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Summary

Spatial modeling of air-pollution exposures has become widespread in air pollution epidemiology re-

search as a way to improve exposure assessment. However, there are key sources of exposure model

uncertainty when air pollution is modeled, including estimation error and model misspecification. We

examine the use of predicted air pollution levels in linear health effect models under a measurement er-

ror framework. For the prediction of air pollution exposures, we consider a universal kriging framework,

which may include land use regression terms in the mean function and a spatial covariance structure

for the residuals. We derive the bias induced by estimation error and by model misspecification in the

exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect

estimate of air pollution on health. We propose a new spatial SIMEX procedure, and we demonstrate

that the procedure has good performance in correcting this asymptotic bias. We use a bootstrap pro-

cedure to estimate the standard errors in the spatial SIMEX method. We illustrate the spatial SIMEX
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approach in a study of air pollution and birthweight in Massachusetts.
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1. Introduction

There is strong evidence in reviews of epidemiological studies that both short-term and long-term

exposures to air pollution are related to cardiovascular morbidity and mortality (Brook and others,

2010). Spatial modeling of air-pollution levels using ordinary kriging and universal kriging methods is

now commonplace in air pollution epidemiology research. Existing pollution monitoring networks are

used to collect data on regional air pollution concentrations, and spatial prediction models are then

used to estimate location-specific exposures at the home address of each subject in a study. However,

air pollution levels are typically measured only at a small number of monitors, while the air pollution

surface varies over space and the overall regional heterogeneity may be difficult to characterize. For

example, ambient levels of PM2.5 have been shown to vary considerably within a given city region, in

part due to traffic sources (Brauer and others, 2003; Clougherty and others, 2008).

This measurement error setting where exposure is predicted at a set of exposure locations of interest

that does not match the set of measured exposure locations is called spatial misalignment (Gryparis

and others, 2009). The most common use of predicted exposures in a health effects analysis is the direct

plug-in of the individual-specific exposure estimates. This approach treats the exposures as known,

without acknowledgement of the uncertainty in the prediction process. Ignoring measurement error can

lead to biased health effect estimates and overstated confidence in the resulting risk assessments (Carroll

and others, 2006). The issue of spatial misalignment measurement error in air pollution epidemiology

has received considerable attention in recent literature (Szpiro and others, 2011; Szpiro and Paciorek,

2013; Madsen and others, 2008; Lopiano and others, 2011, 2013; Gryparis and others, 2009; Peng and

Bell, 2010; Bergen and others, 2013). However, the role of spatial exposure model misspecification has

not formally been investigated.

The work presented here adds to this existing literature in two ways. First, almost all of these existing

studies focus on the impact of uncertainty associated with estimation of unknown parameters in a known
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exposure model, not on the impact of model misspecification. In this work, we explicitly evaluate the

impact of model misspecification, which in reality will always be an issue given the spatial-temporal

complexity of pollutions emissions and the atmospheric fate and transport of these emissions. Second,

we propose methods that can be implemented in settings in which the exposure prediction algorithm

is a complex process that does not yield uncertainties for the exposure model parameter estimates.

Examples of such approaches that have recently appeared in the environmental science literature include

a daily kriging model implemented in ArcGIS that does not yield uncertainties for the kriging variance

component estimates (Liao and others, 2006) and multi-stage model fitting and missing data imputation

schemes that make it difficult to propagate the uncertainty associated with each stage through to the

final exposure predictions (Kloog and others, 2012, 2014; Nordio and others, 2013).

This article investigates two factors of exposure estimation that may affect resulting health effect

estimates: estimation error and model misspecification. In practice, spatial air pollution models are fit

with sparse monitoring data. Hence, we examine the effects of estimation error in the kriging model

parameters under small sample size. In addition, the underlying exposure model that generates air pol-

lution levels in any given region is not known. Thus, we investigate the impact of model misspecification

in the spatial model by omitting a spatial covariate. To correct for bias in the health effect estimates,

we introduce a spatial version of the simulation extrapolation method (SIMEX). To our knowledge, our

proposed spatial SIMEX procedure is the first treatment of SIMEX allowing for spatially correlated

measurement errors.

The remainder of this paper is arranged as follows. In Section 2 we introduce our modeling framework

and the specific exposure models of interest under universal kriging. In Section 3 we examine the bias

analytically for each of the exposure models of interest and we derive the probability limits of the

misspecified parameters and the resulting classical error variance. In Section 4 we propose a new spatial

SIMEX correction method where correlated classical error is added to the exposure predictions to correct

for bias. In Section 5 we present a simulation study to investigate the degree of bias induced by each of

the exposure models of interest and to demonstrate the performance of our spatial SIMEX correction

method. We then illustrate the spatial SIMEX correction in a study of air pollution and birthweight in
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the greater Boston area in Section 6. We end with a concluding discussion in Section 7.

2. Spatial Exposure Models in Air Pollution and Health Studies

2.1 Model Framework

Let the health effect model of interest be a simple linear regression model, Yi = β0 + βXXi + εi, for

each subject i = 1, . . . , n, where Yi is a continuous health outcome, Xi is the continuous air pollution

exposure of interest, and εi are independent and identically distributed (i.i.d.) with mean 0 and variance

σ2
ε . The goal of the analysis is to estimate βX , the parameter measuring the association between the

health outcome and the air pollution exposure.

Let X denote the n-length vector of true unmeasured air pollution exposures corresponding to the

subject’s address location. Let X∗ denote the m-length vector of measured air pollution levels at m

monitor sites spread throughout the same geographic region, where m � n. We assume the setting of

spatial misalignment, where the n subject address locations needed for the health model do not match

any of the m monitor locations.

We consider a universal kriging model for the exposure which may include covariates as part of the

mean model. Suppose the true pollution process, X = (X,X∗), is generated by a Gaussian Random

Field, and that the realizations of this process take a parametric form. Specifically, denote the length

K vector of parameters for the mean model as α = (α1, . . . , αK), and denote the length J vector of

parameters for the variance model as ψ = (ψ1, . . . , ψJ), and let θ = (α,ψ). Then a realization of one

surface follows a Multivariate Normal distribution,

 X

X∗

 ∼ N

 µX(α)

µX∗(α)

 ,

 ΣXX(ψ) ΣXX∗(ψ)

ΣX∗X(ψ) ΣX∗X∗(ψ)


 . (2.1)

The kriging estimator for X conditional on the observed monitor data X∗ is defined as

gX(θ; X∗) = µX(α) + ΣXX∗(ψ)Σ−1
X∗X∗(ψ) {X∗ − µX∗(α)} . (2.2)

We now consider two spatial exposure model scenarios in this study.
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Scenario I: Universal kriging model. Consider equation (2.2) and assume that the variance ΣX (ψ)

follows a Matérn family with variance parameters ψ = (φ, σ2, ν), where φ is the range, ν is the smooth-

ness, and σ2 is the variance (see Appendix in Supplementary Material for explicit Matérn covariance

function). Universal kriging assumes a spatial correlation structure for the variance, and allows the

mean model to depend linearly on a set of covariates or to be constant. For the mean model we consider

two scenarios. First, we consider a constant mean model, µX (α) = α, which we refer to as Scenario IA.

Second, we consider a mean model that depends linearly on covariates, µX(α) = α0 + α1S1 + α2S2,

where we assume covariates, S1, S2 represent spatially-varying land-use characteristics. This type of

model is often called a “land-use regression” model, which we refer to as Scenario 1B. Land-use covari-

ates for air pollution models include measures such as percentages of residential land, greenspace, and

industry, population size, distances to major roads, and traffic intensity (Ross and others, 2007; Eeftens

and others, 2012).

Scenario II: Misspecified universal kriging model. Scenario II considers a misspecified universal krig-

ing model. We assume that the true exposure is generated under the universal kriging model defined

above, and that the fitted exposure model is misspecified by omitting S2. Thus, the misspecified expo-

sure model that is fit is

gX
(
θN ; X∗

)
= µX (αN ) + ΣXX∗ (ψN ) Σ−1

X∗X∗ (ψN ) {X∗ − µX∗ (αN )} (2.3)

where αN = (α0,N , α1,N , 0), µX (α) = α0,N1 + α1,NS1, and ψN =
(
φN , σ

2
N , νN

)
, with the subscript N

denoting the naive parameters from the misspecified model. Here we also assume that S1 and S2 are

each spatially correlated, generated from their own Gaussian Processes.

2.2 Decomposition into Berkson and Classical error components

We now review and extend the decomposition of exposure measurement error into Berkson and Classical

components for each of these three scenarios. The mean and variance parameters can be estimated jointly

via maximum likelihood. Let θ̂ be the vector of maximum likelihood estimates of θ for the true model and

let θ̂N be the vector of maximum likelihood estimates of θN in the naive misspecified model. A general
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measurement error framework can be used to characterize the difference between the true unobserved

exposures X and the predicted exposures gX(θ̂; X∗). The decomposition of errors into Berkson and

classical type measurement error components follows the development of Gryparis and others (2009)

and Szpiro and others (2011), where Gryparis and others (2009) considers a Bayesian Gaussian Process

model with constant mean, and Szpiro and others (2011) considers a universal kriging model where the

mean depends on several spatial covariates. We now extend this viewpoint to our models of interest

defined in Secion 2.1.

For scenario I, the predicted exposures, gX(θ̂; X∗), have the form

gX(θ̂; X∗) = µX
(
α̂
)

+ ΣXX∗
(
ψ̂
)
Σ−1
X∗X∗

(
ψ̂
)
{X∗ − µX∗(α̂)} . (2.4)

We decompose the error into Berkson and classical components,

X− gX
(
θ̂; X∗

)
= X− gX

(
θ; X∗

)
+ gX

(
θ; X∗

)
− gX

(
θ̂; X∗

)
. (2.5)

The Berkson error term, Ub = X− gX
(
θ; X∗

)
, represents the difference between the true measurements

and the expectation of X conditional on X∗. The classical error term, Uc = gX
(
θ; X∗

)
− gX

(
θ̂; X∗

)
,

represents the difference between the true model and the estimated model. Thus, we can call this

classical error estimation error. In scenario I, this kriging estimator fit under the correct model is the

best linear unbiased predictor (BLUP) (Cressie, 1993).

For scenario II, the predicted exposures, gX(θ̂N ; X∗), have the form

gX
(
θ̂N ; X∗

)
= µX

(
α̂N
)

+ ΣXX∗
(
ψ̂N
)
Σ−1
X∗X∗

(
ψ̂N
)
{X∗ − µX∗(α̂N )} . (2.6)

Decomposing the error into Berkson and classical components,

X− gX
(
θ̂N ; X∗

)
= X− gX

(
θ; X∗

)︸ ︷︷ ︸
Ub

+ gX
(
θ; X∗

)
− gX

(
θN ; X∗

)︸ ︷︷ ︸
Uc, model misspecification

+ gX
(
θN ; X∗

)
− gX

(
θ̂N ; X∗

)
.︸ ︷︷ ︸

Uc, estimation error

(2.7)

In Scenario II, there are two classical measurement error components. The first is attributed to choosing
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the incorrect model, and the second is due purely to estimation error of the parameters.

3. Analysis of bias in health effect estimates induced by exposure models

Now, with the measurement error framework established, we study the impact of measurement error in

the predicted exposures on bias of the coefficient βX representing the association between air pollution

exposure and the health outcome. First we investigate bias in the case of estimation error only in

Scenario I analytically, focusing on the small-sample bias properties not previously addressed in other

studies. Next, we study the asymptotic bias in the case of model misspecification error in Scenario II by

deriving the probability limits of the MLEs in the misspecified model and deriving the particular form

of the classical error variance. Later, in Section 5, we will complement this analysis with a simulation

study.

3.1 Bias Analysis for Scenario I

To study the estimation error bias in Scenario I, we introduce notation for the least squares estimators.

Without loss of generality we assume centered variables. Let M( · ; X∗,Y) be the function for the least

squares estimate of βX given monitoring data, spatial covariates, and observed health outcomes. Our

notation explicitly shows the dependence on X∗ and Y, but implicitly this also depends on S∗,S as

well. Specifically, define

M(θ; X∗,Y) ≡ gX(θ; X∗)TY/
{
gX(θ; X∗)TgX(θ; X∗)

}
(3.8)

for n×1 vector Y, (J+K)×n matrix S, and (J+K)×1 vector θ. Then let β̂X,θ denote the least squares

estimate of βX based on the exposure model using the true parameters θ, so β̂X,θ = M(θ; X∗,Y).

Similarly, let β̂X,θ̂ denote the least squares estimate of βX based on the exposure model using the

estimated exposure model parameters θ̂, so β̂X,θ̂ = M(θ̂; X∗,Y).

First, we note that the Berkson error component does not induce any bias in the estimate of βX .

Hence, any bias in the estimator comes from the classical error component. Using a second order Taylor
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expansion of M(θ̂; X∗,Y) around M(θ; X∗,Y) the approximate bias of β̂X,θ̂ is

E
{
β̂X,θ − β̂X,θ̂

}
≈ γE

(
θ̂ − θ

)
+

1

2
trace

{
ΛVar

(
θ̂ − θ

)}
+

1

2
E
(
θ̂ − θ

)T
ΛE

(
θ̂ − θ

)
(3.9)

where γ = E
[
∂
∂θM(θ; X∗,Y,S)

]T
and Λ = E

[
∂2

∂θ∂θT
M(θ; X∗,Y,S)

]
. Equation (3.9) illustrates that

when the number of monitors m is large, then E(θ̂ − θ) → 0, resulting in an asymptotically unbiased

estimator for βX . However, in practice when m is small, then Jensen’s inequality gives us the result

that E
(
β̂X,θ̂

)
6= βX because M(·; X∗,Y) is a nonlinear function of the exposure model covariance

parameters. This is true even under the condition of an unbiased estimate of the covariance parame-

ters, E(θ̂) = θ. Specifically, following a similar argument to Zimmerman and Cressie (1992), Jensen’s

inequality says that if M(·) is strictly concave, then

E
(
β̂X,θ̂

)
= E{M(θ̂; X∗,Y)} < M{E(θ̂; X∗,Y)} = M(θ; X∗,Y) = βX . (3.10)

Similarly, if M(·; X∗,Y) is strictly convex, the resulting bias is upward and only linearity of M(·; X∗,Y)

yields an unbiased estimator. Supplementary Figure 1 shows an example of M(·; X∗,Y) as a concave

function for a particular choice of covariance matrix and set of covariates. Although we know that

M(·; X∗,Y) is a nonlinear function of the exposure model covariance parameters, its form depends on

the spatial covariance function, the distances of the monitors from each other and the distances of the

subject addresses from the monitors, all of which affect the matrix multiplications of the covariances

to generate gX(θ; X∗). The scale of the nonlinear functions shown in Supplementary Figure S1 suggest

that this bias may be small. Thus, in practice, we expect to see some small sample bias in β̂X,θ̂ due to

a small number of monitors m. We investigate this small sample bias further in a simulation study in

Section 5.

3.2 Bias Analysis for Scenario II

Scenario II contains the additional component of error due to model misspecification, gX(θ; X∗) −

gX(θN ; X∗). To understand the bias induced by this component, we first consider the asymptotic be-
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havior of the naive model parameter estimates. Following Wang and others (1998), the MLE’s θ̂N will

be the solutions to the score equations based on the Multivariate Normal likelihood for Equation (2.3),

and thus will converge in probability to the solutions of the following equations:

E
{
S∗TN V−1

N (X∗ − S∗NαN )
}

= 0 (3.11)

1

2

[
E
{(

X∗ − S∗NαN
)T

V−1
N

∂VN

∂ψl,N
V−1
N

(
X∗ − S∗NαN

)}
− tr

{
V−1
N

∂VN

∂ψl,N

}]
= 0 (3.12)

where S∗N = (1,S∗1), the m×2 subset of spatial covariates in the misspecified model, V−1
N = Σ−1

X∗X∗(ψN ),

and l = (1, 2, 3) indexes the variance parameters. Solving these equations for θN yileds the asymptotic

relationship between θN and θ, as shown in the Supplementary Material Appendix. Closed-form solu-

tions exist for the naive model mean parameters, but for the variance parameters we derive equations

which can be only be solved numerically. In general, the solutions depend on the joint distribution of

the correlated spatial covariates.

4. SIMEX for correlated Berkson and Classical Errors

The simulation extrapolation method (SIMEX) has been developed as a flexible method to correct for

the effect of classical measurement errors on the estimation of a parameter of interest (Cook and Stefan-

ski, 1994). SIMEX is a functional method which uses resampling techniques and has several attractive

properties, including placing minimal assumptions on the underlying distribution of the exposures.

SIMEX has two steps: a simulation step (SIM), where simulated error is added to the mismeasured

exposures in increasing amounts, and an extrapolation step (EX), where a trend is fit to the mean of

the parameter estimates over the increasing error levels and extrapolated back to the case of no error.

It has been suggested that SIMEX may be suitable for several exposures with correlated classical errors

when the correlations of the errors are known or estimable (Carroll and others, 2006). We now present

the spatial SIMEX procedure, an extension of SIMEX that allows the classical measurement errors to

be correlated over space.
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4.1 Spatial SIMEX procedure

The spatial SIMEX procedure is implemented as follows. Let R and L be given positive integers, and

let (λ1, . . . , λL) be an increasing sequence of nonnegative numbers starting with λ1 = 0.

Simulation Step. For each λ ∈ (λ1, . . . , λL) and r = 1, . . . R, we generate a pseudo-dataset for the

vector of exposures, W(r)(λ) = X̂ +
√
λ U (r)

c , where U (r)
c ∼N (0,Σc). Adding the error creates pseudo

datasets equal to the unbiased exposure plus an error component with covariance of (1 + λ)Σc. This

allows exploration of how the health effect parameter is biased as a function of increasing measurement

error variance. For each λ and r, we estimate the parameter of interest β
(r)
X (λ) by fitting the linear health

model using the pseudo-dataset. Thus, β̂
(r)
X (λ) estimates the association between the pseudo-exposures

W(r)(λ) and the outcome Y.

Extrapolation Step. We obtain an estimate of β̂X for each λ by averaging over the R simulations,

β̂X(λ) = 1
R

∑R
r=1 β̂

(r)
X (λ). We then fit a trend to β̂X(λ) versus λ using a linear or quadratic model.

The predicted value of this trend at λ = −1 is the spatial SIMEX corrected estimate of the parameter,

β̂X,SIMEX, estimating the health effect parameter under no measurement error.

Spatial SIMEX can be implemented with a bootstrap standard error estimate, following the same

general bootstrap approach used for one-dimensional SIMEX (Carroll and others, 2006). To implement

the bootstrap standard error, we first estimate β̂X,SIMEX. Then, for k = 1, ...,K bootstrap samples:

(1) resample monitor locations with replacement, (2) fit the initial exposure model to the new sam-

ple of monitoring data, (3) predict the exposures at the health locations, and (4) repeat the entire

SIMEX procedure using these new predictions to obtain β̂
(k)
X,SIMEX. The standard error estimate is

then computed by the standard deviation of the K bootstrap SIMEX estimates, ˆs.e.(β̂X,SIMEX) =

(K − 1)−1
∑K
k=1

(
β̂

(k)
X,SIMEX − β̂X,SIMEX

)2

.

In general, the asymptotic results of and Cook and Stefanski (1994) for the unbiasedness of the point

estimate apply when (i) the bias in the naive estimator is a continuous function of the measurement error

variance, (ii) the measurement error variance is known, and (iii) the true extrapolant function based

on the bias function is known. In practice, the measurement error variance and the true extrapolant

function are often unknown. Still, even an approximate exrapolant function can help reduce bias (Carroll
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and others, 2006). In addition, the degree of fit to the error-inflated parameters can be assessed, and if

the trend in bias is unclear the number of SIMEX samples R can be increased as well as the number of

λ’s, L. The next subsection discusses how to estimate the classical measurement error variance needed

for SIMEX.

4.2 Estimation of spatial measurement error variance parameters

The simulation step of spatial SIMEX relies on generating random samples of error from the multivariate

classical error distribution. Based on the derivations in our bias analysis of Section 3, the only component

of error that leads to asymptotic bias is the model misspecification component of classical error. Thus,

only the model misspecification variance is needed to generate these pseudo-datasets in the SIMEX

procedure to asymptotically correct for the bias. The classical error due to model misspecification has

the distribution

Uc,model mis ∼ N (0,Σc),

Σc = α2
2ΣS2S2

− α2ΣS2S∗
2
AT − α2AΣS∗

2S2
+ BΣX∗X∗BT + AΣS∗

2S
∗
2
AT,

A = ΣXX∗(ψ)Σ−1
X∗X∗(ψ)−ΣXX∗ (ψN ) Σ−1

X∗X∗ (ψN ) ,

B = ΣXX∗ (ψN ) Σ−1
X∗X∗ (ψN ) , (4.13)

as showin in the Supplementary Material.

Equation (4.13) shows that Σc depends on the spatial covariances of the exposures under both the

true parameters and the naive parameters as well as the spatial covariance of the unobserved spatial

covariate S2. In practice, these spatial covariances would not be known and thus the true Σc would

not be known. In that case, Σc can be approximated by using external validation data from held-out

monitors. First, we fit the spatial exposure model and predict the exposure at the held-out monitor

locations. Then, we subtract the predicted exposures form the observed exposures at the held-out

monitor locations to obtain the residuals at those locations. We then fit a spatial model to the set of

residuals to estimate the total spatial covariance. In practice, we use a Matérn covariance structure for
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the spatial model of the residuals.

One key issue issue which has been discussed in previous studies is the nonidentifiability of the

proportion of measurement error that is Berkson versus classical in models with both Berkson and

classical measurement error (Mallick and others, 2002; Li and others, 2007). While external validation

data allows the estimation of the total error variance, the relative proportions of Berkson and classical

errors cannot be determined. These previous studies consider the case where both the Berkson errors

and the Classical errors are assumed to be i.i.d. Normal in one dimension. To deal with the identifiability

issue in a practical application, the authors perform sensitivity analyses regarding the percentage of

variance assumed to be classical versus Berkson. We take a similar approach, estimating the total

spatial covariance Σ̂total by using external validation data. We then use compute Σ̂c = pΣ̂total, where

p represents the proportion the total spatial error attributable to Classical error, with the remaining

error as Berkson.

5. Simulation Study

We conduct a simulation study to explore the degree of bias for small sample estimation error when the

exposure model is correctly specified. We consider a small number of monitors, m = 20 and m = 40. In

scenario IA, we assume a constant mean model, so all of the exposure variability comes from the spatially

correlated residuals. First, we consider a smooth surface that satisfies the smoothness conditions needed

in our Taylor expansion. For our Matérn covariance function, we chose covariance parameters φ = 0.2

for the range and σ2 = 0.5 for the variance, and we consider a smooth surface with a smoothness of

ν = 3, and a rough surface with a smoothness of ν = 1, with examples shown in Figure S2 in the

Supplement. Note that the a rough surface does not satisfy the smoothness conditions needed in our

Taylor expansion because it only has first derivatives. Scenario IB assumes that the mean depends on

two spatial covariates, and for the residuals we use the same parameter values for the smooth and rough

surface as in Scenario I.

The results for the smooth and rough exposure surfaces for Scenario I are given in Table 1. For the

smooth surface, even for small numbers of monitors we observe negligible bias. The rough surface is a
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particularly difficult case to estimate because we use a small number of monitors to estimate the form

of a rough surface. We see a small amount of bias in the case of Scenario IA with only 20 monitors.

Interestingly, the direction of this bias here is upward, which may be an artifact of using a particularly

sparse dataset and a rough surface. As expected, the Berkson error underestimates the standard error,

leading to insufficient coverage of the confidence intervals.

We conduct a simulation study to explore the degree of bias in the model misspecification scenario

and evaluate performance of the spatial SIMEX correction method. To generate the exposure model, we

use the same setup as Scenario IB with two spatial covariates and smooth residuals. To fit the exposure

model under model misspecification, we omit the second spatial covariate. We also assume first that Σc

is known, and in later simulations we relax this assumption.

The results for Scenario II are given in Table 2. We observe substantial bias toward the null. Results

show that the bias in the health effect parameter is approximately corrected by spatial SIMEX. We

see a difference in performance between the two extrapolation functions used for spatial SIMEX, where

the linear extrapolation function under corrects the bias. In the simulation step of the spatial SIMEX

procedure, we use the derived covariance matrix with true parameter values to sample random error to

generate txhe pseudo-datasets. We implement the bootstrap standard error as described in Section 4.3

using K = 200 bootstrap resampling steps.

We conducted a simulation study to evaluate performance of the SIMEX correction method when

Σc is estimated using the available monitoring data. In Section 4 we describe our approach to estimate

Σc using held-out monitors. This simulation assumes held-out monitors are not available, so we remove

one third of the available monitors to use as a held-out dataset. The estimate of Σc also depends on the

assumed proportion of Classical to Berkson error. We know that most of the error is Classical, but there

is also some correlated Berkson error. We choose proportions of 80% Classical error and 90% Classical

error as realistic approximations. To examine how robust the spatial SIMEX estimator is to the choice

of p, we also use more extreme values of 100% Classical error and 50% Classical error. The results of

this simulation are given in Table 3.

We find that the spatial SIMEX procedure still works well even when approximating Σc. The best
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performance is seen when p is 0.80. In the extreme case assuming 100% Classical error, the spatial

SIMEX procedure using the quadratic extrapolation appears to over-correct the bias. In the other

extreme case assuming 50% Classical error, both the linear and quadratic extrapolations under-correct

the bias. Although there is sensitivity to the choice of p, all the spatial SIMEX estimates noticeably

reduce the bias. There is slight under-coverage in the 95% CI estimates produced by spatial SIMEX

across all choices of p.

In practice, the true exposure surface may exhibit non-Gaussian distributions. To explore the per-

formance of our spatial SIMEX method when our Gaussian assumptions are not satisfied, we considered

simulation settings where the spatial covariates were generated from spatial log-normal distributions,

with results given in Supplementary Material, Table S1. Overall, results are as expected, where spatial

SIMEX corrects adequately for bias or may over-correct, yielding effect estimates that could have slight

upward bias. The standard errors in this scenario are over-estimated, leading to CIs that are wider than

necessary and coverage greater than 99%.

6. Data Example: Association between air pollution and low birthweight

We applied our spatial SIMEX method to a study of birthweight and particulate matter exposure dur-

ing pregnancy in Massachusetts. The objective of the study was to estimate the association between

birthweight and PM2.5 exposure during the second and third trimesters. The study population included

all singleton live births in Massachusetts from the Massachusetts Birth Registry during 2008 (January

1 to December 31), a total of 70,340 births. Individual-level data on the mother and baby come from

the Massachusetts Birth Registry. Confounders in the health model include maternal age, gestational

age, number of cigarettes smoked during and before pregnancy, chronic conditions of mother or con-

ditions of pregnancy (lung disease, hypertension, gestational diabetes and non-gestational diabetes),

and socioeconomic measures (mother’s race, mother’s years of education, and the Kotelchuck index

of adequacy of prenatal care utilization). Area-level socioeconomic status is controlled by census-tract

median household income using data from the United States Census Bureau of 2000 for each census

tract in Massachusetts. These covariates are consistent with the published literature on birthweight and
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particulate matter (Dadvand and others, 2013). Some studies also adjust for co-pollutant exposures,

such as ozone, although the need for this may vary by region, where studies in the northeast have found

similar effect sizes after this adjustment (Bell and others, 2007).

PM2.5 measurements during 2007 and 2008 were obtained from 40 monitoring sites in Massachusetts

as part of the EPA (Environmental Protection Agency) and IMPROVE (Interagency Monitoring of

Protected Visual Environments) monitoring networks (Kloog and others, 2011). The residential address

of each mother at time of birth was geocoded as described in Kloog and others (2012). To predict PM2.5

at the home address of the mother for each birth, a universal kriging model is assumed, with a Matérn

covariance structure for the residuals. The mean function for the kriging model includes a linear trend for

three land use covariates: distance to primary highway, distance to known particulate matter emission

source, and average traffic density, as described in Kloog and others (2011). Separate models are fit for

each month using the monthly average PM2.5 concentrations at the monitoring sites during 2007 and

2008. Exposures during the second and third trimesters of pregnancy are estimated by averaging the

monthly PM2.5 concentrations prior to the delivery date.

We fit linear health effect models for each exposure of interest, second trimester PM2.5 and third

trimester PM2.5, adjusting for confounders. This model yields a naive effect estimate that is not corrected

for measurement error. We also apply our proposed spatial SIMEX correction method using a quadratic

extrapolation function and assuming that 80% of the correlated spatial error is classical. We use 50

SIMEX simulation steps to correct the bias and 50 bootstrap resampling steps to estimate the standard

error. Further description of our implementation of spatial SIMEX for this application is given in the

Supplementary Material.

Without correcting for measurement error, we find negative associations between birthweight and

each PM2.5 exposure, and the estimated effect size is larger when we apply spatial SIMEX. Specifically,

the change in birthweight per 1 µg/m3 second trimester PM2.5 exposure is estimated to be -5.04 grams,

95% CI (−8.02,−2.05), without accounting for measurement error. When corrected by spatial SIMEX,

this association is estimated to be -7.90 grams per 1 µg/m3 PM2.5 exposure in the second trimester, 95%

CI (−8.20,−7.61). For the third trimester, the change in birthweight per 1 µg/m3 PM2.5 is estimated
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to be -3.49 grams, 95% CI (−6.08,−0.89), without any measurement error correction. Applying spatial

SIMEX, we estimate an association of -4.91 grams per 1 µg/m3 third trimester PM2.5 exposure, 95%

CI (−5.17,−4.66). In the Supplementary Material, Figure S4 and Table S2, we report results from

sensitivity analyses varying the assumed percentage of classical error and using both linear and quadratic

extrapolation functions.

7. Discussion and Conclusions

In this paper, we have conducted a bias analysis of several key scenarios in exposure modeling of air

pollution. We have shown that when the exposure model is misspecified by omitting an important

covariate, notable downward bias in the health effect estimate can occur in addition to the underes-

timation of the standard errors. We have proposed a new spatial SIMEX approach to adjust for bias

and standard error estimation in the presence of model misspecification. We demonstrated that this

bias due to exposure model misspecification can be approximately corrected by this spatial SIMEX

procedure. We have also shown analytically and via simulation the presence of small-sample bias due

to estimation error in the case of a correctly specified exposure model, although the degree of bias in

practice is typically negligible. Hence, this work has demonstrated that with respect to bias, model

misspecification is a much bigger problem than parameter estimation.

Previous research in this area has suggested that using the plug-in estimator typically induces little

bias, and authors have advocated for using the plug-in estimator to estimate the effect size and then

adjusting the standard errors to account for the additional variability in using the exposure predictions

(Szpiro and others, 2011; Madsen and others, 2008; Lopiano and others, 2011; Gryparis and others,

2009). However, those papers investigate bias in simulation studies primarily by fitting the correct

exposure model used to generate the data. Our findings in Section 3 for the bias of exposure model

scenario I are consistent with these previous studies, as we also found in simulations that the degree

of bias is small when the correct exposure model is specified. Our findings are also consistent with a

recent study investigating exposure model misspecification via simulation that illustrated bias induced in

health effect estimates when universal kriging exposure models had poor fit (Alexeeff and others, 2014).
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In practice, the underlying exposure model that generates air pollution levels in any given region is not

exactly known. In addition, current approaches for correcting the standard errors of estimates also rely

on the assumption that the exposure model is correctly specified (Szpiro and others, 2011; Madsen and

others, 2008). We have approached this problem using both analytical methods and simulation studies,

and we have presented a more thorough bias analysis than what has been considered in previous work.

In particular, we have extended existing work to the case of model misspecification, which is important

since exposure models are typically complex and no single statistical model is likely to be correct.

This work also points to a few practical considerations which are important in order to help with

the implementation of this spatial SIMEX method in a realistic setting. As in other SIMEX procedures,

the classical error variance is needed to generate the simulated re-measurements for the bias correction,

and that variance is assumed to be known. In Section 3, we derived the particular form of the classical

error variance for scenario II, but in practice the exact classical error variance would not be known

and finding a way to estimate that variance may be difficult. The other key practical consideration

in the estimation of the classical error variance is the nonidentifiability issue created by the mixture

of Berkson and classical errors. Typically in measurement error problems, external validation data

with measurements of both the true exposure and the mismeasured exposure are used to estimate

the measurement error variance. However, previous studies looking at mixtures of independent and

identically distributed Berkson and classical errors have noted that the amount of uncertainty that

is Berkson versus classical is not identifiable (Mallick and others, 2002; Li and others, 2007). While

external validation data would allow the estimation of the total error variance, the relative proportions

of Berkson and classical errors cannot be determined. In Li and others (2007), the authors perform

sensitivity analyses by considering a range of values for the percentage of variance assumed to be

classical versus Berkson to deal with the identifiability issue.

Our work points several areas of future research interest. First, model misspecification in land use

regression and kriging models for air pollution exposure should be examined further. We have considered

one scenario of model misspecification, and we observed notable bias induced in that case. Many other

scenarios of model misspecification may also be of interest to study, for example the case where the
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omitted covariate is actually a confounder of the other predictors. In addition, it would be helpful to

study the practical issues of the implementation, including methods for estimating the classical error

variance given the issue of identifiability, as mentioned above, as well as the robustness of spatial SIMEX

to incorrect estimation of the classical error variance.

One advantage of SIMEX is that the general methodology can be adapted to cases in which the

measurement error biases cannot be derived in closed-form, including logistic regression and Poisson

regression (Carroll and others, 2006). SIMEX can also be extended to the multi-pollutant setting in

which more than one exposure covariate is measured with measurement error (Carroll and others, 2006).

In the multi-pollutant case, we can use the same cross-validation procedure to estimate prediction errors

for all pollutants at each location. We can then fit a covariance structure model for these spatially

correlated multivariate errors, such as the kronecker product of a multi-pollutant covariance matrix

for prediction errors measured at the location and parametric (e.g. exponential) spatial correlation

structures for predictions errors for a given pollutant measured at different locations. Therefore, our

proposed spatial SIMEX approach would be applicable to the multi-pollutant setting as long as all the

pollutants are jointly measured. In addition, SIMEX can be adapted when the measurement error itself

follows a different form, for example multiplicative log-Gaussian errors (Eckert and others, 1997).

This work examines aspects of exposure modeling of air pollution for health effect studies and

provides some insight into the role of estimation error and model misspecification in the estimation of

health effects. Understanding these impacts when constructing land use regression and kriging models

is of fundamental importance to studies of air pollution and health. In particular, these results should

be taken into account when interpreting the results of air pollution epidemiology studies that use land

use regression and kriging models for exposure estimation. The spatial SIMEX procedure provides one

possible measurement error correction strategy which may be beneficial to correct for bias induced by

model misspecification.
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Table 1. Simulation results for smooth and rough exposure surfaces for Scenario I with different number of
monitors m

Scenario m Exposure Bias empir SE model SE MSE Coverage
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IA Smooth 20 g(θ̂; X∗) 0.004 0.111 0.080 0.012 85.200
IA Smooth 40 True X -0.000 0.086 0.076 0.007 94.000
IA Smooth 40 g(θ; X∗) 0.001 0.088 0.076 0.008 93.000

IA Smooth 40 g(θ̂; X∗) 0.002 0.088 0.076 0.008 93.000
IB Smooth 20 True X 0.001 0.044 0.043 0.002 94.990
IB Smooth 20 g(θ; X∗) 0.002 0.055 0.044 0.003 89.379

IB Smooth 20 g(θ̂; X∗) 0.002 0.059 0.044 0.003 87.976
IB Smooth 40 True X 0.002 0.043 0.043 0.002 94.400
IB Smooth 40 g(θ; X∗) 0.003 0.044 0.043 0.002 93.600

IB Smooth 40 g(θ̂; X∗) 0.003 0.045 0.043 0.002 93.800
IA Rough 20 True X -0.001 0.057 0.055 0.003 93.865
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IA Rough 20 g(θ̂; X∗) 0.058 0.220 0.089 0.052 57.055
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IA Rough 40 g(θ; X∗) 0.002 0.104 0.067 0.011 80.962

IA Rough 40 g(θ̂; X∗) 0.024 0.114 0.070 0.014 78.557
IB Rough 20 True X 0.002 0.038 0.038 0.001 94.400
IB Rough 20 g(θ; X∗) 0.002 0.040 0.038 0.002 93.600

IB Rough 20 g(θ̂; X∗) 0.002 0.042 0.038 0.002 92.200
IB Rough 40 True X 0.002 0.038 0.038 0.001 95.000
IB Rough 40 g(θ; X∗) 0.002 0.038 0.038 0.001 95.000

IB Rough 40 g(θ̂; X∗) 0.002 0.038 0.038 0.001 94.600
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Table 2. Simulation results for Scenario II, misspecified exposure model, and correction by spatial SIMEX when
spatial measurement error variance is known.

Scenario m Exposure Bias empirical SE model SE MSE Coverage
II 50 True X 0.000 0.036 0.034 0.001 93.6
II 50 g(θ; X∗) 0.000 0.036 0.034 0.001 93.6

II 50 g(θ̂N ; X∗) -0.203 0.182 0.039 0.074 22.2
II 50 spatial SIMEX, linear -0.072 0.211 0.241 0.050 90.6
II 50 spatial SIMEX, quad 0.026 0.254 0.285 0.065 91.9

Table 3. Simulation results for Scenario II, misspecified exposure model, and correction by spatial SIMEX when
spatial measurement error variance parameters are estimated, for different proportions, p, of Classical error

Scenario p Exposure Bias empirical SE model SE MSE Coverage
II True X 0.001 0.036 0.034 0.001 93.6
II g(θ; X∗) 0.001 0.036 0.034 0.001 93.6

II g(θ̂N ; X∗) -0.200 0.180 0.039 0.072 22.4
II 1.00 spatial SIMEX, linear -0.068 0.213 0.228 0.050 91.3
II 1.00 spatial SIMEX, quadratic 0.067 0.322 0.336 0.108 87.2
II 0.90 spatial SIMEX, linear -0.075 0.211 0.228 0.050 91.1
II 0.90 spatial SIMEX, quadratic 0.044 0.308 0.331 0.097 87.8
II 0.80 spatial SIMEX, linear -0.076 0.208 0.227 0.049 91.6
II 0.80 spatial SIMEX, quadratic 0.028 0.294 0.324 0.087 89.1
II 0.50 spatial SIMEX, linear -0.112 0.200 0.225 0.053 89.6
II 0.50 spatial SIMEX, quadratic -0.058 0.247 0.304 0.064 91.3
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