotheses of interest. In this article, we consider the problem
of building regression models based on individual-level data from an “internal” study while using summary-level information, such as
information on parameters for reduced models, from an “external” big data source. We identify a set of very general constraints that link
internal and external models. These constraints are used to develop a framework for semiparametric maximum likelihood inference that
allows the distribution of covariates to be estimated using either the internal sample or an external reference sample. We develop extensions
for handling complex stratified sampling designs, such as case-control sampling, for the internal study. Asymptotic theory and variance
estimators are developed for each case. We use simulation studies and a real data application to assess the performance of the proposed
methods in contrast to the generalized regression calibration methodology that is popular in the sample survey literature. Supplementary
materials for this article are available online.

KEY WORDS: Case-control study; Empirical likelihood; Generalized regression estimator; Misspecified model; Profile-likelihood.

1. INTRODUCTION

Population-based biomedical science is now going through
a paradigm shift as extremely large datasets are becoming in-
creasingly available for research purposes. Sources of such big
data include, but are not limited to, population-based census
data, disease registries, health care databases, and various con-
sortia of individual studies. The power of such large datasets
lies in their sample size. They, however, often do not contain
detailed information at the level of individual analytic studies,
which may be much smaller in size, but have been designed
to answer specific hypotheses of interest. There is a growing
need for a statistical framework for combining information from
datasets that are large but have relatively crude information with
that available from studies that are small but contain more de-
tailed information on each subject. Methods that can work with
summary-level information, as opposed to individual-level data,
are particularly appealing due to practical reasons such as data
sharing, storage, and computing, as well as for ethical reasons,
such as maintenance of the privacy of the study subjects and
protection of the future research interests of data-generating
institutions and investigators.

In this article, we consider the problem of building regres-
sion models using individual-level information from an analytic
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study while incorporating summary-level information from an
external large data source. Our goal is to work within a semipara-
metric framework that allows the distribution of all covariates to
remain completely unspecified, so that analysis results are not
sensitive to modeling assumptions. One class of methods that
could potentially be used for this purpose is to use calibration
techniques that are popular in sample-survey theory. Chen and
Chen (2000), for example, studied the extension of the general-
ized regression (GR) method for developing regression models
using data from double sampling or two-phase designs in cases
where the internal study is a subsample of the external one.
There exists a rich literature on how to form optimal calibra-
tion equations for improving efficiency of parameter estimates
within various classes of unbiased estimators (Deville and Sarn-
dal 1992; Robins, Rotnitzki, and Zhao 1994; Wu and Sitter 2001;
Wu 2003; Lumley, Shaw, and Dai 2011). Unlike GR, however,
the application of many of these more optimal methods in the
current setting requires access to individual-level data from the
external study.

The methodology for “model-based” maximum likelihood es-
timation has also been studied previously in some special cases
of this problem, where it can be assumed that the covariate infor-
mation available in the external data source can be summarized
into discrete strata. In particular, in the setting of two-phase
studies where it can be assumed that the internal study is a
subsample of the external study, a number of researchers have
proposed semiparametric maximum likelihood (SPML) meth-
ods for various types of regression models, while accounting for
complex sampling designs (Breslow and Holubkov 1997; Scott
and Wild 1997; Lawless, Wild, and Kalbflesich 1999). Most
recently, Qin et al. (2015) studied the problem of fitting a logis-
tic regression model to case-control data using information on
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stratum-specific disease probability rates from external sources.
The assumption that only discretized information is available
from the external source is a major limitation of these methods.
In practice, the external dataset may often include combinations
of many variables and summarizing this information into strata
can be subjective and inefficient.

In this article, we develop a general SPML estimation method-
ology, where we assume that the external information is sum-
marized, not by a discrete set of strata defined by the study
variables, but by a finite set of parameters obtained from fitting
a model to the external data. We identify very general equations
imposed by the external model, regardless of whether the model
is correctly specified or not, and use these equations to develop
constrained maximum likelihood (CML) estimation methodol-
ogy. The broad framework allows arbitrary types of covariates
and arbitrary types of regression models, including nonnested
models for the internal and external data and complex sampling
designs. For inference, we consider an empirical likelihood esti-
mation technique, as well as a synthetic maximum likelihood ap-
proach that allows incorporating externally available estimates
of the covariate distribution. We evaluate the performance of
these maximum likelihood methods together with the GR-type
calibration estimator in a wide variety of settings of practical
interest. Finally, we illustrate an application of the method for
developing an updated model for predicting risk of breast cancer
using multiple data sources.

2. METHODS

2.1 Models and Notation

Let Y be an outcome of interest and X be a set of covariates.
We assume a model for the predictive distribution gθ (y|x) has
been built based on an external big dataset. In general, we will
assume that we only have access to the model parameters, θ , but
not necessarily to the individual-level data from the “external”
study based on which the original model was built. We assume
that data on Y , X and a new set of covariates Z are available
to us from an “internal” study for building a model of the form
fβ(y|x, z). Throughout, we will refer to fβ(y|x, z) and gθ (y|x)
as the “full” and “reduced” models, respectively. We assume
fβ(y|x, z) is correctly specified, but the external model gθ (Y |X)
need not be. In practice, although all models are going to be
wrong to some extent, investigators will control the specification
fβ(Y |X,Z) and can carry out suitable model diagnostics. Let
F (X,Z) denote the distribution function of all risk factors for
the underlying population, which, for the time being, is assumed
to be the same for the “external” and “internal” studies. This
assumption, however, will be inspected more closely later.

2.2 The Key Constraints Relating Model Parameters of
Full and Reduced Models

Let U (Y |X; θ ) = ∂log{gθ (Y |X)}/∂θ be the score function
associated with the reduced model, and θ the parameter in the
reduced model. The population parameter value θ∗ of θ under-
lying the external reduced model satisfies the equation

E{U (Y |X, θ∗)} =
∫

U (y|x, θ∗)pr(y|x)pr(x)dydx = 0, (1)

where pr(y, x) = pr(y|x)pr(x) is the true underlying joint
distribution of (Y,X). When the model gθ (y|x) is misspecified,
gθ (y|x) �= pr(y|x), but (1) still holds true under mild conditions
(e.g., White 1982). Under the assumption that fβ(Y |X,Z) is
correctly specified, we can write

pr(y|x) =
∫

fβ0 (y|z, x)pr(z|x)dz,

with β0 the true value of β. Thus, the constraint imposed by
Equation (1) can be rewritten, after changing some ordering of
integrals, as∫

Z,X

{∫
Y

U (Y |X, θ∗)fβ0 (Y |X,Z)dY

}
dF (X,Z) = 0. (2)

The equation essentially converts the external information to a
set of constraints, which we use in our analysis of internal data to
improve efficiency of parameter estimates and generalizability
of models. The dimension of the constraints is the same as the
number of parameters by which the external model has been
summarized.

Figure 1 provides a geometric perspective for how the external
reduced model provides information for building the full model
based on the internal study. The true probability distribution for
P0(Y |X,Z) (shown in the left panel), which is assumed to be-
long to the class generated by a parametric family fβ(Y |X,Z),
induces a true value for P0(Y |X) = ∫

fβ0 (Y |X, z)dF (z|X)dz

(shown in the right panel). The reduced model space un-
der consideration, gθ (Y |X), may not contain P0(Y |X). Nev-
ertheless, a value of θ = θ∗ that solves the score equation
E{U (Y |X, θ )} = 0 has a valid interpretation in that it mini-
mizes the Kullback-Leibler distance (Huber 1967; White 1982)
between the fixed P0(Y |X) and the model space of gθ (Y |X).
Thus, from a reverse perspective, it is intuitive that if the value
of θ∗ is given, then the search for β0 could be constrained to
a space so that Pθ∗ (Y |X) remains the minimizer between the
model space of gθ (Y |X) and any fixed point in the induced
model space of Pβ (Y |X) = ∫

fβ(Y |X, z)dF (z|X)dz. In the fig-
ure, the constrained space for the induced model is represented
by the chord AB.

2.3 Semiparametric Maximum Likelihood

One class of methodology we consider is SPML methodol-
ogy that allows the distribution F (X,Z) to be completely un-
specified. Importantly, two-phase design maximum likelihood
methodology requires X to be discrete as the number of con-
straints increases with the number of distinct levels of (Y,X).
In contrast, here Y and X can be arbitrary in nature and yet the
number of constraints, defined by the dimension of the reduced
model parameter θ , remains finite.

2.3.1 Maximum-Likelihood Under Simple Random Sampling
for the Internal Studies. Suppose we have data on (Yi,Xi, Zi)
for i = 1, . . . , N randomly selected subjects in the internal
study. The likelihood is given by

Lβ,F =
N∏

i=1

fβ(Yi |Xi, Zi)dF (Xi, Zi).

Our goal is to maximize log{Lβ,F } with respect to β and F (·)
while maintaining the constraint given by (2). We assume that
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Figure 1. Geometric interpretation of the problem. The true distribution function P0(Y |X) for Y given (X,Z) across all values of β is depicted
in the left panel, with the true value of β, that is, β0 shown. In the right top panel, we see the true distribution function P0(Y |X) for Y given X
across all values of β with β0 shown. The assumed external data model is given in the bottom right panel across all values of θ , with the solution
θ∗ to (1) being shown as the minimizer of the Kullback-Leibler distance between the fixed P0(Y |X) and the model space of gθ (Y |X).

θ∗ is given to us externally, that is, θ is fixed at θ∗. Thus, from
now on, for simplicity we use θ to denote θ∗.

Define

uβ(X,Z; θ ) =
∫

Y

U (Y |X, θ )fβ(Y |X,Z)dY. (3)

We propose to maximize lλ = log(Lβ,F ) + λT
∫

uβ(X,Z; θ )
dF (X,Z), where λ is a vector of Lagrange multipliers with the
same dimension as θ . Assuming that nonparametric maximum
likelihood estimation (NPMLE) of F (X,Z) has masses only
at the unique observed data points in the internal study, F (·, ·)
can be characterized by the corresponding masses (δ1, . . . , δm),
where m denotes the number of unique values of (Xi, Zi),
i = 1 . . . , N . Using standard empirical likelihood (or profile
likelihood) computation steps (see e.g., Qin and Lawless 1994;
Scott and Wild 1997), we can show that the values of β and λ

that satisfy the CML equations also satisfy the score-equations
associated with a “pseudo-log-likelihood” given by

l∗β,λ =
N∑

i=1

log

{
fβ(Yi |Xi, Zi)

1 − λT uβ(Xi, Zi ; θ )

}
. (4)

The derivation of (4) is given in the Appendix.

2.3.2 Maximum Likelihood Under a Case-Control Sampling
Design for the Internal Study. Even if we only have a case-
control or retrospective sample from the internal study, as long
as we have the external reduced model for the underlying pop-
ulation, we can estimate all of the parameters of the full model
fβ(Y |X,Z) using this CML approach. A special case is when
the external information is simply the disease prevalence in the
underlying population; it is well know that such information can
be used to augment the case-control sample to estimate all of
the parameters of a logistic or other binary disease risk models
(see e.g., Scott and Wild 1997).

Suppose Y is binary and let p1 = pr(Y = 1) = 1 − p0 =∫
fβ(Y = 1|x, z)dF (x, z) denote the underlying marginal dis-

ease probability in the population, for arbitrary values of β. The

likelihood for the internal case-control study is given by

Lcc
β,F =

{
N1+N0∏

i=1

fβ(Yi |Xi, Zi)dF (Xi, Zi)

}
× p

−N1
1 p

−N0
0 , (5)

where N1 and N0 denote the numbers of cases and con-
trols sampled. The goal is to maximize lccλ = log(Lcc

β,F ) +
λT
∫

uβ(X,Z; θ )dF (X,Z). Again, assuming that the NPMLE
of F (X,Z) has masses only within the unique observed data
points of (Xi, Zi), i = 1, . . . , N1 + N0, in the Appendix we
show that the CML estimation problem is equivalent to solving
the score equation associated with the pseudo-log-likelihood

l
∗,cc
β,λ,μ1

=
N∑

i=1

log

{
fβ(Yi |Xi, Zi)∑

y fβ(y|Xi, Zi)μy − λT uβ(Xi, Zi ; θ )

}
+
∑

y

Ny log(μy). (6)

The pseudo-log-likelihood in the case-control sampling setting
requires introduction of one additional nuisance parameter μ1 =
N1/p1, with μ0 = N0/p0 defined by μ1.

The problem stated above has a strong connection with
methodology in two-phase design SPML estimation as devel-
oped by Scott and Wild (1997) and Breslow and Holubkov
(1997). In fact, if the data (Y,X) from the external study can
be summarized into a frequency table defined by fixed sets of
strata, this problem essentially can be studied using previous
theory with some modification for the fact that the internal
study may not be a subset of the external study. The catego-
rization of phase-I covariate data (X) is needed in these and
other previously developed semiparametric methods, as all of
them intrinsically rely on functionals that are smoothed over Z
but not X. In contrast, in our maximum likelihood theory, the
constraints are represented by functionals that are smoothed with
respect to both X and Z. As a result, we avoid the “curse of di-
mensionality” problem that is typically faced in semiparametric
estimation theory for covariate missing data and measurement



110 Journal of the American Statistical Association, March 2016

error problems; see Roeder, Carroll, and Lindsay (1996) for a
discussion on the latter topic.

2.3.3 Numerical Computation and Asymptotic Theory. For
ease of exposition, when discussing computation and asymptotic
theory, we transform the parameter μ1 to α defined in Appendix
S.2 of the online supplementary materials for the case-control
design. Further, we absorb the parameter α into β in the case-
control design, so that the notation for certain functions such as
uβ(X,Z; θ ) can be unified under both the simple random and
case-control sampling designs.

As mentioned above and detailed in the Appendix, the
pseudo-log-likelihood given in (4) or (6) is in fact the La-
grange function for the constrained log-likelihood obtained by
Lagrange multipliers and profiling out the infinite dimensional
parameter F (·, ·). By the theory of Lagrange multipliers (Chi-
ang and Wainwright 1984), the proposed semiparametric CML
estimator for β0, denoted by β̂, is then obtained by directly solv-
ing for the stationary point, indeed the saddle point, over the
expanded parameter space η = (βT , λT )T for the pseudo-log-
likelihood function. We solve the resulting stationary equation
to obtain β̂ by the usual Newton-Raphson method, which is
quite stable and performs efficiently in our numerical studies
when the initial value of λ is set to 0. In the simulations and data
analysis performed in this work, all results converged within 10
iterations of the Newton-Raphson algorithm employed. Numer-
ical optimizations were performed using PROC IML of SAS
(version 9.3). Formulas for the score and Hessian for both sim-
ple random sampling and for case-control studies are given in
Appendix S.2 of the online supplementary materials.

Let η̂ = (β̂T , λ̂T )T be the stationary point of the pseudo-log-
likelihood function given in (4) or (6); namely, η̂ is the solution
to the score equation ∂l∗β,λ/∂η = 0 or ∂l

∗,cc
β,λ /∂η = 0 when the

internal study is under simple random or case-control sampling.
Explicit expressions for the score function, the first derivative
of the pseudo-log-likelihood with respect to η = (βT , λT )T , are
given in Appendix S.2 in the online supplementary materials.
The following result confirms that the CML estimator for β can
be obtained by solving the score equation. The proof is detailed
in Appendix S.5 of the online supplementary materials.

Lemma 1. Under regularity conditions for model fβ(y|x, z)
and conditions (i)–(iv) given in Appendix S.4 of the online sup-
plementary materials, the pseudo-log-likelihood function l∗β,λ or
l
∗,cc
β,λ is maximized at β = β̂ with probability one, and η̂ = (β̂, λ̂)

is the solution to ∂l∗β,λ/∂η = 0 or ∂l
∗,cc
β,λ /∂η = 0.

The following proposition establishes the asymptotic normal-
ity of the CML estimator proposed.

Proposition 1. Let η̂ = (β̂T , λ̂T )T be the solution to
∂l∗β,λ/∂η = 0 or ∂l

∗,cc
β,λ /∂η = 0, and η0 = (βT

0 , 0)T with β0 the
true value of β, 0 denoting an 	-vector of zeros and 	 the di-
mension of λ. Under regularity conditions for fβ(y|x, z) and
conditions (i)-(v) in Appendix S.4 of the online supplementary
materials, as N → ∞, N1/2(̂η − η0) converges in distribution
to a zero-mean normal distribution with covariance matrix given
by (

(B + CL−1CT )−1 O

O (L + CT B−1C)−1

)
, (7)

where B = E{iββ(Y,X,Z)}, C = E{cβ(X,Z; θ )}, and L =
E{uβ(X,Z)uT

β (X,Z)}, and where iββ(Y,X,Z) and cβ (X,Z; θ )
are defined in (S.4) and (S.2), respectively, in Appendix S.2 in
the online supplementary materials.

The proof is in Appendix S.5 of the online supplementary
materials. A simple consistent estimator for the covariance ma-
trix (7) is obtained by using the corresponding sample means for
the expected quantities in the expression. In Section S.5 of the
online supplementary materials, we show how to modify Propo-
sition 1 when there is uncertainty about θ when it is estimated
from a finite external study.

From Proposition 1 we see two interesting facts. First,
the asymptotic variance of β̂ is (B + CL−1CT )−1 = B−1 −
B−1C(L + CT B−1C)−1CT B−1, and hence the CML estimator
is asymptotically more efficient than the estimator based only on
internal sample data, whose asymptotic variance is B−1. Sec-
ond, β̂ and λ̂ are asymptotically uncorrelated, a phenomenon
also shared by other empirical likelihood methods.

As we noted earlier, the CML method we propose utilizes
empirical-likelihood (EL) and closely related profile-likelihood
methodology developed earlier by Qin and Lawless (1994) and
Scott and Wild (1997), respectively. When we were writing the
rejoinder to the discussions, we were made aware of additional
literature in the use of EL methodology for incorporating auxil-
iary data. Imbens and Lancaster (1994) discussed how to define
constraints on regression parameters from summary-level ex-
ternal data in a simple setting. Qin (2000) described how the
empirical-likelihood framework developed by Qin and Lawless
(1994) can be used for incorporating auxiliary information in
a general context. We would like to acknowledge that under
simple random sampling (Section 2.3.1), the estimating equa-
tions (Equation 4) underlying the proposed CML estimator and
corresponding asymptotic theory can be developed following
steps described Qin (2000) provided the auxiliary information
is summarized using the constraints we formulate. Under the
case-control sampling design for the internal study, however,
the underlying estimating equations (Equation (6)) takes a dif-
ferent form. In particular, even when the underlying model is
logistic regression, the effect of case-control sampling cannot
be generally ignored in CML unlike in standard internal-only
analysis. In Proposition 1, we provide asymptotic theory for the
CML estimator under both random and case-control sampling
designs. We further note that the steps shown for development
in the setting of case-control sampling will allow fairly straight
forward generalization of these estimators under more complex
stratified sampling schemes for the internal study.

2.4 Synthetic Maximum Likelihood

So far we have assumed that the underlying populations for
the internal and external studies are identical, which may be vi-
olated in practice. In particular, as we will demonstrate through
simulation studies, various types of calibrations methods, ei-
ther maximum likelihood or not, can lead to substantial bias in
parameter estimates if the distributions of the underlying risk
factors are different between the internal and external popula-
tions. In this section, we consider the situation when an external
reference sample may be available for unbiased estimation of
the covariate distribution for the external population.
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Let F †(X,Z) denote the underlying distribution for the ex-
ternal population, and consider the setting where it differs from
the distribution F (X,Z) in the internal population. We continue
to assume that the regression model fβ(Y |X,Z) correctly holds
for both of the populations and that the underlying true param-
eters β0 are the same. We assume data are available from the
external reference sample in the form (X†

j , Z
†
j ), j = 1, . . . , Nr ,

where Nr is the size of the external reference sample. When the
internal study sample is obtained under the simple random sam-
pling design, the synthetic constrained log-likelihood is defined
as l

†
β,λ = log(Lβ,F ) + λT

∫
uβ(X,Z; θ )dF̃ †(X,Z), with F̃ † the

empirical distribution of (X†, Z†) in the external reference sam-
ple, and the synthetic constrained maximum likelihood (SCML)
estimator (β̃, λ̃) for (β, λ) can be obtained by solving the esti-
mating equations ∂ l

†
β,λ/∂β = 0 and ∂ l

†
β,λ/∂λ = 0, completely

ignoring F (·, ·) because it factors out from the likelihood of the
internal study.

When the internal sample represents a case-control study,
however, the synthetic constrained log-likelihood is defined as

l
†,cc
β,λ,F = log(Lcc

β,F ) + λT

∫
uβ(X,Z; θ )dF̃ †(X,Z),

from which F (·, ·) cannot be factored out. As before, we
consider NPMLE estimation of F (X,Z) allowing it to have
masses at each of the unique observed data points of (Xi, Zi)
(i = 1 . . . , N1 + N0) in the internal study. In this setting, fol-
lowing Prentice and Pyke (1979) we can show that the SCML
estimate of β can be obtained by maximization of a pseudo-log-
likelihood of the form

l
†,cc
β,λ,α = log(Lcc

β,α) + λT

∫
uβ(X,Z; θ )dF̃ †(X,Z),

where

Lcc
β,α =

N∏
i=1

pβ,α(Yi |Xi, Zi),

with

pβ,α(y|x, z)= μyfβ(y|x, z)∑
y μyfβ(y|x, x)

= exp(αy)fβ (y|x, z)∑
y exp(αy)fβ(y|x, z)

(8)

and α = log (μ1/μ0). Here, Lcc
β,α corresponds to the standard

“prospective likelihood” for case-control data that is known to
produce equivalent inference for β as the retrospective likeli-
hood (Prentice and Pyke 1979; Scott and Wild 1997). In general,
a likelihood of the form (8) may not be able to identify all of the
parameters of the original model without additional information.
In particular, for the logistic model, the intercept parameters be-
come completely confounded by the nuisance parameters α and
cannot be estimated from case-control data alone. However, in
the setting considered here, the additional constraint (2) defined
by the external model allows estimation of all of the parameters
of the full model even when the distribution of the risk-factors
may differ in the two underlying populations.

2.4.1 Computation and Asymptotic Theory. As in the pro-
cedure considered in Section 2.3, we use the Newton-Raphson
method to solve the stationary equations for the synthetic con-
strained log-likelihood l

†
β,λ or l

†cc
β,λ,α , depending on whether the

internal study is based on simple random or case-control sam-

pling. Formulas for the score and Hessian for simple random
sampling and for case-control sampling are given in Appendix
S.3 of the online supplementary materials.

As mentioned previously, to simplify exposition, in the case-
control setting we absorb the nuisance parameter α into β, and
let η = (βT , λT )T . Denote by q and 	 the dimensions of β and λ.
The following lemma shows that β̃ obtained from ∂l

†
β,λ/∂η = 0

or ∂l
†,cc
β,λ /∂η = 0 indeed maximizes the log-likelihood function

log(Lβ,F ) or log(Lcc
β,α) with probability tending to one under the

constraint
∫

uβ(X,Z; θ )dF̃ †(X,Z) = 0.

Lemma 2. Suppose that q > 	, and Nr/N → κ > 0. Under
regularity conditions for the model fβ(y|x, z) and conditions
(i)–(iv) given in Appendix S.4 of the online supplementary
materials, the log-likelihood functions log(Lβ,F ) or log(Lcc

β,α)
is maximized at β = β̃ with probability approaching one un-
der the constraint

∫
uβ(X,Z; θ )dF̃ †(X,Z) = 0, where β̃ is in

the interior of a neighborhood of true parameter value β0, and
η̃ = (β̃T , λ̃T )T is the solution to ∂l

†
β,λ/∂η = 0 or ∂l

†cc
β,λ/∂η = 0.

We also provide asymptotic distribution theory for the SCML
estimator η̃ = (β̃T , λ̃T )T . The proofs of these theoretical results
are given in Appendix S.5 of the online supplementary materials.

Proposition 2. Recall that Nr/N → κ > 0. Let η0 =
(βT

0 , 0)T with 0 denoting a 	-vector of zeros and 	 the dimension
of λ. Under the assumptions in Lemma 2 and condition (v) in
Appendix S.4 of the online supplementary materials, the esti-
mator η̃ = (β̃T , λ̃T )T satisfying ∂l

†
β,λ/∂η = 0 or ∂l

†cc
β,λ/∂η = 0

is asymptotically normal as N → ∞, such that N1/2(̃η − η0)
converges in distribution to a zero-mean normal distribution
with covariance matrix(

B−1 − B−1CG−1(G − κ−1L)G−1CT B−1 −κ−2B−1CG−1LG−1

−κ−2G−1LG−1CT B−1 κ−2G−1(G + κ−1L)G−1

)
,

(9)

where with E† denoting expectation over the external covariate
distribution F †(X,Z), G = CT B−1C, B = E{iββ(Y,X,Z)},
C = E†{cβ(X,Z; θ )}, L = E†{uβ(X,Z)uT

β (X,Z)}, and
iββ(Y,X,Z) and cβ(X,Z; θ ) defined in (S.4) and (S.2),
respectively, in Appendix S.2 of the online supplementary
materials.

The variance-covariance matrix (9) for η̃ can be readily esti-
mated by replacing the component quantities in the expression
with their sample analogies. In Section S.5 of the online supple-
mentary materials, we show how to modify Proposition 2 when
there is uncertainty in the parameter estimates of the external
study.

From Propositions 1 and 2, we see differences between (β̂, λ̂)
and (β̃, λ̃) in their asymptotic theory. First, unlike β̂, the SCML
estimator β̃ is not guaranteed to be more efficient than the
internal-sample only estimator. However, β̃ is usually more ef-
ficient than the latter estimator, especially when κ is large, that
is, the size of the reference sample for estimating F (·, ·) is suffi-
ciently large relative to that of the internal sample. In particular,
in the special case of κ → ∞, the matrix B−1CG−1CT B−1 is
positive definite and hence β̃ is always more efficient than that of
the internal-sample only estimator. Second, unlike (β̂, λ̂), (β̃ λ̃)
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are correlated asymptotically, although the correlation vanishes
as κ → ∞.

3. SIMULATION STUDIES

We conduct simulation studies to evaluate the performance of
the proposed methods in a wide variety of settings of practical
interest. We consider developing models for a binary outcome Y
using logistic and nonlogistic link functions. In all simulations,
it is assumed (X,Z) is bivariate normal with zero marginal
means, unit marginal variances, and a correlation of 0.3.

In other numerical studies (not shown here), the conclusions
from simulation studies did not change qualitatively if we used
an alternative to the bivariate normal distribution for simulating
(X,Z).

We study three different settings, in two of which we assume
that the full model of interest has the form

h−1 {pr(D = 1)} = β0 + βXX + βZZ + βXZXZ,

where h−1 denotes the inverse link function corresponding to a
logistic or a probit model. In one of these settings, we assume
that the external model is under-specified but involves both
covariates with the form

h−1 {pr(D = 1)} = θ0 + θXX + θZZ,

and in the second setting we assume that the external model is
missing the covariate Z altogether and has the form

h−1 {pr(D = 1)} = θ0 + θXX.

In the third setting, we consider a measurement error problem
where it is assumed that Z is the true covariate of interest and X
is a surrogate of Z in the sense that Y is independent of X given
Z. In this setting, we assume that the full and reduced models
of interest are

h−1 {pr(D = 1)} = β0 + βZZ
and

h−1 {pr(D = 1)} = θ0 + θXX,

respectively.
In each setting, we simulate data under the correct full

model given a set of parameter values and then obtain the
values of external parameters by fitting the reduced model,
which by definition is incorrectly specified, to a very large
dataset. In the under-specified and missing covariate scenar-
ios, the parameter values of the true model (β0, βX, βZ, βXZ) =
(−1.6, 0.4, 0.4, 0.2); in the measurement error scenario, they
are (β0, βZ) = (−1.6, 0.4). In all models, the parameter speci-
fications lead to a population disease prevalence around 20%.
For simulating case-control samples for the internal study, in
each simulation, we first generate a random sample and then
select fixed and equal numbers of cases and controls. In both
the simple random and case-control sampling settings, the size
of the internal sample is N = 1000. The external data are gen-
erated with a very large sample size and fixed throughout the
simulations.

As a benchmark for comparison, in each simulation, in ad-
dition to the CML estimator proposed, we obtain the internal-
sample-only estimate β̂I , and implement a GR estimator, popu-
lar in the survey literature and developed for regression inference
with double or two-phase sampling by Chen and Chen (2000).

Specifically, the estimator takes the form

β̂GR = β̂I + H−1
1 C12C

−1
22 H2(θ̂E − θ̂ I ). (10)

In (10), θ̂E and θ̂ I are estimates for θ using the external and
internal samples, respectively, while

H1 = EI

{
∂sβ(Y,X,Z)/∂βT

} = −B,

H2 = EI

{
∂U (Y |X; θ )/∂θT

}
,

C22 = EI

{
U (Y |X; θ )UT (Y |X; θ )

}
,

C12 = EI

{
sβ(Y,X,Z)UT (Y |X; θ )

}
,

where sβ(Y,X,Z) = ∂log fβ(Y |X,Z)/∂β, and where EI de-
notes the sample expectation based on the internal study. In the
current implementation of such a calibration method, unlike in
the original proposal, we disregard the uncertainty associated
with θ̂E , since in the current setting such uncertainty is assumed
to be negligible compared with the uncertainty in the internal
sample. As shown in Chen and Chen (2000), the asymptotic
covariance matrix of

√
Nβ̂GR is given as

B−1 − B−1C12C
−1
22 CT

12B
−1, (11)

which accounts for the uncertainty of θ̂ I , and can be estimated
by replacing each component quantity with its sample analogue.

Further, since the method of Chen and Chen (2000) was origi-
nally developed for simple random sampling designs only, when
implementing their method for logistic regression analysis of a
case-control design, we make an ad-hoc modification to GR
estimator, which we denote as mGR. Instead of applying the
calibration formula (10) to the full set of regression parameters
β, we apply it only to the subset of β excluding the intercept
parameter. Such a modification is based on the rationale that,
according to Prentice and Pyke (1979), for fβ(·) following a
logistic regression model, the prospective maximum likelihood
estimator provides valid and efficient estimates of all the param-
eters of the model except the intercept.

Tables 1–3 display simulation results with N = 1000. We
also examine the cases with N = 400, which lead to similar
conclusions and are relegated to Tables S.1– S.4 in the online
supplementary materials. From Tables 1–3 we conclude that the
CML estimator β̂CML is always more efficient than the internal-
sample-only estimator β̂I . For the under-specified and missing
covariate scenarios, substantial efficiency gains are observed
for regression parameters corresponding to the covariates that
are also included in the reduced model fitted with external data,
that is, for (β0, βX, βZ) and (β0, βX), respectively. In the mea-
surement error setting, the efficiency gain is observed for the
main covariate of interest (Z) where the reduced model only
includes an error-prone surrogate (X). These observations hold
under both the simple random and case-control sampling de-
signs. Under the simple random sampling design, the estimator
β̂GR performs similarly to or slightly worse than our estima-
tor β̂CML in the under-specified and missing covariate settings.
However, in the measurement error setting, β̂GR is far less ef-
ficient than β̂CML. Under the case-control sampling design, the
mGR estimator incurred substantial bias in the under-specified
setting, but not in the other two settings. From these simula-
tion results and those conducted in a smaller sample-size set-
ting (N = 400), we can conclude that the asymptotic distribu-
tion theory provided in Proposition 1 for β̂CML performs quite



Chatterjee et al.: Model Calibration Using Big Data 113

Table 1. Simulation results for the under-specification setting, in which the full model of interest has the form
h−1 {pr(D = 1)} = β0 + βXX + βZZ + βXZXZ, where h−1 denotes the inverse link function corresponding to a logistic model, and where

the external model is under-specified but involves both covariates with the form h−1 {pr(D = 1)} = θ0 + θXX + θZ

β0 βX βZ βXZ

Int GR/mGR CML Int GR/mGR CML Int GR/mGR CML Int GR/mGR CML

Simple random; N = 1000
Bias −8.94 −0.79 −1.12 2.42 2.16 2.46 1.29 1.29 1.65 1.39 1.30 1.87
SE 91.4 24.4 24.4 96.8 20.1 19.9 94.3 20.2 19.8 89.4 89.6 89.3
ESE 91.8 22.9 23.5 92.3 19.8 19.7 92.4 19.9 19.8 85.8 85.3 86.9
MSE 8.42 0.59 0.59 9.38 0.41 0.40 8.89 0.41 0.39 7.98 8.02 7.97
CP 95.4 88.6 90.8 94.3 94.6 95.2 94.6 94.4 95.5 93.6 93.4 93.8

Case-control; N = 1000
Bias — — 1.70 2.40 28.4 2.23 5.06 27.6 1.73 −1.51 −1.20 −2.30
SE — — 17.4 75.7 11.3 16.7 72.2 11.4 16.6 72.9 72.8 71.7
ESE — — 16.6 73.3 11.6 16.5 73.1 11.6 16.5 71.4 71.3 70.1
MSE — — 0.30 5.73 0.93 0.28 5.24 0.89 0.28 5.31 5.29 5.15
CP — — 90.7 94.2 31.4 94.5 95.4 33.1 94.8 94.7 94.6 93.7

NOTE: Results multiplied by 103 are presented, and the coverage probabilities are reported as percents. Int, internal-data only method; GR, generalized regression; mGR, modified
GR for case-control sampling; CML, constrained maximum likelihood; ESE, estimated standard error; MSE, mean squared error; CP, coverage probability of a 95% confidence interval.

well, as seen by the generally close agreement between the
estimated (ESE) and simulation standard errors (SE), and be-
tween the nominal and simulation coverage probabilities of the
Wald-type confidence intervals based on asymptotic normality.
Tables S.5– S.7 in the online supplementary materials show the
performance of the different estimators in the setting of pro-
bit models under the random-sampling design. The results are
generally similar to those for the logistic model in Tables 1–3.

We next investigate the properties of the different estimators
when the distribution of (X,Z) differs between the internal and
external populations. All of the steps are identical as before ex-
cept that we assume corr(X,Z) is 0.1 in the external population.
In this scenario, we implement the SCML method assuming
a reference sample for the external population is available to
estimate the underlying covariate distribution. We assume that
the sample size for the reference sample is the same as that

of the internal study, and in each simulation the random refer-
ence sample for (X,Z) is drawn from the distribution that is the
same as that for the external population. We obtain the value
of the external parameter by fitting a reduced model to a very
large dataset simulated using the external covariate distribution.
Table 4 shows the results under the missing covariate setting
for logistic regression with simple random and case-control
sampling.

Since results from the regression calibration β̂GR and the
CML β̂CML estimates are quite similar in this setting, results for
the former are omitted in Table 4. As can be seen in Table 4,
β̂, as well as β̂GR, is subject to remarkable bias for parameters
corresponding to the covariates included in the reduced model.
This is expected since β̂, as well as β̂GR, is derived under the
assumption of complete homogeneity between the internal and
external studies, and incorporation of the inconsistent external

Table 2. Simulation results for the missing covariate setting, in which the full model of interest has the form
h−1 {pr(D = 1)} = β0 + βXX + βZZ + βXZXZ, where h−1 denotes the inverse link function corresponding to a logistic model, and where

the external model is h−1 {pr(D = 1)} = θ0 + θXX

β0 βX βZ βXZ

Int GR/mGR CML Int GR/mGR CML Int GR/mGR CML Int GR/mGR CML

Simple random; N = 1000
Bias −8.94 2.67 2.84 2.42 3.30 3.37 1.29 1.50 0.95 1.33 1.27 2.42
SE 91.4 32.5 32.4 96.8 39.0 38.9 94.3 94.4 94.3 89.4 89.4 89.5
ESE 91.8 32.1 32.3 92.3 38.8 38.9 92.4 92.3 92.5 85.8 85.6 86.9
MSE 8.42 1.06 1.06 9.38 1.53 1.53 8.89 8.91 8.89 7.98 7.99 8.01
CP 95.4 94.7 95.3 94.3 93.4 94.0 94.6 94.5 95.1 93.6 93.7 93.8

Case-control; N = 1000
Bias — — 2.59 2.40 14.8 0.88 5.06 5.01 5.11 −1.51 −1.53 −1.57
SE — — 22.7 75.7 25.1 26.8 72.2 72.3 72.2 72.9 72.9 72.8
ESE — — 22.8 73.3 26.1 27.9 73.1 73.2 73.2 71.4 71.4 71.6
MSE — — 0.52 5.73 0.85 0.72 5.24 5.24 5.24 5.31 5.31 5.30
CP — — 94.7 94.2 91.3 96.2 95.4 95.6 95.4 94.7 94.4 94.5

NOTE: Results multiplied by 103 are presented, and the coverage probabilities are reported as percents. Int, internal-data only method; GR, generalized regression; mGR, modified
GR for case-control sampling; CML, constrained maximum likelihood; ESE, estimated standard error; MSE, mean squared error; CP, coverage probability of a 95% confidence interval.
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Table 3. Simulation results for the measurement error setting in which the full and reduced models are h−1 {pr(D = 1)} = β0 + βZZ and
h−1 {pr(D = 1)} = θ0 + θXX, respectively, and where h−1 denotes the inverse link function corresponding to a logistic model

β0 βZ

Int GR/mGR CML Int GR/mGR CML

Simple random; N = 1000
Bias −2.12 −3.73 0.20 0.80 1.23 1.13
SE 87.7 25.1 15.1 89.6 84.7 40.1
ESE 87.1 23.9 15.2 86.3 82.5 38.7
MSE 7.69 0.64 0.23 8.02 7.17 1.61
CP 95.9 92.6 94.1 94.2 94.0 94.1

Case-control; N = 1000
Bias — — 0.99 2.85 2.91 1.74
SE — — 12.8 66.0 62.5 37.6
ESE — — 12.9 66.6 63.8 36.3
MSE — — 0.16 4.36 3.63 1.42
CP — — 95.6 95.7 96.1 94.6

NOTE: Results presented are multiplied by 103, and the coverage probability is in percents. Int, internal-data only method; GR, generalized regression; mGR, modified GR for
case-control sampling; CML, constrained maximum likelihood; ESE, estimated standard error; MSE, mean squared error; CP, coverage probability of a 95% confidence interval.

information can result in biased parameter estimates. On the
other hand, we see from Table 4 that the SCML estimate β̃

performs quite well under both the simple random and case-
control sampling: it is virtually unbiased, and more efficient
than the estimate β̂I based on the internal sample only. The
efficiency gain of β̃ over β̂I is particularly large for parameters
corresponding to the covariates included in the reduced model.
The standard error estimators and confidence intervals based on
Proposition 2 for the SCML estimation perform quite well in
the settings considered.

4. DATA APPLICATION: BREAST CANCER RISK
MODELING

We illustrate an application of our methodology by re-
analysis of data from the Breast Cancer Detection and
Demonstration Project (BCDDP) used by Chen et al. (2006) for

building a model for breast cancer risk prediction. The Breast
Cancer Risk Assessment Tool (BCRAT), sometimes known as
the Gail Model, is a widely used model for predicting the risk
of breast cancer based on a handful of standard risk factors,
including age at menarche (agemen), age at first live birth (age-
flb), weight, number of first-degree relatives with breast cancer
(numrel), and number of previous biopsies (nbiops). Chen et al.
(2006) developed an updated model, known as BCRAT2, to
include mammographic density (MD), the areal proportion of
breast tissue that is radiographically dense, that is known to be
a strong risk factor for breast cancer. They used data available
from 1217 cases and 1610 controls within the BCDDP study on
whom data were available on these standard risk factors as well
as MD. To increase efficiency, however, they used two-phase
design methodology, using data on standard risk factors that
were available on a larger sample of subjects, including about
2808 cases and 3119 controls within the BCDDP study. Details
of the BCDDP study design, case-control sample selections,

Table 4. Simulation results for the missing covariate setting as in the caption for Table 2, but when the covariate distributions are different
between the internal and external populations

β0 βX βZ βXZ

Int CML SCML Int CML SCML Int CML SCML Int CML SCML

Simple random; N = Nr = 1000
Bias −8.61 −32.4 −1.67 4.33 −85.2 2.63 1.10 0.30 −0.69 1.38 4.41 −0.04
SE 91.9 32.2 27.6 96.8 38.4 30.7 97.9 97.9 96.8 89.3 89.5 88.0
ESE 91.8 33.5 26.2 92.5 39.2 30.1 92.5 92.5 91.0 85.9 85.2 85.6
MSE 8.51 2.09 0.76 9.39 8.72 0.95 9.58 9.58 9.36 7.97 8.03 7.74
CP 95.3 90.6 92.0 93.5 42.3 93.0 93.2 93.3 93.4 93.5 93.6 93.9

Case-control; N = Nr = 1000
Bias — −27.0 −1.13 0.76 −89.0 0.58 2.74 4.15 1.94 4.03 −1.90 2.30
SE — 23.6 23.1 71.4 27.1 26.8 74.1 74.1 73.6 73.7 73.5 72.7
ESE — 23.2 23.1 73.3 27.9 27.4 73.3 72.7 72.5 71.6 69.8 71.2
MSE — 1.29 0.53 5.09 8.65 0.72 5.50 5.51 5.42 5.45 5.40 5.29
CP — 82.0 94.2 95.0 7.9 93.7 94.3 94.0 94.1 93.6 93.5 94.3

NOTE: Results multiplied by 103 are presented, and the coverage probabilities are reported as percents. Int, internal-data only method; CML, constrained maximum likelihood;
SCML, synthetic constrained maximum likelihood method; ESE, estimated standard error; MSE, mean squared error; CP, coverage probability of a 95% confidence interval.
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and two-phase design methodology used can be found in their
previous publication (Chen et al. 2006, 2008).

Within the last decade, epidemiologic studies of cancers and
many other chronic diseases have gone through a major transi-
tion due to the formation of various consortia that allow for the
powerful analysis of common factors across many studies based
on a very large set of samples. For example, two major consortia
have been formed to study breast cancer: one based on cohort
studies, for example, the BPC3 study of Canzian et al. (2010),
and the other based on case-control studies (Breast Cancer Asso-
ciation Consortium 2006). These studies have led to extremely
powerful investigation of various types of hypotheses, such as
genetic association, based on tens of thousands of cases and
controls depending on the types of risk factors that are being
analyzed. Many of the studies participating in these consortia
have standard risk factors available, although sometimes in a
crude form. However, MD, which is much harder to evaluate, is
rarely available in these studies.

To illustrate the utility of the proposed methodology, we de-
velop a model for predicting breast cancer risk using data avail-
able on the full set of risk factors from the 1217 cases and
1610 controls of the “internal” BCDDP study and calibrating
to the parameters from a standard risk factor model built from
12,802 cases and 14,296 controls from the “external” BPC3
consortium. The BPC3 standard risk factor model did not in-
clude MD or the number of biopsies (nbiops); it included family
history (famhist) as yes/no instead of the actual number of af-
fected relatives, and recorded weight in tertiles as opposed to a
continuous variable. We used only summary-level information
from the BPC3 study, namely the estimates of the log-odds-
ratio parameters and their standard errors. Our goal is to build
a model similar to BCRAT2, that is, a model with the standard
risk factors as coded in BCRAT, and MD.

Table 5 presents the results for model fit based on
CML- and GR-based calibration approaches, together with the
standard logistic regression analysis of the BCDDP data alone.
In the model, the variable agemen is trichotomized according
to age at menarche ≥14, 12–13, or <12, and the two dummy
variables for the latter two categories are denoted as agemen1
and agemen2; the variable ageflb is categorized into four groups
according to age at first live birth <20, 20–24, 25–29, and ≥ 30,
and the latter three groups are denoted as ageflb1, ageflb2, and
ageflb3. For both CML and GR methods, the standard errors
were adjusted to account for uncertainty in the parameter esti-
mates of the external model (see Appendix S.5 in online sup-
plementary materials as well as in the proofs of Propositions 1
and 2). As expected, both CML and GR methods led to much
smaller standard errors for the parameter estimates associated
with covariates included in the external model than the analysis
of the BCDDP data alone. For a number of these factors, in-
cluding number of first-degree relatives with breast cancer and
age at menarche, the use of the external model seems to change
point estimates of model coefficients to a degree that cannot be
explained by uncertainty alone. Closer inspection of the esti-
mates of the parameters of the reduced model from the internal
and external studies, also shown in Table 5, indicates that breast
cancer associations for these two factors were different between
the two studies to a degree that may be indicative of true popula-
tion differences. Since BPC3 represents a consortium of cohort
studies underlying a broader population than that underlying the

BCDDP study, a risk model that is built based on the calibrated
estimates could potentially be more broadly applicable. How-
ever, future validation studies would be needed to verify such
an assertion.

Of the two calibration estimators, both CML and GR method
produced comparable point estimates, but CML produced no-
ticeably smaller standard errors for number of first-degree rel-
atives with breast cancer and weight, two variables that were
included in cruder forms in the external model. These results
are consistent with higher efficiency of CML over GR in the
simulation setting of measurement error. For the number of
previous biopsies and MD, two factors that were not included in
the external model, both CML and GR produced results similar
to the standard analysis of the BCDDP data alone. In Table S.8
of the online supplementary materials, we present results for
CML and GR proceeding as though the external model param-
eters came from a dataset that is so large that uncertainty can be
ignored. In this case, as expected, we observe that the efficiency
of both CML and GR further increases relative to BCDDP-only
analysis. Moreover, the relative efficiency of CML over GR in-
creases for the parameters associated with weight and number
of first-degree relatives with breast cancer.

5. DISCUSSION

We have proposed alternative maximum likelihood methods
for using information from external big datasets while build-
ing refined regression models based on an individual analytic
study. External information, when properly used, can increase
both efficiency of underlying parameter estimates and the gen-
eralizability of the overall models to broader populations. In
recognition of the potential of external data, survey methodolo-
gists have long used various types of “design-based” or “model-
assisted” calibration techniques for estimating target parameters
of interest without relying on a full probability model for the
data. In this report, we provide a framework for a very general
model-based, yet semiparametric, maximum likelihood infer-
ential framework that requires only summary-level information
from external sources.

Our simulation studies and data analysis show that the CML
and SCML methods can achieve major efficiency gains over
GR-type calibration estimators for covariates in a model that
are measured with a poorer instrument in the external study. On
the other hand, for covariates that are measured the same way
in the external and internal studies, the efficiency of these two
methods was similar. It is, however, noteworthy that the modified
GR estimator we implemented for the case-control study is not
a proper model-free calibration estimator in the sense survey
methodologists use. The method is only applicable for logistic
models and is likely to be more efficient than a proper design-
based GR estimator when the model is correct. Future research
is merited to explore the theoretical properties of such modified
GR estimators and their connection with ML estimators.

Our simulation studies show that model calibration using
external information has important caveats as well. In partic-
ular, if the risk factor distribution differs between the under-
lying populations for the internal and external studies, any
type of calibration method, model-based or not, can produce
severe bias in estimates of the underlying regression param-
eters, even when the regression relationship fβ(Y |X,Z) is
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Table 5. Analysis results of BCDDP data

Full modela Reduced modela

Internal data mGR CML Internal data External data
Variable Est. (SE) Est. (SE) Est. (SE) Variable Est. (SE) Est. (SE)

numrel 0.648 (0.090) 0.371 (0.038) 0.297 (0.033) famhist 0.716 (0.101) 0.354 (0.030)
agemen1 0.083 (0.091) 0.074 (0.034) 0.077 (0.035) agemen1 0.059 (0.090) 0.052 (0.030)
agemen2 0.468 (0.124) 0.185 (0.041) 0.167 (0.042) agemen2 0.387 (0.120) 0.081 (0.031)
ageflb1 −0.018 (0.146) −0.109 (0.054) −0.117 (0.057) ageflb1 0.046 (0.142) −0.053 (0.048)
ageflb2 0.086 (0.144) 0.003 (0.052) −0.005 (0.055) ageflb2 0.261 (0.139) 0.171 (0.043)
ageflb3 0.251 (0.173) 0.173 (0.067) 0.163 (0.070) ageflb3 0.449 (0.167) 0.358 (0.057)
weight 0.020 (0.004) 0.022 (0.003) 0.024 (0.002) weight1 0.061 (0.088) 0.106 (0.031)

weight2 0.135 (0.106) 0.214 (0.031)
nbiops 0.180 (0.070) 0.178 (0.069) 0.165 (0.073)
MD 0.430 (0.044) 0.428 (0.045) 0.441 (0.047)

NOTE: The variables in the full model include: number of first-degree relatives with breast cancer (numrel), age at menarche (two dummy variables agemen1–agemen2 according
to ≥ 14, 12–13, or < 12 years), age at first live birth (three dummy variables ageflb1–ageflb3 according to < 20, 20–24, 25–29, and ≥ 30 years), weight (in kg), number of previous
biopsies (nbiops), and mammographic density (MD). The variables in the reduced model include: family history (famhist, binary according to yes/no), age at menarche (two dummy
variables agemen1–agemen2 according to ≥ 14, 12–13, or < 12 years), age at first live birth (three dummy variables ageflb1–ageflb3 according to < 20, 20–24, 25–29, and ≥ 30 years),
and weight (two dummy variables weight1–weight2 according to < 62.6, 62.6–73.1, and ≥ 73.1 kg). aAdjusted for 5-year age strata. mGR, modified GR for case-control sampling;
CML, constrained maximum likelihood; Est., estimated coefficient; SE, estimated standard error.

exactly the same in the two populations. The assumption of
complete exchangeability of populations that is required in cal-
ibration methods is more likely to be violated in the kind of
applications we envision than in survey-sampling or two-phase
design applications, where by design there is a common un-
derlying population. Ideally, in this setting, model calibration
should be performed with respect to a risk factor distribution
that is representative of the external population. Our SCML
method allows this by importing covariate distributions from
an external reference sample. Even when such a sample is not
available, the SCML method can be used to perform sensitiv-
ity analysis under various hypothetical or simulated covariate
distributions that may be considered realistic for the external
population. It is further important to note that likelihood-based
methods require the assumption that the full model fβ(Y |X,Z)
is correctly specified for both the internal and the external
populations. Although the internal study can be used for per-
forming model diagnostics for the underlying population, the
assumption is not testable for the external population because
of lack of information on Z and inaccessibility of individual-
level data.

The proposed methods may have applications in other areas,
such as bench-marking small area estimates to match larger area
estimates (Mugglin and Carlin 1998; Bell, Datta, and Ghosh
2013; Zhang et al. 2014), analyzing randomized clinical trial
data so that they are generalizable to larger populations (Green-
house et al. 2008; Frangakis 2009; Stuart et al. 2011; Pearl and
Bareinboim 2014; Hartman et al. 2015), and standardization
and control of confounding for observational studies (Keiding
and Clayton 2014). In general, we foresee that model synthesis
using disparate types of data sources will be increasingly impor-
tant for biomedical research in the future. The key constraints
we identify to relate models of varying size, that is, Equation
(2), could be useful for model synthesis in more general
settings than we have considered here. More research is needed
to extend the framework for developing models incorporating
information from studies that may have collected different,
possibly overlapping, sets of covariates. In this setting, each

study or a combination of studies that collect similar covariates
can provide information on a particular type of reduced model.
Future research is also merited to explore methods that can
incorporate these constraints in a “softer” fashion to account
for sources of uncertainty of the external models and their
parameters.

APPENDIX: DERIVATION OF THE
PSEUDO-LOG-LIKELIHOOD

We first derive the pseudo-log-likelihood (4) under the simple
random sampling design. The semiparametric likelihood Lβ,F =∏N

i=1 fβ (Yi |Xi, Zi)dF (Xi, Zi) is to be maximized under the constraint∫
uβ (X, Z; θ )dF (X, Z) = 0, where uβ (X, Z; θ ) is defined in (3), and

F is treated nonparametrically by assigning masses (δ1, . . . , δm) to the
unique values of the data (Xi, Zi) (i = 1, . . . , N), with m the num-
ber of unique data points and

∑m

j=1 δj = 1. Let nj be the number of
(Xi, Zi) equal to the jth distinct pair value. For notational convenience,
write fβ,i = fβ (Yi, Xi, Zi), uβ,i = uβ (Xi, Zi ; θ ), and Fi = F (Xi, Zi)
(i = 1, . . . , N). Applying the Lagrange multiplier method, we solve
the stationary point to

N∑
i=1

log fβ,i +
m∑

j=1

nj log δj + λT

m∑
j=1

uβ,j δj + φ

⎛⎝ m∑
j=1

δj − 1

⎞⎠ ,

where λ and φ are Lagrange multipliers. By differentiating with respect
to λ and φ, we obtain the stationary equations,

∑m

j=1 uβ,j δj = 0 and∑m

j=1 δj = 1, as desired. Further, by differentiating with respect to δj ,
we obtain the stationary equation

nj

δj

+ λT uβ,j + φ = 0,

which, by multiplying δj and summing over j on both sides, leads to
φ = −N since

∑m

j=1 uβ,j δj = 0 and
∑m

j=1 δj = 1. Hence,

δj = 1

nj

1

N − λT uβ,j

, j = 1, . . . , m.

Plugging this δj into log(Lβ,F ) results in a profile likelihood that is
equivalent to (4), with λ rescaled by a factor of N.

Now consider the semiparametric CML under the case-control sam-
pling design of the internal study. In this case we want to maximize the
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case-control log-likelihood log(Lcc
β,F ) given in (5) subject to the con-

straint
∫

uβ (X, Z; θ )dF (X,Z) = 0. Define f
y

β,i = fβ (Yi = y|Xi, Zi)
for y = 0, 1, p1 = ∑m

j=1 f 1
β,j δj , and p0 = 1 − p1 = ∑m

j=1 f 0
β,j δj . By

the characterization of F as above and the Lagrange multiplier method,
we solve the stationary equation for

N∑
i=1

logfβ,i +
m∑

j=1

nj logδj + λT

m∑
j=1

uβ,j δj + φ

⎛⎝ m∑
j=1

δj − 1

⎞⎠
−N1log

m∑
j=1

f 1
β,j δj − N0log

⎛⎝1 −
∑

j

f 1
β,j δj

⎞⎠ .

Again, by differentiating with respect to λ and φ, we obtain the sta-
tionary equations:

∑m

j=1 uβ,j δj = 0 and
∑m

j=1 δj = 1. The stationary
equation by differentiating δj leads to

nj

δj

+ λT uβ,j + φ − N1

f 1
β,j

p1
− N0

f 0
β,j

p0
= 0.

Multiplying by δj , and summing over j on both sides, leads to φ = 0
given

∑m

j=1 uβ,j δj = 0 and
∑m

j=1 δj = 1. Hence,

δj = 1

μ1f
1
β,j + μ0f

0
β,j − λT uβ,j

, j = 1, . . . , m,

where μy = Ny/py (y = 0, 1) and μ0 in fact links to μ1 since p0 =
1 − p1. Plugging δj into log(Lcc

β,F ) then gives the profile likelihood
equivalent to (6).

SUPPLEMENTARY MATERIALS

S.1: Additional Simulation Results
S.2: The Score Function and Negative Hessian Matrix for Pseudo-

Loglikelihood
S.3: The Score Function and Negative Hessian Matrix for Synthetic

Constrained Likelihood
S.4: Conditions for The Theoretical Results
S.5: Proofs of Lemmas and Propositions
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