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Abstract

We describe a new approach to analyze chirp syllables of free-tailed bats from two regions
of Texas in which they are predominant: Austin and College Station. Our goal is to charac-
terize any systematic regional differences in the mating chirps and assess whether individual
bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as
responses in a Bayesian functional mixed model. Given the variable chirp lengths, we com-
pute the spectrograms on a relative time scale interpretable as the relative chirp position,
using a variable window overlap based on chirp length. We use 2D wavelet transforms to
capture correlation within the spectrogram in our modeling and obtain adaptive regulariza-
tion of the estimates and inference for the regions-specific spectrograms. Our model includes
random effect spectrograms at the bat level to account for correlation among chirps from
the same bat, and to assess relative variability in chirp spectrograms within and between
bats. The modeling of spectrograms using functional mixed models is a general approach for
the analysis of replicated nonstationary time series, such as our acoustical signals, to relate
aspects of the signals to various predictors, while accounting for between-signal structure.
This can be done on raw spectrograms when all signals are of the same length, and can
be done using spectrograms defined on a relative time scale for signals of variable length in
settings where the idea of defining correspondence across signals based on relative position
is sensible.
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1 Introduction

In animal communications, a common question is whether vocalizations differ among regions

or individuals. Regional differences in vocalizations can be indicative of culturally transmit-

ted dialects and vocal learning, as seen in birds (Catchpole and Slater, 1995; Slater 1986)

and cetaceans (Payne and Payne, 1985; Deecke et al., 2000; Garland et al., 2011); whereas

individual differences in vocalizations indicate the information capacity of vocalizations as

“signature” signals (Beecher et al., 1981; Beecher, 1989).

The most common statistical approach to test regional and individual hypotheses using

acoustic signals is to use a feature extraction approach by computing a number of pre-

determined summary measures from the signal, such as duration, beginning frequency, ending

frequency, etc., and then perform separate analyses of variances on those original variables

(e.g., Bohn et al., 2007; Cerchio et al., 2001; Nelson and Poesel, 2007; Beecher et al., 1981;

Davidson and Wilkinson, 2002; Slabbekoorn et al., 2003) or their principal components

(Bohn et al., 2007). If these summary measures captured all relevant chirp information, this

approach would be reasonable, but given the rich complexity of these data there may be

information in the chirp that would be missed by these summaries.

For auditory information, a common and intuitive way to represent sounds is the spec-

trogram (Bradbury and Vehrencamp, 2011), which captures changes in frequency over time

by performing a series of fast Fourier transforms of small, fixed time intervals. Thus, the

spectrogram can be considered an “image” of the nonstationary acoustic time series that

captures the frequency variation over time. Holan, et al. (2010) introduced methods to an-

alyze bioacoustic signals through statistical modeling of the spectrogram as an image. They

present Bayesian regression models of the spectrogram as a predictor of mating success with

regularization of the regression surface accomplished by stochastic search variable selection

on empirical orthogonal functions (EOFs) of the spectrograms, and construct estimates and

inference for the class mean spectrograms from these results. To our knowledge, their paper

is the first to use the spectrogram as an image in a statistical modeling framework. Their
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work provides an excellent explanation for the use of spectrograms as images in statistical

models.

In this paper, we present an alternative strategy for using the spectrogram as an image,

using a Bayesian statistical model for bioacoustic signals that complements the approach

of Holan, et al. (2010). Rather than modeling the spectrogram as a predictor, we model

the spectrogram as an image response in a functional mixed model (Morris and Carroll,

2006; Morris, et al., 2011). This allows us to handle aspects of our data not encountered by

Holan, et al., including correlation among multiple chirps from the same bat and incorpo-

ration of other covariates affecting the spectrograms. It also allows us to perform a within-

and between-bat relative variability analysis. We account for within-spectrogram correlation

using 2D wavelets rather than EOFs. Also, unlike the data in Holan, et al. (2010), our data

have the additional difficulty of different length time series per acoustic signal. We intro-

duce a strategy for dealing with varying signal lengths that involves specifying variable time

window overlaps across signals, one that preserves the frequencies of the original signals and

produces spectrograms defined on the same relative time grid, which can be interpreted as the

relative signal position. We apply our modeling strategy and method to the bat chirp data

to characterize regional differences in bat chirp spectrograms while investigating whether in-

dividual bats have signature chirps through a relative variability analysis. Our bioacoustical

data are from bats that sing like birds, the free-tailed bats (Tadarida brasiliensis).

Free-tailed bats range freely in the North American south and southwest as well as in

Mexico, Central America and the Caribbean. They form some of the largest mammalian

aggregations in the world. Some 20 million gather in Bracken Cave, north of San Antonio,

Texas and devour moths that produce the corn earworm, a pest (McCracken 1996). Free-

tailed bats are of particular interest because they produce vocalizations (courtship songs)

with a degree of complexity that is rarely seen in non-human mammals, making them excel-

lent candidates for research into the production and evolution of human speech. Free-tailed

bat songs have a hierarchical structure in which syllables are combined in specific ways to
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construct phrases and phrases are combined to form songs. There are three types of phrases:

chirps, trills and buzzes (Bohn et al. 2008, 2009). We focus on one of the two types of

syllables that form chirp phrases, the chirp type B syllable (Bohn et al., 2009), which we

simply refer to as chirps. These syllables are of interest because they are the most acous-

tically complex syllables of the courtship song. We compare multiple chirp syllables from

collections of individual bats from two central Texas localities. We asses whether systematic

differences exist between bat chirps in different regions, and whether individual bats have

characteristic “chirps” such that replicate chirps from the same bat are more similar than

chirps from different bats.

We address these questions by modeling the spectrograms as image responses using the

functional mixed model framework, first described by Guo (2002), further developed by

Morris and Carroll (2006), and extended to image data by Morris, et al. (2011). Mor-

ris, et al. (2011) describe a general approach to fitting the functional mixed model which

they call isomorphic functional mixed modeling (ISO-FMM).This model relates a sample of

functional/image responses to a vector of scalar predictors, each with functional/image coeffi-

cients called fixed effect functions. The model also includes random effect functions/images

to accommodate correlations among functions, e.g. coming from the same subject. The

framework can also incorporate other types of correlation structures across curves such as

serial or spatially dependent correlations. In our application, we use an ANOVA structure

for the fixed effects, with location indicators for the two regions, as we seek to character-

ize systematic differences between chirps from the two populations, with one random effect

function per individual bat used to accommodate within-bat correlations.

This paper is organized as follows. In Section 2 we give an overview of the application

at hand, the data, and their importance and relevance. In Section 3 we describe the model

used to fit the data and show how to perform inference in the bat chirp application using the

ISO-FMM on the spectrograms. In Section 4, we describe the spectrogram calculation, and

explain our strategy for dealing with variable chirp length by computing spectrograms on a
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relative time axis. We discuss the results of our modeling approach in Section 5 and provide a

sensitivity analysis on the smoothing parameters used to construct the spectrograms. Lastly,

we give concluding remarks in Section 6.

2 Application Overview

2.1 Chirps of Free-tailed Bats

Chirps are syllables embedded in male songs that are used to communicate with conspecifics.

The sequences and arrangements of these syllables follow specific syntactical rules while

simultaneously varying from one rendition to the next (Bohn et al., 2009).

Scientists at Texas A&M University collected bat songs from 27 distinct bats, 14 from

Austin and 13 from College Station. Each bat is represented in the data by repeated chirp

syllables from mating songs, with 25 randomly selected chirp syllables per bat per year,

and some bats having multiple sets of 25 chirps. There is no natural ordering to the chirps

collected from a bat. After the removal of twelve chirp syllables from the data because of low

quality, the total data set we analyzed includes 788 chirps. A sample chirp for an individual

bat is displayed in Figure 1, and sample chirps from each bat are displayed in Figure 2.

Chirps vary in length and shape, not only between bats but also for a single bat. Figure

3 shows boxplots of the length of each chirp in each of the 32 sets of 25 chirps. Each boxplot

consists of the chirp length (in milliseconds) for a set of 25 chirps for a single bat, with the

boxplots are ordered from shortest to longest mean length. Although there is heterogeneity

in the chirp lengths, a vast majority of chirps are between 12 and 20 milliseconds long.

Our goal is to test the hypotheses that chirp syllables vary among individuals and between

regions, i.e., that there are regional dialects. The detection and characterization of variation

in vocalizations is complicated by the rich, complex nature of the signal (see Figure 1A). We

address these issues by delineating systematic spatial discrepancies in the “sound image” or

spectrogram through modeling the spectrogram image as a response in a statistical model.
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The structure of a chirp is much more evident and easily modeled in the spectrogram than in

the raw time series (see Figure 1B vs. Figure 1A). Spectrograms are constructed by taking

overlapping, windowed Fourier transforms of the raw signal. Once the Fourier coefficients

are obtained, the norm of each is calculated and the squared values of these norms are stored

as pixel values on the image. These squared values of the norm of Fourier coefficients are

usually referred to as the power spectrum, where a large value at a particular frequency

indicates the strong presence of that frequency in the data. The chirp in Figure 1B is mainly

composed of frequencies between 20-60 kilohertz (kHz), that start at about 40 kilohertz

(kHz) and slowly decrease to 20 kHz from 0 to 8 milliseconds into the chirp. The bat then

transitions to predominant frequencies at 60 kHz that slowly decrease back down to 40 kHz

and then rise up to 60 kHz towards the end of the chirp. Frequencies above ∼ 80 kHz are

harmonics of the fundamental signal.

2.2 Literature Review

Besides Holan, et al. (2010), who we believe were the first to rigorously model the spectro-

gram as an image in a statistical model, others have published work that uses spectrograms

to capture animal vocalizations of all types and in many species. Examples of these methods

include that of Brandes et al. (2006), who classified the calls derived from crickets and frogs

among surrounding sounds in the Costa Rican rainforest using image processing techniques

that employ blur and other filters to identify the calls of these animals. Bardeli, et al. (2010),

on the other hand, propose the use of a novelty measure derived directly from the spectro-

gram to detect the calls of birds, the Eurasian bittern and Savi’s warbler. Moreover, Bardeli,

et al. (2010) provided an extensive review of the literature that deals with classification via

feature selection in spectrograms. Russo and Jones (2002) and Obrist, et al. (2004) provided

analytic studies aimed at detecting different bat species via their echolocation calls. Russo

and Jones (2002) studied the calls of 22 bat species in Italy, while Obrist, et al. (2004) at-

tempted to identify 24 species of bats in Switzerland. Both groups approached the problem
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of identification using call measures, i.e., duration, start frequency, end frequency, etc. They

built classifiers using these measures and tried to distinguish between species using these

classifiers.

Additionally, nonstationary time series approaches have been used to model this type of

data, for example echolocation calls from Nyctalus noctula bats (Gray et al., 2005; Jiang et

al., 2006). These two works have extended methodology to not only model but also forecast

chirp behavior. Gray et al., (2005) used discrete Euler(p) models to model and forecast

the observations and introduced instantaneous frequency and spectrum for M-stationary

processes. Jiang et al. (2006) introduced a general framework for modeling nonstationary

time series. They used a time deformation in the form of the Box-Cox transformation so

that the resulting time series become stationary processes which they term G(λ)-stationary

processes. Our bat vocalization data, by contrast, present greater challenges in that mating

calls are far more complex than echolocation calls, which generally exhibit linear behavior.

Our goal is not to forecast chirp behavior, the focus of many time series methods, but rather

to characterize individual and regional differences within the domain of the chirps, a focus

more typical of functional data analysis methods. Thus, we use a functional data analysis

approach to analyze these data.

3 Model

3.1 Isomorphic Functional Mixed Models on Spectrograms

Here, we briefly review the functional mixed model and describe how we use a Bayesian,

isomorphic modeling approach to apply it to image data, and how we use the model to

obtain the desired inference in our bat chirp application.

To characterize individual and regional variability in the chirp spectrograms, we choose

models that treat the spectrogram image as a response. Various models have been proposed
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to model functional data as a response that is regressed on a set of predictors. Functional

mixed models incorporate general functional fixed and random effects that can accommodate

many different types of modeling and experimental designs. Functional mixed models were

introduced by Guo (2002) for independent and identically distributed residual errors, and

then further extended by Morris and Carroll (2006) to include correlation among random

effect functions and correlation within and among residual error functions, thus accommo-

dating multi-level functional data.

Consider a set of functional data Yi(t), i = 1, . . . , n. The functional mixed model (FMM)

described by Morris and Carroll (2006) is

Yi(t) =

p∑
a=1

XiaBa(t) +

q∑
b=1

ZibUb(t) + Ei(t), (1)

where X = {Xia, i = 1, . . . , n; a = 1, . . . , p} and Z = {Zib, i = 1, . . . , n; b = 1, . . . , q}

are the n × p and n × q design matrices associated with fixed and random effects func-

tion sets B(t) = {B1(t), . . . , Bp(t)} and U(t) = {U1(t), . . . , Uq(t)}, respectively. Here

E(t) = {E1(t), . . . , En(t)} is the set of residual error functions. Morris and Carroll (2006)

assume that Ub(t) ∼ MGP(P,Q), which is a mean-zero multivariate Gaussian process with

q × q between-function covariance matrix P characterizing the between-function covariance

and covariance surface Q(t, t′) characterizing the within-function autocovariance of the ran-

dom effect functions. The residual error functions Ei(t) ∼ MGP(R, S) with n× n between-

function covariance matrix R and within-function covariance surface S(t, t′). These general

assumptions make this model capable of capturing complex behaviors and interactions be-

tween and within the functions. The model also accommodates multiple levels of random

effect functions or residuals varying by strata, but these are not needed here. The surfaces

Q and S become T ×T covariance matrices when all functions are sampled on the same grid

t of length T and inference is only desired at these grid points.

This model was extended to higher-dimensional functions such as image data by Morris,

et al. (2011). We use this approach to model our spectrograms, which are treated as image or

two-dimensional functional data. Section 4 contains details of the spectrogram calculation.
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Our functional responses, Yi(f, t), i = 1, . . . n = 788 are the power spectra of the chirps that

depend on frequency, f , and time, t, and are represented by the FMM

Yi(f, t) =

p∑
a=1

XiaBa(f, t) +

q∑
b=1

ZibUb(f, t) + Ei(f, t). (2)

The random effects and residual functions in this model follow the same assumptions as

in (1). In our data, we have two fixed effect images, B1(f, t) and B2(f, t), corresponding to

the mean spectrogram for bats from Austin and College Station, respectively, so that p = 2.

The random effect images Ub(f, t) are defined for each bat and represent the deviation of

bat b’s mean spectrogram from its location (Austin or College Station) mean. Since we

have 27 bats, q = 27. We model the bats as independent (P = Iq) and the chirps as

independent (R = In) since the chirps are not taken consecutively. If the chirps were taken

consecutively or the individual bats were known to be related by some structure, then this

could be accommodated by appropriate specification of R and P , respectively. The inclusion

of independent random effect images for each bat accounts for the covariance among replicate

chirp spectrogram images from the same bats.

As described in Section 4, we obtain the spectrograms from all chirps on the same discrete

lattice of frequency by time, with frequency grid f = (f1, . . . , fF ) of size F and relative time

grid t = {1/(T+1), . . . , T/(T+1)} of length T . We can simplify the notations by vectorizing

the spectrogram images, as well as the fixed effect, random effect and residual error images

of the functional mixed model. Let Y ′
i denote the vectorized version of the ith observation,

Yi(f, t), and concatenate the vectorized images as rows to form a n × D matrix Y ′, where

D = T ∗F represents the size of the time by frequency grid, i.e., the number of pixels in the

spectrogram. We can write the discrete space functional mixed model as

Y ′ = XB′ + ZU ′ + E ′, (3)

where B′, U ′ and E ′ are the vectorized versions of the corresponding quantities in model (2),

of dimension p×D, q×D, and n×D, respectively. The rows of U ′ follow a multivariate normal

distribution MVN(0, P⊗Q) with P = Iq and Q a D × D within-spectrogram covariance
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matrix. The rows of the residual matrix E ′
i are MVN(0, R⊗S) with R = In and S a D ×D

within-spectrogram covariance matrix.

We do not fit model (3) directly, but instead use the so-called isomorphic modeling ap-

proach described by Morris, et al. (2011). This involves first mapping the data to an

alternative domain using an isomorphic transformation, Y ∗
i = I(Y ′

i ), i.e., a lossless, invert-

ible transform that preserves all information in the original functions, and then fitting the

functional mixed model in the alternative domain, before transforming back to the original

domain for inference. This general strategy could be used with various transforms, although

as in Morris, et al. (2003) and Morris and Carroll (2006), here we use wavelet transforms,

which provide a multiresolution decomposition of the function. Let I(·) represent the 2D

wavelet transform, which is linear so the transformation can be written as Y ∗ = Y ′WT,

where WT is the wavelet transform matrix. For this application, we choose the square,

non-separable 2D wavelet transform, which captures locality in both columns and rows of

the spectrogram. Applying this transform to an image of grid size D yields a set of wavelet

coefficients of size D∗ with the wavelet coefficients triple-indexed by scale v = 1, . . . , V , ori-

entation ℓ = 1, 2, 3 (representing the row, column, and cross-product wavelet coefficients),

and location k = 1, . . . , Kvl. The number of coefficients D∗ =
∑V

v=1

∑3
l=1Kvl is on the same

order as D, with the specific number subject to the choice of wavelet, boundary condition,

and number of decomposition levels V .

The wavelet domain model corresponding to model (3) is given by

Y ∗ = XB∗ + ZU∗ + E∗, (4)

where B∗, U∗, and E∗ are the wavelet-space versions of the fixed effect, random effect and

error images, respectively, with columns triple-indexed by wavelet scale v, orientation l, and

location k. Based on the linear wavelet transform, we see that the wavelet domain within-

function covariance matrices in the matrix normal distributions of the random effects matrix,

U∗, and the residuals matrix E∗ become Iq⊗Q∗ = Iq⊗WQWT and In⊗S∗ = In⊗WSWT,

where W is the inverse wavelet transform matrix such that WTW = ID. Based on the
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whitening property of the wavelet transform (e.g., Johnstone and Silverman, 1997), we make

simplified wavelet domain assumptions on these covariance matrices, making them diagonal

D∗×D∗ matrices, where Q∗ = diag(q∗vlk) and S∗ = diag(s∗vlk). This independence assumption

in the wavelet domain greatly reduces the dimensionality of the fitted covariance matrices,

and allows model (4) to be fit by column, and yet does not in general induce independence

within the spectrogram. The heteroscedasticity across v, ℓ, and k in the wavelet domain leads

to covariances among the pixels of the time-frequency domain that are spatial in nature and

nonstationary, allowing for different variances and different autocovariances in different parts

of the spectrogram (Morris and Carroll, 2006; Morris et al., 2011). This produces adaptive

borrowing of strength across pixels, and thus adaptive smoothing of the image quantities of

model (3), most notably of the fixed effects Ba(f, t).

3.2 Bayesian Inference

The wavelet domain model specified in (4) is fit using a Bayesian approach. Although more

general choices are possible (Zhu et al., 2011), here we use spike Gaussian-slab priors for

the fixed effects in the wavelet domain, B∗
avℓk = γavℓkNormal(0, τavℓ) + (1 − γavℓk)δ0, where

B∗
avℓk is the wavelet coefficient at scale v, orientation ℓ, and location k for fixed effect a,

γavℓk ∼Bernoulli(πavℓ) is the spike-slab indicator variable, τavℓ and πavℓ are regularization

hyperparameters, and δ0 is a point mass at zero. The use of this prior in the wavelet domain

induces adaptive regularization of the fixed effect images in the time-frequency domain,

Ba(f, t). Vague proper priors are assumed for the variance components q∗vℓk and s∗vℓk that

are centered on conditional maximum likelihood estimates of these quantities, with the prior

having a small effective sample size, as outlined in Herrick and Morris (2006) and Morris

and Carroll (2006). An empirical Bayes approach is used on the hyperparameters τavℓ and

πavℓ, which are estimated by the conditional maximum likelihood as described in Morris

and Carroll (2006). A random-walk Metropolis within Gibbs sampler is used to perform an

MCMC analysis of this wavelet domain model as detailed in Morris, et al. (2011), which is
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automated using automatic random walk proposal variances for the variance components as

described in Herrick and Morris (2006). The posterior samples of B∗ can then be transformed

back from the wavelet space B = B∗W to yield estimates and inference on the quantities

Ba(f, t) in model (2) on the spectrogram grid. This model can be fit using freely available

software (Herrick and Morris, 2006) that has default values for all hyperparameters and only

requires the data matrix Y and design matrices X and Z in order to run if one is satisfied

with the defaults.

For our data, we have two fixed effect functions, the mean spectrograms for each location,

BAustin(f, t) and BCollegeStation(f, t). To compare these, we compute posterior samples of their

difference, BContrast(f, t) = BAustin(f, t) − BCollegeStation(f, t), from which we can compute

estimates, credible intervals, and posterior probabilities for Bayesian inference. Since the

spectrograms are on a log10 scale, a difference of δ between the mean spectrograms at (f, t)

corresponds to a fold-change difference of 10δ in the local power at frequency f at time

t. Based on this, we compute the posterior probability of a specified fold-change 10δ as a

function of (f, t) by pδ(f, t) = pr(|BContrast(f, t)| > δ). These probabilities can be plotted

as a probability discovery image, where regions of (f, t) with large p have strong evidence

of differences between locations. The quantities 1 − pδ(f, t) can be interpreted as Bayesian

local false discovery rates (FDR), and thresholds on these quantities can be determined using

Bayesian FDR considerations (Morris, et al. 2008).

A global threshold can be determined to declare a set of significantly different regions

of (f, t) based on a prespecified average Bayesian false discovery rate (FDR) α, which con-

trols the integrated relative measure of false discoveries in flagged regions to be no more

than α. This set can be written as T δ
α = {(f, t) : pδ(f, t) > ϕδ

α}, where ϕδ
α is the thresh-

old that controls the average Bayesian FDR at α. In our setting, the threshold ϕδ
α will

correspond to the probability discovery spectrogram value for which the cumulative av-

erage of the sorted
{
1− pδ(f, t)

}
is at most α. This is the interpretation of ϕδ

α = pδ(ξ),

where ξ = max
{
z′ :

[
(1/z′)

∑z′

z=1{1− pδ(z)(f, t)}
]
≤ α

}
and pδ(z)(f, t) are the vectorized and
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descending-in-order values of the original probability discovery spectrogram on the F × T

grid. By considering effect size and computing probabilities from a statistical model, this

approach adjusts for multiple testing while simultaneously considering both practical and

statistical significance.

4 Data Preparation

4.1 Data Pre-processing and Spectrogram Calculation

Syllables were cut from recordings of bat mating songs and then prepared using SIGNAL 4.04

(Engineering Design, Berkeley, CA). Recordings had background noise at low frequencies and

not all samples were recorded using the same sample rate. Therefore, all signals were high-

pass filtered at 5 kHz below the lowest energy of the fundamental frequency and re-sampled

so that all files had a sample rate of S = 250kHz.

Here we discuss how to compute the spectrogram for a given bat chirp. Let Ci(s), j =

1, . . . ,Ni represent bat chirp i of length Ni, with the sampling rate given by S. The local

discrete Fourier transform for this chirp is

Fi,r(l) =
∑N

s=1w(s)Ci {s+ (r − 1)M} exp {−j(s/S − 1)fl} , (5)

where j =
√
−1, w(s) is a chosen window function of length N , with windows spaced M

units apart. This is computed on the series of F = N/2 + 1 frequencies given by fl =

2πl/N, l = 0, . . . , N/2, and for a series of Ti = ⌊(Ni − N)/M + 1⌋ window centers given

by tr = (r − 1)M/S, r = 1, . . . , Ti. Oppenheim (1970) first characterized this method of

obtaining spectrograms. The spectrograms used in our model are the result of converting

the spectrum obtained from the discrete Fourier transform (DFT) into decibels. For the

ith chirp, the resulting spectrogram is then Yi(fl, tr) = 20 log10 |1 + Fi,r(l)|, where | · | is the

complex norm, defined on the grid of F frequencies fl ∗ S/(2π).

In order to compute the spectrogram, one must specify three user parameters: window

function w(s), window size N , and window spacings M . Rectangular windows may seem
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like a natural choice, but induce undesirable high frequency artifacts in the spectrogram

(Oppenheim, 1970). It is recommended to use a function that emphasizes the middle section

of the window and de-emphasizes the edges (Ziemer et al., 1983; Chu, 2008). As done by

others (Oppenheim, 1970; Holan et al., 2010), we use the Hamming window

w(l) =

 0.575 + 0.425 cos
(
2πl
N

)
for l ∈ (−N/2, N/2);

0 for |l| ≥ N/2.
(6)

The window size N must be chosen carefully, since if too small, it leads to a spectrogram

with a very coarse time grid and if too large leads to a coarse frequency grid. We choose

N = 256, which we found yields a reasonable grid on both the frequency (F = 129) and

time (Ti ≈ 80) scales. For the window spacings M , a larger choice will result in a smaller

time grid and less smoothing in time, but have quicker calculation time; whereas a smaller

M will result in a larger time grid, more smoothing, and slower calculation times. One must

choose M < N , otherwise the windows would not overlap and the spectrogram would skip

some time points. The visual effects of choice of N and M on the spectrogram can be seen

in Supplementary Figures 9-12 in the Supplementary Material. In our application, we

used window sizes of M = 46, which is 0.18N .

For bioacoustical data, if all n signals are of the same length Ni ≡ N , this would yield

a series of n spectrograms, each of dimension F × T , where F = N/2 + 1 and T = ⌊(N −

N)/M + 1⌋, and to which the methods described in Section 3.1 could be directly applied.

However, as noted in Section 2, the chirp signals in our application are of variable length,

leading to spectrograms of a variable time range. In this case, it is not immediately clear

how to combine information across these spectrograms for any kind of joint population-level

inference such as is the goal of the ISO-FMM here and the methods described in Holan, et

al. (2010). Thus, we introduce a strategy involving variable window spacings that yields

spectrograms on a common relative time grid, and discuss its implications and suitability

for this and other applications.

13



4.2 Variable Window Overlaps for Signals of Varying Length

When the signals are of variable length Ni but have a common sampling rate S, we propose

to keep the window width N constant across signals, but to vary the window spacings

Mi = (Ni − N)/(T − 1) across signals of varying length. This results in all spectrograms

being defined for a common grid of frequencies (defined on the raw time scale) f = {fl}; fl =

S ∗ l/N ; l = 0, . . . , N/2 of length F = N/2+1, and for a series of T time grid points. The use

of a constant window size N across signals ensures each spectrogram is computed on the same

set of frequencies, and the varying window spacings ensure the spectrograms for all signals are

computed on a time grid of constant size. This time grid should not be interpreted as absolute

time, but relative signal position, defined on (0,1) as t = {tr}; tr = r/(T + 1); r = 1, . . . , T ,

where 0 corresponds to the beginning of a chirp and 1 corresponds to the end of a chirp. The

use of this relative time grid effectively compresses/expands the signals on the time axis of

the spectrogram, but does not distort the frequencies since the frequencies are still computed

on the absolute time scale and have the same range for all signals.

This strategy can also be called a variable overlap procedure since the amount of overlap

between neighboring windows is given by Oi = N − Mi, which varies across signals based

on their lengths. The amount of overlap determines the degree of smoothing in the time

direction in computing the spectrograms. Our procedure results in variable time smoothing

based on chirp length, with longer signals having more smoothing than shorter signals.

We also considered other approaches to produce a common grid, including cubic spline

interpolation and up-sampling or down-sampling of the chirp signals, but these methods

resulted in considerable artifacts and a simulation study demonstrated that our variable

overlap procedure results in smaller mean squared error than these alternatives (see the

Supplementary Material, Section 1). In our chirp analysis, we chose this strategy

because our primary interest is the internal pitch sequence, not the chirp durations, and

our supplemental linear mixed model analysis on duration described below shows that chirp

duration does not systematically vary across regions.
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To use this variable overlap procedure, one must choose the desired relative time grid

size T . Given the requirement that Mi < N for all i = 1, . . . , n, one should ensure that

T > N/min(Ni). We chose T = 80 for our analysis, which results in average window

spacings on the order of Mi ≈ 46.

Since the duration information is lost in these adjusted spectrograms on the relative sig-

nal time scale, this procedure is most natural to use when there is not too much variability

in the duration of the signal and when signal duration is not expected to be meaningful in

the given application. One can separately model signal duration as a response in an alter-

native linear mixed model to see if it is related to any outcomes of interest; we performed

this analysis for our data and found that duration was not significantly related to region.

Additionally, another diagnostic to check whether signal duration has any systematic ef-

fect on the spectrogram features is to include duration in the functional mixed model as a

continuous predictor. We also performed this analysis, and found that the results of our

regional analyses were retained even after the inclusion of signal duration in the model, see

the Supplementary Material, Section 4.

5 Data Analysis and Interpretation of Results

5.1 Fitting the Model

As described above, our data consisted of n = 788 bat chirps Ci(s), i = 1, . . . , n from a

total of q = 27 bats, from which we computed spectrograms Yi(f, t), and defined covariates

Xi1 = 1 if chirp i was from a College Station bat, 0 otherwise; Xi2 = 1 if chirp i was from

an Austin bat, 0 otherwise; and Zib = 1 if chirp i was from bat b, b = 1, . . . , q, 0 otherwise.

As in model (2), the functional mixed model is

Yi(f, t) =
2∑

a=1

XiaBa(f, t) +
27∑
b=1

ZibUb(f, t) + Ei(f, t). (7)

As described in Section 4, the spectrogram image matrices Yi(f, t) are of size F × T , where

F is the frequency resolution with f ranging from 0 to 125kHz and T is the time resolution,
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with t indicating relative times ranging from 0 to 1. Here F = (N/2) + 1 = 129, since the

size of the window N = 256, and T = 80. After vectorizing the matrices, Yi(f, t), model (7)

is

Y ′ = XB′ + ZU ′ + E ′, (8)

where Y ′ is the vectorized data matrix of size 788× 10320. Of course, X is the fixed effect

matrix of size 788 × 2, with corresponding fixed effect vectorized image matrix, B′, of size

2×10320. In addition, Z is the random effect matrix of size 788×27 with vectorized random

effect image matrix, U ′, of size 27 × 10320. Finally, the vectorized residual image matrix

E ′ is of size 788 × 10320. We then transformed model (8) into the wavelet domain using

the square, non-separable, two-dimensional wavelet transform, and fit this model using the

Bayesian approach and freely available software described in Section 3.

After a burn-in of 1000, we obtained 20,000 MCMC samples of all model parameters,

keeping every 10. Trace plots of the fixed effects and variance components for selected wavelet

coefficients suggest the MCMC converged and mixed well, which is not surprising since given

that the modeling amounts to a series of parallel Gaussian linear models, whose posteriors

are well-behaved and stable. Next, we applied the inverse 2D discrete wavelet transforms

to the wavelet domain posterior samples to obtain posterior samples of model (8), where

our Bayesian inference was done on the frequency-relative time grid of the spectrograms.

Specifically, we computed the posterior samples of the difference between the Austin and

College Station mean spectrograms, Bcontrast(f, t) = BAustin(f, t) − BCollegeStation(f, t), and

then computed the corresponding posterior means and probability discovery images.

5.2 Interpretation of Results

Figure 4 shows the posterior mean of Bcontrast(f, t), the contrast between the mean Austin

and College Station chirp profiles on the frequency-relative time grid of the spectrograms.

Positive regions favor bats from Auston; while negative regions favor those from College
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Station. As can be seen, the dominant frequencies for Austin bats are concentrated in

the lower bands than those from the College Station bats. Austin bats have pronounced

frequencies in the range of 20-30 kHz, while College Station bats show dominance in the

frequencies between 30-50 kHz. Both groups show a decreasing emphasis in the frequencies

of preference as the sound wave progresses. College Station bats start with a predominant

frequency of about 50 kHz that slowly shifts towards 35 kHz by the middle of the chirp.

A parallel frequency shift is observed for the Austin bats; however, their chirps start at

frequencies around 40 kHz and slowly change to 20 kHz about halfway through the chirp.

The chirp frequencies of both Austin and College Station bats show other dominant regions.

In the middle of the chirp syllable, College Station bats switch from a dominant frequency

at around 35 kHz to one at 60 kHz. They maintain both frequencies from the midpoint to

the end of the chirp, at which time they suddenly switch to the 60-kHz range.

Overall, we see that College Station bat chirps tend to have higher frequencies than those

of the Austin bats. Figure 5 shows the probability discovery image for a 1.5-fold change,

p1.5(f, t) = pr(|BContrast(f, t)| > log10(1.5)), computed as described in Section 3.2. The areas

in the contrast plot that were shown to have high probability of 1.5-fold difference in favor

of either the Austin or College Station bats are the ones highlighted by the probability plot.

The largest of these regions is in the frequency range of 20-30 kHz in the last three quarters

of the chirp. The flagged regions of (f, t) corresponding to a global Bayesian FDR threshold

of 0.15 are displayed by the white space in Figure 6. The frequency shift is also detected

there, where frequency regions of preference for the College Station bats are between 30-50

kHz.

5.3 Sensitivity Analysis

In all the results presented above, we fixed the size of the temporal grid used in the spectro-

gram at T = 80, which is a key parameter in the variable window overlap strategy described

in Section 4 that determines the size of the window spacings for each chirp, Mi. To ex-
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plore the sensitivity of our results to a change in the time grid, we also ran our analyses for

choices of T = {35, 43, 56, 141}, which correspond to average window spacings Mi of roughly

{106, 86, 66, 26}, which as a proportion of N are {0.41, 0.34, 0.26, 0.10}. Figures showing the

corresponding probability discovery images and their 15% Bayesian FDR counterparts are

provided in the Supplementary Material, Section 2.

This analysis demonstrates that differing time resolutions do not affect the substantive

results in any meaningful way. Regardless of the temporal resolution, we still observe a

frequency shift between the chirps of the Austin and College Station bats, characterized by

a preference for the lower frequency range of 20-30 kHz in the Austin bats and a preference

for the range of 30-50 kHz by the College Station bats. The mating chirps from the two sets

of bats are parallel in that their frequency preference decreases from the start to the middle

of the chirp.

5.4 Assessing Individual Bat Signatures

We performed a variance component analysis to assess whether individual bats had distinct

signatures, which would be indicated if the bat-to-bat variability in the chirp spectrograms

(i.e., random effects) was larger than the chirp-to-chirp within bat variability (i.e., residual

error in our model). This type of variance component analysis can be done with the results

of our unified Bayesian fitting of the functional mixed model. Given the spectrograms on

a grid of size D, the bat-to-bat covariance matrix is given by Q(D ×D), and the chirp-to-

chirp covariance matrix is given by S(D × D). An overall intraclass correlation coefficient

measuring the relative percent variation explained by the bat-to-bat variability from the

sum of the variability at the bat-to-bat and chirp-to-chirp within bat levels can be computed

by ρ =trace(Q)/{trace(Q)+trace(S)}. This measure ρ ∈ (0, 1) has the extreme ρ = 1

corresponding to the case where all chirps within a bat are identical, and ρ = 0 suggesting

that two chirps from the same bat are no more alike than two chirps from different bats.

Given that Q∗ = WQWT and S∗ = WSWT from the wavelet space model (4) and that
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WTW = ID, we can easily compute posterior samples for ρ from our posterior samples of

Q∗ =diag(q∗vℓk) and S∗ =diag(s∗vℓk) given that ρ = q∗· /(q
∗
· + s∗· ) where q∗· =

∑
vℓk qvℓk and

s∗· =
∑

vℓk svℓk. From this, we find that the posterior mean and 90% credible interval for

ρ are 0.51 and (0.50, 0.52), respectively, demonstrating that the between-bat variability is

slightly greater in magnitude than the chirp-to-chirp within bat variability and considerably

bounded away from zero, meaning that two chirps from a given bat are significantly more

alike than two chirps from different bats. This suggests that individual bats have a somewhat

unique aspect to their chirps that might make them distinguishable from other bats.

6 Conclusion

We analyzed chirp syllables from the mating songs of free-tailed bats from two regions

of Texas in which they are predominant: Austin and College Station. Our goal was to

discern systematic differences between the mating chirps from bats in two physically distant

regions. The data were analyzed by modeling spectrograms of the chirps as responses using

the ISO-FMM (Morris et al., 2011). Given the variable chirp lengths, we computed the

spectrograms on a relative time scale, interpretable as relative chirp position using a variable

window overlap based on chirp length. We used 2D wavelet transforms to capture the

correlation within the spectrogram in our modeling and obtain adaptive regularization of the

estimates and inference for the region-specific spectrograms. Our model included random

effect spectrograms at the bat level to account for correlation among chirps from the same

bat, and to perform an analysis to assess relative variability in chirp spectrograms within

and between bats. We also performed analyses of chirp duration in both linear mixed models

and as a predictor in our functional mixed model, and found that chirp duration did not

differ systematically across regions and its inclusion in the FMM did not appreciably change

the region differences.

The analysis revealed both regional and individual differences in chirp syllables. We

found evidence of highly stereotyped chirp syllables within individuals. This suggests that
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bats may be able to use chirp syllables to recognize different individuals. At the regional

level there is a frequency shift between the two regions, where chirps from College Station

bats tend to have higher frequencies, ranging from 30-50 kHz range, and those from Austin

bats tend to range from 20-30 kHz. Both groups tended to show decreasing frequencies from

the start to the midpoint of the chirp; however the direction and magnitude of the differences

shifted between regions along the duration of the chirps and were not mirror images (Fig. 4).

Therefore, not only were frequencies shifted between the two regions but among the spectral

pattern, or shape of the signal, as well. Generally, regional variation in songs can be the

result of genetic differentiation or vocal plasticity (Catchpole and Slater, 1995; Slabbekoorn

and Smith, 2002). Research has shown that free-tailed bats show no genetic differentiation

across their entire range because they migrate over such long distances (Russell et al., 2005)

and that although song syntax (e.g., the way elements are ordered and combined) varies

immensely within individuals, it also does not vary across regions (Bohn et al., 2009). Our

finding of regional variation in song syllables suggests that songs may not be entirely innate,

like the majority of mammalian vocalizations, but instead can be influenced and modified

by experience.

While applied to bat chirp data in these analyses, the modeling of spectrograms of non-

stationary time series such as acoustical signals as responses in isomorphic functional mixed

models is a general approach that can be used to relate aspects of a signal to various pre-

dictors while accounting for the structure between the signals. Although we used wavelets

to capture the internal spectrogram structure, isomorphic transforms based on other basis

functions could also be used with this method, including EOFs or splines. Although not

of interest in this paper, incidentally it is also possible to perform classification using the

ISO-FMM approach by fitting the model to training data and then computing posterior

predictive probabilities of class given spectrogram for the test data (Zhu, Brown and Morris,

2012).

If all signals are of the same length, the ISO-FMM can be applied directly to the raw
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spectrograms. If the signals are of different lengths, some type of correspondence must be

defined across the signals to perform analyses combining information across signals. Here,

we introduce a strategy to define the correspondence based on relative signal position, which

yields spectrograms on this relative time scale that are obtained by varying the window over-

lap across signals according to their lengths. Since these spectrograms lose any information

on signal lengths, sensitivity analyses or alternative analyses should be done to assess this

factor, as we have done.

In conclusion, we have developed an alternative strategy for statistical analysis of animal

vocalizations. While most techniques take individual measurements that can not capture the

frequency and amplitude variations over time, our method permits inclusion of the entire

signal without losing any information. This is likely more representative of what an animal

actually hears than a set of extracted features. Furthermore, our method allows us to develop

sophisticated models that incorporate within individual variation and other covariates that

are crucial components of animal communication systems.
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Figure 1: (A) Shows an example bat chirp and (B) shows its corresponding spectrogram.
Time on the x-axis is measured in milliseconds. In plot (A) the y-axis displays the normalized
amplitude of the bat chirp so that the absolute value of the amplitude is no larger than 1.
In plot (B) the units in the y-axis are in kilohertz (103Hz) and those in the z-axis are
the dimensionless power derived from the Fourier transform with a frequency resolution of
l = 0, 1, . . . , N/2, where N = 256.
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Figure 2: Representative Chirps of the 27 bats in the study. Plots (A) - (N) show sample
chirps for the 14 bats from Austin and plots (O)-(AA) show sample chirps for the 13 bats
from College Station.
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Figure 4: Difference in mean spectrogram inferred from our model. Positive values favor
bats from Austin while negative values favor those from College Station. The highly positive
(red) regions suggest that, on average, bats from Austin have more pronounced frequencies
in the 20-30 Khz range through the length of their chirp. In contrast, bats from College
Station have more pronounced frequencies in the 60 Khz range at the end, and between
30-50 Khz in the first two thirds of their chirps.
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Figure 5: Posterior probability plot indicating the regions of most pronounced differences
between Austin and College Station bats. The probability that there is a 1.5 fold difference
between Austin and College Station bats is shown. High probability indicates a very likely
chance that there is a difference between Austin and College Station bats, and where that
difference is located in terms of frequency (kHz) and location along the chirp.
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Figure 6: Spectrogram regions where highly significant differences between Austin and Col-
lege Station bats exist. The white space shows the regions with highest probability of a 1.5
fold difference between Austin and College Station bats, that also have a controlled Bayesian
false discovery rate of 15%.
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