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Bayesian Semiparametric Density
Deconvolution in the Presence of Conditionally

Heteroscedastic Measurement Errors

Abhra SARKAR, Bani K. MALLICK, John STAUDENMAYER, Debdeep PATI,
and Raymond J. CARROLL

We consider the problem of estimating the density of a random variable when precise
measurements on the variable are not available, but replicated proxies contaminated with
measurement error are available for sufficiently many subjects. Under the assumption
of additive measurement errors this reduces to a problem of deconvolution of densities.
Deconvolution methods often make restrictive and unrealistic assumptions about the
density of interest and the distribution of measurement errors, for example, normality
and homoscedasticity and thus independence from the variable of interest. This article
relaxes these assumptions and introduces novel Bayesian semiparametric methodology
based on Dirichlet process mixture models for robust deconvolution of densities in the
presence of conditionally heteroscedastic measurement errors. In particular, the models
can adapt to asymmetry, heavy tails, and multimodality. In simulation experiments,
we show that our methods vastly outperform a recent Bayesian approach based on
estimating the densities via mixtures of splines. We apply our methods to data from
nutritional epidemiology. Even in the special case when the measurement errors are
homoscedastic, our methodology is novel and dominates other methods that have been
proposed previously. Additional simulation results, instructions on getting access to
the dataset and R programs implementing our methods are included as part of online
supplementary materials.

Key Words: B-spline; Conditional heteroscedasticity; Dirichlet process mixture mod-
els; Measurement errors; Skew-normal distribution; Variance function.

1. INTRODUCTION

Many problems of practical importance require estimation of the unknown density of a
random variable. The variable, however, may not be observed precisely, observations being
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1102 A. SARKAR ET AL.

subject to measurement errors. Under the assumption of additive measurement errors, the
observations are generated from a convolution of the density of interest and the density of
the measurement errors. The problem of estimating the density of interest from available
contaminated measurements then becomes a problem of deconvolution of densities.

This article proposes novel Bayesian semiparametric approaches for robust estimation
of the density of interest when the variability of the measurement errors depends on the
associated unobserved value of the variable of interest through an unknown relationship. The
proposed methodology is fundamentally different from existing deconvolution methods,
relaxes many restrictive assumptions of existing approaches by allowing both the density
of interest and the distribution of measurement errors to deviate from standard parametric
laws, and significantly outperforms previous methodology.

The literature on the problem of density deconvolution is vast. Most of the early literature
on density deconvolution considers scenarios when a single contaminated measurement is
available for each subject and assumes that the measurement errors are independently and
identically distributed according to some known probability law (often normal) with con-
stant variance. See, for example, Carroll and Hall (1988), Liu and Taylor (1989), Devroye
(1989), Fan (1991a, 1991b, 1992), and Hesse (1999) among others. Of course, in reality the
distribution of measurement errors is rarely known, and the assumption of constant vari-
ance measurement errors is also often unrealistic. The difficulty of a deconvolution problem
depends directly on the shape (more specifically the smoothness) of the measurement error
distribution (Fan 1991a, 1991b, 1992). Misspecification of the distribution of measurement
errors may, therefore, lead to biased and inefficient estimates of the density of interest. The
focus of recent deconvolution literature has thus been on robust deconvolution methods
that relax the restrictive assumptions on the error distribution, assuming the availability of
replicated proxies for each unknown value of the variable of interest. See, for example, Li
and Vuong (1998) and Carroll and Hall (2004) among others.

All the above mentioned papers still assume that the measurement errors are independent
of the variable of interest. Staudenmayer, Ruppert, and Buonaccorsi (2008) further relaxed
this often unrealistic assumption and considered the problem of density deconvolution in
the presence of conditionally heteroscedastic measurement errors. They took a Bayesian
route and modeled the density of interest by a penalized positive mixture of normalized
quadratic B-splines. Measurement errors were assumed to be normally distributed but the
measurement error variance was modeled as a function of the associated unknown value of
the variable of interest using a penalized positive mixture of quadratic B-splines.

The focus of this article is also on deconvolution in the presence of conditionally
heteroscedastic measurement errors, but the proposed Bayesian semiparametric methods
are vastly different from the approach of Staudenmayer, Ruppert, and Buonaccorsi (2008),
as well as from other existing methods. The density of interest is modeled by a flexible
location-scale mixture of normals induced by a Dirichlet process (Ferguson 1973; Lo 1984).
For modeling conditionally heteroscedastic measurement errors, it is assumed that the
measurement errors can be factored into “scaled errors” that are independent of the variable
of interest and have zero mean and unit variance, and a “variance function” component that
explains the conditional heteroscedasticity. This multiplicative structural assumption on
the measurement errors was implicit in Staudenmayer, Ruppert, and Buonaccorsi (2008),
where the scaled errors were assumed to come from a standard normal distribution.
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DENSITY DECONVOLUTION 1103

Our approach is based on a more flexible representation of the scaled errors. The density
of the scaled measurement errors is modeled using an infinite mixture model induced
by a Dirichlet process, each component of the mixture being itself a two-component
normal mixture with mean zero. This gives us the flexibility to model other aspects of the
distribution of scaled errors. This deconvolution approach, therefore, uses flexible Dirichlet
process mixture models twice, first to model the density of interest and second to model
the density of the scaled errors, freeing them both from restrictive parametric assumptions,
while at the same time accommodating conditional heteroscedasticity through the variance
function.

It is important to see that even when the measurement errors are homoscedastic, our
methodology is novel and dominates other methods that have been proposed previously.
Our methods apply to this problem, allowing flexibility in the density of the variable of
interest, flexible representations of the density of the measurement errors, and, if desired,
at the same time build modeling robustness lest there be any remaining heteroscedasticity.

The article is organized as follows. Section 2 details the models. Section 3 discusses
some model diagnostic tools. Section 4 presents extensive simulation studies comparing
the proposed semiparametric methods with the method of Staudenmayer, Ruppert, and
Buonaccorsi (2008) and a possible nonparametric alternative. Section 5 presents an ap-
plication of the proposed methodology in estimation of the distributions of daily dietary
intakes from contaminated 24 hr recalls in a nutritional epidemiologic study. Section 6
contains concluding remarks. Appendices discuss model identifiability (Appendix A), the
choice of hyperparameters (Appendix B), and details of posterior computations (Appendix
C). The supplementary materials provide results of additional simulation experiments and
R programs implementing our methods.

2. DENSITY DECONVOLUTION MODELS

2.1 BACKGROUND

The goal is to estimate the unknown density of a random variable X. There are
i = 1, 2, . . . , n subjects. Precise measurements of X are not available. Instead, for
j = 1, 2, . . . , mi , replicated proxies Wij contaminated with heteroscedastic measurement
errors Uij are available for each subject. The replicates are assumed to be generated by the
model

Wij = Xi + Uij, (1)

Uij = v1/2(Xi)εij, (2)

where Xi is the unobserved true value of X; εij are independently and identically distributed
with zero mean and unit variance and are independent of the Xi , and v is an unknown
smooth variance function. Identifiability of model (1)–(2) is discussed in Appendix A,
where we show that 3 replicates more than suffices. Some simple diagnostic tools that may
be employed in practical applications to assess the validity of the structural assumption (2)
on the measurement errors are discussed in Section 3.
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1104 A. SARKAR ET AL.

Of course, a special case of our work is when the measurement errors are homoscedastic,
so that v(X) is constant. Even in this case, the use of Dirichlet process mixtures for both
the target density and error distribution has not been considered previously.

The density of X is denoted by fX. The density of εij is denoted by fε . The implied
conditional distributions of Wij and Uij, given Xi , is denoted by the generic notation
fW |X and fU |X, respectively. The marginal density of Wij is denoted by fW .

Model (2), along with the moment restrictions imposed on the scaled errors εij, implies
that the conditional heteroscedasticity of the measurement errors is explained completely
through the variance function v, while other features of fU |X are derived from fε . In a
Bayesian hierarchical framework, model (1)–(2) reduces the problem of deconvolution to
three separate problems: (a) modeling the density of interest fX, (b) modeling the variance
function v, and (c) modeling the density of the scaled errors fε .

2.2 MODELING THE DISTRIBUTION OF X

We use Dirichlet process mixture models (DPMMs) (Ferguson 1973; Escobar and West
1995) for modeling fX. For modeling a density f , a DPMM with concentration parameter
α, base measure P0, and mixture components coming from a parametric family {fc(· | φ) :
φ ∼ P0}, can be specified as

f (·) =
∞∑

k=1

πkfc(· | φk), φk ∼ P0, πk = sk

k−1∏
j=1

(1 − sj ), sk ∼ Beta(1, α).

In the literature, this construction of random mixture weights {πk}∞k=1 (Sethuraman 1994),
is often represented as π ∼ Stick(α). DPMMs are, therefore, mixture models with a poten-
tially infinite number of mixture components or “clusters.” For a given dataset of finite size,
however, the number of active clusters exhibited by the data is finite and can be inferred
from the data.

Choice of the parametric family {fc(· | φ) : φ ∼ P0} is important. Mixtures of normal
kernels are, in particular, very popular for their flexibility and computational tractability
(Escobar and West 1995; West, Müller, and Escobar 1994). In this article also, fX is
specified as a mixture of normal kernels, with a conjugate normal-inverse-gamma (NIG)
prior on the location and scale parameters

fX(X) =
∞∑

k=1

πk Normal(X | μk, σ
2
k ), (3)

π ∼ Stick(αX), (μk, σ
2
k ) ∼ NIG(μ0, σ

2
0 /ν0, γ0, σ

2
0 ). (4)

Here Normal(· | μ, σ 2) denotes a normal distribution with mean μ and standard deviation
σ . In what follows, the generic notation p0 will sometimes be used for specifying priors
and hyperpriors.

2.3 MODELING THE VARIANCE FUNCTION

Examples of modeling log-transformed variance functions using flexible mixtures of
splines are abundant in the literature when there is no measurement error. Yau and Kohn
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DENSITY DECONVOLUTION 1105

(2003), for example, modeled log{v(X)} using flexible mixtures of polynomial and thin-
plate splines. Liu, Tong, and Wang (2007) proposed a penalized mixture of smoothing
splines, whereas Chan et al. (2006) considered mixtures of locally adaptive radial basis
functions.

In this article we model the variance function as a positive mixture of B-spline ba-
sis functions with smoothness inducing priors on the coefficients. For a given posi-
tive integer K, partition an interval [A,B] of interest into K subintervals using knot
points t1 = · · · = tq+1 = A < tq+2 < tq+3 < · · · < tq+K < tq+K+1 = · · · = t2q+K+1 = B.
For j = (q + 1), . . . , (q + K), define �j = (tj+1 − tj ) and �max = maxj �j . It is assumed
that �max → 0 as K → ∞. Using these knot points, (q + K) = J B-spline bases of degree
q, denoted by Bq,J = {bq,1, bq,2, . . . , bq,J }, can be defined through the recursion relation
given on page 90 of de Boor (2000); see Figure S.1 in the online supplementary materials.
A flexible model for the variance function is

v(X) =
J∑

j=1

bq,j (X) exp(ξj ) = Bq,J (X) exp(ξ ), (5)

p0
(
ξ
∣∣J, σ 2

ξ

) ∝ (
2πσ 2

ξ

)−J/2
exp

{ − ξTP ξ
/(

2σ 2
ξ

)}
, p0

(
σ 2

ξ

) = IG (aξ , bξ ). (6)

Here ξ = {ξ1, ξ2, . . . , ξJ }T; exp(ξ ) = {exp(ξ1), exp(ξ2), . . . , exp(ξJ )}T, and IG(a, b) de-
notes an inverse-Gamma distribution with shape parameter a and scale parameter b. We
choose P = DTD, where D is a J × (J + 2) matrix such that Dξ computes the second dif-
ferences in ξ . The prior p0(ξ | σ 2

ξ ) induces smoothness in the coefficients because it penal-

izes
∑J

j=1(�2ξj )2 = ξTP ξ , the sum of squares of the second-order differences in ξ (Eilers
and Marx 1996). The variance parameter σ 2

ξ plays the role of smoothing parameter—the
smaller the value of σ 2

ξ , the stronger the penalty and the smoother the variance function. The
inverse-Gamma hyperprior on σ 2

ξ allows the data to have strong influence on the posterior
smoothness and makes the approach data adaptive.

2.4 MODELING THE DISTRIBUTION OF THE SCALED ERRORS

Three different approaches of modeling the density of the scaled errors fε are considered
here, successively relaxing the model assumptions as we progress.

2.4.1 Model-I: Normal Distribution. We first consider the case where the scaled errors
are assumed to follow a standard normal distribution

fε(ε) = Normal(ε | 0, 1). (7)

This implies that the conditional density of measurement errors is given by
fU |X(U | X) = Normal{U | 0, v(X)}. Such an assumption was made by Staudenmayer,
Ruppert, and Buonaccorsi (2008).

2.4.2 Model-II: Skew-Normal Distribution. The strong parametric assumption of nor-
mality of measurement errors may be restrictive and inappropriate for many practical
applications. As a first step toward modeling departures from normality, we propose a
novel use of skew-normal distributions (Azzalini 1985) to model the distribution of scaled
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1106 A. SARKAR ET AL.

errors. A random variable Z following a skew-normal distribution with location ξ , scale
ω and shape parameter λ has the density f (Z) = (2/ω)φ{(Z − ξ )/ω}{λ(Z − ξ )/ω}.
Here φ and  denote the probability density function and cumulative density function
of a standard normal distribution, respectively. Positive and negative values of λ result
in right and left skewed distributions, respectively. The Normal(· | μ, σ 2) distribution is
obtained as special cases with λ = 0, whereas the folded normal or half-normal distri-
butions are obtained as limiting cases with λ → ±∞, see Figure S.2 in the online sup-
plementary materials. With δ = λ/(1 + λ2)1/2, the mean and the variance of this density
are given by μ = ξ + ωδ(2/π )1/2 and σ 2 = ω2(1 − 2δ2/π ), respectively. Although the
above parameterization is more constructive and intuitive in revealing the relationship
with the normal family, we consider a different parameterization in terms of μ, σ 2, and
λ, denoted by SN(· | μ, σ 2, λ), that is more useful for specifying distributions with mo-
ment constraints, namely f (Z) = (2ζ2/σ )φ{ζ1 + ζ2(Z − μ)/σ }[λ{ζ1 + ζ2(Z − μ)/σ }],
where ζ1 = δ(2/π )1/2 and ζ2 = (1 − 2δ2/π )1/2. For specifying the distribution of the scaled
errors we now let

fε(ε) = SN(ε | 0, 1, λ), (8)

p0(λ) = Normal(λ | μ0λ, σ
2
0λ). (9)

The implied conditionally heteroscedastic, unimodal and possibly asymmetric distribu-
tion for the measurement errors is given by fU |X(U | X) = SN{U | 0, v(X), λ}.

2.4.3 Model-III: Infinite Mixture Models. While skew-normal distributions can capture
moderate skewness, they are still quite limited in their capacity to model more severe
departures from normality. They cannot, for example, model multimodality or heavy tails. In
the context of regression analysis when there is no measurement error, moment constrained
infinite mixture models have recently been used by Pelenis (2014) (see also the references
therein) for flexible modeling of error distributions that can capture multimodality and heavy
tails. They considered the mixture fU |X(U | X) = ∑∞

k=1 πk(X){pkNormal(U | μk1, σ
2
k1) +

(1 − pk)Normal(U | μk2, σ
2
k2)}, with the moment constraint pkμk1 + (1 − pk)μk2 = 0 for

all k. Use of a two-component mixture of normals as components with each component
constrained to have mean zero restricts the mean of the mixture to be zero while allowing
the mixture to model other unconstrained aspects of the error distribution. Incorporating
covariate information X in modeling the mixture probabilities, this model allows all aspects
of the error distribution, other than the mean, to vary nonparametrically with the covariates,
not just the conditional variance. Designed for regression problems, these nonparametric
models, however, assume that this covariate information is precise. If X is measured with
error, as is the case with deconvolution problems, the subject-specific residuals may not be
informative enough, particularly when the number of replicates per subject is small and the
measurement errors have high conditional variability, making simultaneous learning of X
and other parameters of the model difficult.

In this article, we take a different semiparametric middle path. The multiplicative struc-
tural assumption (2) on the measurement errors that reduces the problem of modeling
fU |X to the two separate problems of modeling (a) a variance function and (b) modeling an
error distribution independent of the variable of interest is retained. The difficult problem
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DENSITY DECONVOLUTION 1107

of flexible modeling of an error distribution with zero mean and unit variance moment
restrictions is avoided through a simple reformulation of model (2) that replaces the unit
variance identifiability restriction on the scaled errors by a similar constraint on the variance
function. Model (2) is rewritten as

Uij = v1/2(Xi)εij = v1/2(Xi)

v1/2(X0)
v1/2(X0)εij = ṽ1/2(Xi )̃εij, (10)

where X0 is arbitrary but fixed point, ṽ(Xi) = v(Xi)/v(X0), and ε̃ij = v1/2(X0)εij. With
this specification, ṽ(X0) = 1, var(̃εij) = v(X0), and var(U | X) = v(X0)̃v(X). The problem
of modeling the unrestricted variance function v has now been replaced by the problem
of modeling ṽ restricted to have value 1 at X0. The problem of modeling the density of
ε with zero mean and unit variance moment constraints has also been replaced by the easier
problem of modeling the density of ε̃ij with only a single moment constraint of zero mean.

The conditional variance of the measurement errors is now a scalar multiple of ṽ. So
ṽ can still be referred to as the “variance function.” The variance of ε̃ij, however, does not
equal unity, but is, in fact, unrestricted. With some abuse of nomenclature, ε̃ij is still referred
to as the “scaled errors.” For notational convenience ε̃ij is denoted simply by εij.

The problem of flexibly modeling ṽ is now addressed. For any X, (i) bq,j (X) ≥ 0∀j ,
(ii)

∑J
j=1 bq,j (X) = 1, (iii) bq,j is positive only inside the interval [tj , tj+q+1], (iv)

for j ∈ {(q + 1), (q + 2), . . . , (q + K)}, for any X ∈ (tj , tj+1), only (q + 1) B-splines
bq,j−q (X), bq,j−q+1(X), . . . , bq,j (X) are positive, and (v) when X = tj , bq,j (X) = 0.
We let ṽ(X) = Bq,J (X) exp(ξ ), as before, and we use the above mentioned local sup-
port properties of the B-spline bases to propose a flexible model for ṽ subject to
ṽ(X0) = 1. When X0 ∈ (tj , tj+1), properties (ii) and (iv) cause the constraint to be simply
ṽ(X0) = ∑j

�=(q−j ) bq,�(X0) exp(ξj ) = 1. This is a restriction on only (q + 1) of the ξj ’s,
and the coefficients of the remaining B-splines remain unrestricted which makes the model
for ṽ very flexible. In a Bayesian framework, the restriction ṽ(X0) = 1 can be imposed
by restricting the support of the prior on ξ to the set {ξ :

∑j

�=(q−j ) bq,�(X0) exp(ξj ) = 1}.
Choosing X0 = tj0 for some j0 ∈ {(q + 1), . . . , (q + K)}, we further have bj0 (tj0 ) = 0, and
the complete model for ṽ is given by

ṽ(X) = Bq,J (X) exp(ξ ), (11)

p0
(
ξ
∣∣J, σ 2

ξ

) ∝ (
2πσ 2

ξ

)−J/2
exp

{ − ξTP ξ
/(

2σ 2
ξ

)}×I

⎧⎨⎩
(j0−1)∑

j=(j0−q)

bq,j (tj0 ) exp(ξj )=1

⎫⎬⎭, (12)

p0
(
σ 2

ξ

) = IG(aξ , bξ ),K ∼ p0(K), (13)

where I (·) denotes the indicator function.
Now that the variance of εij has become unrestricted and only a single moment

constraint of zero mean is required, a DPMM with mixture components as specified
in Pelenis (2014) can be used to model fε . That is, we let fε(ε) = ∑∞

k=1 πεkfcε(ε |
pk, μk1, μk2, σ

2
k1, σ

2
k2), πε ∼ Stick(αε), where fcε(ε | p,μ1, μ2, σ

2
1 , σ 2

2 ) = {pNormal(ε |
μ1, σ

2
1 ) + (1 − p)Normal(ε | μ2, σ

2
2 )}, subject to the moment constraint pμ1 + (1 −

p)μ2 = 0. The moment constraint of zero mean implies that each component
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1108 A. SARKAR ET AL.

density can be described by four parameters. One such parameterization that facili-
tates prior specification is in terms of parameters (p, μ̃, σ 2

1 , σ 2
2 ), where (μ1, μ2) can be

retrieved from μ̃ as μ1 = c1μ̃, μ2 = c2μ̃, where c1 = (1 − p)/{p2 + (1 − p)2}1/2 and
c2 = −p/{p2 + (1 − p)2}1/2. Clearly the zero mean constraint is satisfied, since pμ1 +
(1 − p)μ2 = {pc1 + (1 − p)c2}μ̃ = 0. The family includes normal densities as special
cases with (p, μ̃) = (0.5, 0) or (0, 0) or (1, 0). Symmetric component densities are ob-
tained as special cases when p = 0.5 or μ̃ = 0. The mixture is symmetric when the all
components are as well. Specification of the prior for fε is completed assuming nonin-
formative priors for (p, μ̃, σ 2

1 , σ 2
2 ). Letting Unif(�, u) denote a uniform distribution on the

interval (�, u), the complete DPMM prior on fε can then be specified as

fε(ε) =
∞∑

k=1

πεkfcε

(
ε | pk, μ̃k, σ

2
k1, σ

2
k2

)
, (14)

πε ∼ Stick(αε),
(
pk, μ̃k, σ

2
k1, σ

2
k2

) ∼ Unif(0, 1)Normal(0, σ 2
μ̃)IG(aε, bε)IG(aε, bε).

(15)

2.5 CHOICE OF HYPERPARAMETERS AND POSTERIOR CALCULATIONS

Appendix B describes the choice of hyperparameters, while Appendix C gives the details
of posterior computations.

3. MODEL DIAGNOSTICS

In practical deconvolution problems, the basic structural assumptions on the measure-
ment errors may be dictated by prominent features of the data extracted by simple diagnostic
tools and expert knowledge of the data-generating process. Conditional heteroscedastic-
ity, in particular, is easy to identify from the scatterplot of S2

W on W , where W and
S2

W denote the subject-specific sample mean and variance, respectively (Eckert, Carroll,
and Wang 1997). The multiplicative structural assumption (2) on the measurement er-
rors provides one particular way of accommodating conditional heteroscedasticity in the
model. When at least four replicates are available for sufficiently many subjects, one can
define the pairs (Wij1 , Cij2j3j4 ) for all i and for all j1 
= j2 
= j3 
= j4, where Cij2j3j4 =
{(Wij2 − Wij3 )/(Wij2 − Wij4 )}. When (2) is true, Cj2j3j4 = {(εj2 − εj3 )/(εj2 − εj4 )} is inde-
pendent of Wj1 . Therefore, the absence of nonrandom patterns in the plots of Wj1 against
Cj2j3j4 and nonsignificant p-values in nonparametric tests of association between Wj1 and
Cj2j3j4 for various j1 
= j2 
= j3 
= j4 may be taken as indications that (2) is valid or that the
departures from (2) are not severe. For those cases with m(≥ 4) replicates per subject, the
total number of possible such tests is m!/(m − 4)! = L, say, where, for any positive integer
r, r! = r · (r − 1) . . . 2 · 1. The p-values of these tests can be combined using the truncated
product method of Zaykin et al. (2002). The test statistic of this combined left-sided test
is given by T (ς ) = ∏L

�=1 p
1(p�<ς)
� , where p� denotes the p-value of the �th test and ς is a

prespecified truncation limit. If min�{p�} ≥ ς , the p-value of the combined test is trivially
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DENSITY DECONVOLUTION 1109

1. Otherwise, the bootstrap procedure described in Zaykin et al. (2002) may be used to
estimate it.

4. SIMULATION EXPERIMENTS

4.1 BACKGROUND

The mean integrated squared error (MISE) of estimation of fX by f̂X is defined as
MISE = ∫

E{fX(x) − f̂X(x)}2dx. A Markov chain Monte Carlo (MCMC) algorithm, im-
plemented for drawing samples from the posterior to calculate estimates of fX and other
functions of secondary interest, is detailed in Appendix C. Based on B simulated datasets,
a Monte Carlo estimate of MISE is given by MISEest = B−1 ∑B

b=1

∑N
i=1{fX(X�

i ) −
f̂

(b)
X (X�

i )}2�i , where {X�
i }Ni=0 are a set of grid points on the range of X and �i =

(X�
i − X�

i−1) for all i.
The simulation experiments are designed to evaluate the MISE performance of the pro-

posed models for a wide range of possibilities. The Bayesian deconvolution models pro-
posed in this article all take semiparametric routes to model conditional heteroscedasticity
assuming a multiplicative structural assumption on the measurement errors. Performance
of the proposed models is first evaluated for “semiparametric truth scenarios” when the
truth conforms to the assumed multiplicative structure. Efficiency of the proposed models
will also be illustrated for “nonparametric truth” scenarios when the truth departs from the
assumed multiplicative structure.

The reported estimated MISE are all based on B = 400 simulated datasets. For the
proposed methods 5000 MCMC iterations were run in each case with the initial 3000
iterations discarded as burn-in. In our R code, with n = 500 subjects and mi = 3 proxies
for each subject, on an ordinary desktop, 5000 MCMC iterations for models I, II, and III
required approximately 5 min, 10 min, and 25 min, respectively. In comparison, the method
of Staudenmayer, Ruppert, and Buonaccorsi (2008) and the nonparametric alternative
described in Section 4.3 took approximately 100 min and 150 min, respectively.

4.2 SEMIPARAMETRIC TRUTH

This section presents the results of simulation experiments comparing our methods with
the method of Staudenmayer, Ruppert, and Buonaccorsi (2008), referred to as the SRB
method. The methods are compared over a factorial combination of three sample sizes (n =
250, 500, 1000), two densities for X {f 1

X(X) = 0.5Normal(X | 0, 0.75) + 0.5Normal(X |
3, 0.75) and f 2

X(X) = 0.8Normal(X | 0, 0.75) + 0.2Normal(X | 3, 0.75)}, nine different
types of distributions for the scaled errors (six light-tailed and three heavy-tailed; see
Table 1 and Figure 1), and one variance function v(X) = (1 + X/4)2. For each subject,
mi = 3 replicates were simulated. The MISE are presented in Table 2. Additional simulation
results, where the true fX is a normalized mixture of B-splines, are presented in the online
supplementary materials.

4.2.1 Results for Light-Tailed Error Distributions. This section discusses MISE perfor-
mances of the models for the 36 (3 × 2 × 6) cases where the scaled errors were light-tailed,
distributions (a)–(f); see Table 1 and Figure 1. Results of the simulation experiments show
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1110 A. SARKAR ET AL.

Table 1. The distributions used to generate the scaled errors in the simulation experiment

Distribution of scaled errors Skewness (γ1) Excess kurtosis (γ2)

(a) Normal(0,1) 0 0
(b) Skew-normal(0,1,7) 0.917 0.779
(c) SMRTCN(1,1,0.4,2,2,1) 0.499 −0.966
(d) SMRTCN(1,1,0.5,2,1,1) 0 −1.760
(e) SMRTCN{2,(0.3,0.7),(0.6,0.5),(5,0),(1,4),(2,1)} −0.567 −1.714
(f) SMRTCN{2,(0.3,0.7),(0.6,0.5),(0,4),(0.5,4),(0.5,4)} 0 −1.152
(g) SMRTCN{2,(0.8,0.2),(0.5,0.5),(0,0),(0.25,5),(0.25,5)} 0 7.524
(h) Laplace(0,2−1/2) 0 3
(i) SMLaplace{2,(0.5,0.5),(0,0),(1,4)} 0 7.671

NOTE: MRTCN(K, π ε , p, μ̃, σ 2
1, σ

2
2) denote a K component mixture of moment restricted two-component nor-

mals:
∑K

k=1 πεkfcε (· | pk, μ̃k, σ
2
k1, σ

2
k2). Then SMRTN denotes a scaled version of MRTCN, scaled to have

variance one. Laplace(μ, b) denotes a Laplace distribution with location μ and scale b. SMLaplace(K, π ε , 0, b)
denotes a K component mixture of Laplace densities:

∑K
k=1 πεkLaplace(0, bk), scaled to have variance one. With

μk denoting the kth order central moments of the scaled errors, the skewness and excess kurtosis of the distribution
of scaled errors are measured by the coefficients γ1 = μ3 and γ2 = μ4 − 3, respectively. The densities (a)–(f)
are light-tailed, whereas the densities (g)–(i) are heavy-tailed. The shapes of these distributions are illustrated in
Figure 1.

that all three models proposed in this article significantly outperformed the SRB model in
all 36 cases considered. When measurement errors are normally distributed, the reductions
in MISE over the SRB method for all three models and for all six possible combination of
sample sizes and true X distributions are more than 50%. This is particularly interesting,
since the SRB method was originally proposed for normally distributed errors, even more
so because our Model-II and Model-III relax the normality assumption on the measurement
errors.

4.2.2 Results for Heavy-Tailed Error Distributions. This section discusses MISE per-
formances of the models for the 18 (3 × 2 × 3) cases where the distribution of scaled errors
were heavy-tailed, distributions (g), (h), and (i); see Table 1 and Figure 1. Results for the
error distribution (g) are summarized in Figure 2. The SRB model and Model-I assume
normally distributed errors; Model-II assumes skew-normal errors whose tail behavior is
similar to that of normal distributions. The results show the MISE performances of these
three models to be very poor for heavy-tailed error distributions and the MISE increased
with an increase in sample size due to the presence of an increasing number of outliers.
Model-III, on the other hand, can accommodate heavy-tails in the error distributions and is,
therefore, very robust to the presence of outliers. MISE patterns produced by Model-III for
heavy-tailed errors were similar to that for light-tailed errors, and improvements in MISE
over the other models were huge. For example, when the density for the scaled was (i), a
mixture of Laplace densities with a very sharp peak at zero, for n = 1000, the improve-
ments in MISEs over the SRB model were 54.03/0.94 ≈ 57 times for the 50-50 mixture
of normals and 57.87/0.83 ≈ 70 times for the 80-20 mixture of normals.

In simpler settings, when the measurement errors are independent of the variable of
interest and have a known density, Fan (1991a, 1991b, 1992) showed that the difficulty of
a deconvolution problem depends directly on the shape (more specifically the smoothness)
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Figure 1. The distributions used to generate the scaled errors in the simulation experiment, superimposed over
a standard normal density. The different choices cover a wide range of possibilities—(a) standard normal (not
shown separately), (b) asymmetric skew-normal, (c) asymmetric bimodal, (d) symmetric bimodal, (e) asymmetric
trimodal, (f) symmetric trimodal, (g) symmetric heavy-tailed, (h) symmetric heavy-tailed with a sharp peak at
zero, and (i) symmetric heavy-tailed with even a sharper peak at zero. The last six cases demonstrate the flexibility
of mixtures of moment restricted two-component normals in capturing widely varying shapes and 150 min,
respectively.

of the measurement error distribution. The results of our simulation experiments provide
empirical evidence in favor of a similar conclusion in more complicated and realistic de-
convolution scenarios, where the measurement errors show strong patterns of conditional
heteroscedasticity, and illustrate the importance of modeling the shape of the error distri-
bution when it is unknown.

4.3 NONPARAMETRIC TRUTH

This section is aimed at providing some empirical support to the claim made in Section
2.4.3, where it was argued that for deconvolution problems the proposed semiparametric
route to model the distribution of conditionally heteroscedastic measurement errors will
often be more efficient than possible nonparametric alternatives, even when the truth departs
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1112 A. SARKAR ET AL.

Table 2. Mean integrated squared error (MISE) performance of density deconvolution models described in Section
2 of this article (Models I, II, and III) compared with the model of Staudenmayer, Ruppert, and Buonaccorsi (2008)
(Model SRB) for different scaled error distributions

MISE ×1000

True error distribution True X distribution Sample size SRB Model 1 Model 2 Model 3

(a) 50-50 mixture of normals 250 10.15 5.31 5.61 5.55
500 6.64 3.15 3.16 3.34

1000 4.50 1.96 2.08 2.21
80-20 mixture of normals 250 9.60 4.41 4.47 4.52

500 5.30 2.34 2.39 2.62
1000 4.39 1.31 1.37 1.39

(b) 50-50 mixture of normals 250 11.79 7.80 4.41 4.55
500 11.85 5.79 3.11 3.33

1000 8.66 4.58 1.91 2.21
80-20 mixture of normals 250 10.74 6.97 4.52 4.54

500 7.94 4.17 2.27 2.60
1000 6.16 3.08 1.26 1.39

(c) 50-50 mixture of normals 250 12.61 8.74 5.31 4.60
500 9.27 4.91 3.57 3.39

1000 9.15 4.13 2.53 1.91
80-20 mixture of normals 250 9.27 6.46 4.65 4.03

500 6.67 3.18 2.77 2.37
1000 5.04 2.26 1.40 1.26

(d) 50-50 mixture of normals 250 10.10 7.71 9.94 4.40
500 6.54 4.26 7.01 2.70

1000 6.02 3.41 5.58 1.40
80-20 mixture of normals 250 8.18 5.32 5.92 3.43

500 4.45 2.67 4.30 2.21
1000 4.40 1.74 3.31 1.60

(e) 50-50 mixture of normals 250 10.03 6.01 5.92 4.03
500 9.38 3.87 3.57 2.99

1000 8.39 2.42 2.25 1.75
80-20 mixture of normals 250 7.82 3.97 4.44 3.38

500 7.62 3.00 2.40 2.01
1000 6.82 1.74 1.45 1.17

(f) 50-50 mixture of normals 250 9.35 5.82 6.52 5.37
500 7.18 3.47 3.67 3.62

1000 4.63 2.46 2.62 2.10
80-20 mixture of normals 250 9.17 4.75 4.80 4.10

500 7.35 2.58 2.65 2.52
1000 3.86 1.53 1.60 1.45

(g) 50-50 mixture of normals 250 15.68 11.78 10.38 3.30
500 23.27 15.57 14.85 2.07

1000 49.77 18.91 21.00 1.12
80-20 mixture of normals 250 20.05 8.18 15.99 3.10

500 36.46 10.83 17.23 1.63
1000 48.70 18.53 17.77 0.92

(h) 50-50 mixture of normals 250 11.29 6.62 7.01 5.18
500 15.07 8.07 7.24 3.29

1000 18.79 12.04 8.41 1.99
80-20 mixture of normals 250 11.34 7.18 7.05 2.91

500 13.23 7.43 7.53 1.67
1000 22.03 8.64 7.56 1.03
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DENSITY DECONVOLUTION 1113

Table 2. Mean integrated squared error (MISE) performance of density deconvolution models described in Section
2 of this article (Models I, II, and III) compared with the model of Staudenmayer, Ruppert, and Buonaccorsi (2008)
(Model SRB) for different scaled error distributions (Continued)

MISE ×1000

True error distribution True X distribution Sample size SRB Model 1 Model 2 Model 3

(i) 50-50 mixture of normals 250 19.34 7.69 9.90 3.10
500 28.79 17.32 11.02 2.14

1000 54.03 26.78 11.64 0.94
80-20 mixture of normals 250 29.81 16.45 14.76 2.74

500 48.41 20.94 14.99 1.60
1000 57.87 23.80 16.59 0.83

NOTE: The true variance function was v(X) = (1 + X/4)2. See Section 4.2 for additional details. The minimum
value in each row is highlighted.

from the assumed multiplicative structural assumption (2) on the measurement errors. This
is done by comparing our Model III with a method that also models the density of interest
by a DPMM like ours but employs the formulation of Pelenis (2014) to model the density of
the measurement errors. This possible nonparametric alternative was reviewed in Section
2.4.3 and will be referred to as the NPM method. Recall that by modeling the mixture
probabilities as functions of X, the NPM model allows all aspects of the distribution of
errors to vary with X, not just the conditional variance. In theory, the NPM model is,
therefore, more flexible than Model-III as it can also accommodate departures from (2).
However, in practice, for reasons described in Section 2.4.3, Model-III will often be more
efficient than the NPM model, as is shown here.

In the simulation experiments the true conditional distributions that generate the
measurement errors are designed to be of the form fU |X(U | X) = ∑K

k=1 πk(X)fcU (U |
σ 2

Uk, θUk), where each component density has mean zero, the kth component has variance
σ 2

Uk , and θUk denotes additional parameters. For the true and the fitted mixture probabilities
we used the formulation of Chung and Dunson (2009) that allows easy posterior compu-
tation through data augmentation techniques. That is, we took πk(X) = Vk(X)

∏k−1
�=1{1 −

V�(X)} with Vk(X) = (αk − βk

∣∣X − X�
k

∣∣) for k = 1, 2, . . . , (K − 1) and πK (X) = {1 −∑K−1
k=1 πk(X)}. The truth closely resembles the NPM model and clearly departs from

the assumptions of Model III. The conditional variance is now given by var(U | X) =∑K
k=1 πk(X)σ 2

UK . The two competing models are then compared over a factorial com-
bination of three sample sizes (n = 250, 500, 1000), two densities for X − f 1

X and
f 2

X, as defined in Section 4.2, and three different choices for the component densities
fcU − (j) Normal(0, σ 2

Uk), (k) SN(· | 0, σ 2
Uk, λU ) and (l) SN(· | 0, σ 2

Uk, λUk). In each
case, K = 8 and the parameters specifying the true mixture probabilities are set at
αk = 2, βk = 1/2 for all k with X�

k taking values in {−1.9,−1, 0, 1, 2.5, 4, 5.5} in that
order. We chose the priors for αk, βk , and X∗

k as in Chung and Dunson (2009). The
component-specific variance parameters σ 2

Uk are set by minimizing the sum of squares
of g(X) = {(1 + X/4)2 − ∑K

k=1 πk(X)σ 2
Uk} on a grid. For the density (k) we set λU = 7.

For the density (l) λUk take values in {7, 3, 1, 0,−1,−3,−7}, with λUk decreasing as X
increases. For each subject, mi = 3 replicates were simulated.
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1114 A. SARKAR ET AL.
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Figure 2. Results for heavy-tailed error distribution (g) with sample size n = 1000 corresponding to 25th
percentile MISE. The top panel shows the estimated densities under different models. The bottom left panel shows
estimated densities of scaled errors under Model-II (dashed line) and Model-III (solid bold line) superimposed
over a standard Normal density (solid line). The bottom right panel shows estimated variance functions under
different models. For the top panel and the bottom right panel, the solid thin line is for Model-I; the dashed line
is for Model-II; the solid bold line is for Model-III; and the dot-dashed line is for the Model of Staudenmayer,
Ruppert, and Buonaccorsi (2008). In all three panels the bold gray lines represent the truth.

The estimated MISE are presented in Table 3. The results show that Model III vastly
outperforms the NPM model in all 18(3 × 2 × 3) cases even though the truth actually
conforms to the NPM model closely. The reductions in MISE are particularly significant
when the true density of interest is a 50-50 mixture of normals. The results further emphasize
the need for flexible and efficient semiparametric deconvolution models such as the ones
proposed in this article.

5. APPLICATION IN NUTRITIONAL EPIDEMIOLOGY

5.1 DATA DESCRIPTION AND MODEL VALIDATION

Dietary habits are known to be leading causes of many chronic diseases. Accurate
estimation of the distributions of dietary intakes is important in nutritional epidemiologic
surveillance and epidemiology. One large-scale epidemiologic study conducted by the
National Cancer Institute, the Eating at America’s Table (EATS) study (Subar et al. 2001),
serves as the motivation for this article. In this study n = 965 participants were interviewed
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DENSITY DECONVOLUTION 1115

Table 3. Mean integrated squared error (MISE) performance of Models III compared with the NPM model for
different measurement error distributions

MISE ×1000

True error distribution True X distribution Sample size NPM Model3

(j) 50-50 mixture of normals 250 29.25 5.25
500 23.83 3.61

1000 20.11 2.45
80-20 mixture of normals 250 8.09 4.62

500 6.71 3.12
1000 7.34 2.05

(k) 50-50 mixture of normals 250 23.18 4.81
500 20.45 3.18

1000 20.37 2.13
80-20 mixture of normals 250 11.62 4.42

500 8.26 2.77
1000 8.01 1.43

(l) 50-50 mixture of normals 250 21.69 5.65
500 17.72 3.86

1000 16.43 2.67
80-20 mixture of normals 250 5.67 4.71

500 3.67 2.98
1000 3.37 2.01

NOTE: See Section 4.3 for additional details. The minimum value in each row is highlighted.

mi = 4 times over the course of a year and their 24 hr dietary recalls (Wij’s) were recorded.
The goal is to estimate the distribution of true daily intakes (Xi’s).

Figure 3 shows diagnostic plots (as described in Section 3) for daily intakes of folate.
Conditional heteroscedasticity of measurements errors is one salient feature of the data,
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Figure 3. Diagnostic plots for reported daily intakes of folate. The left panel shows the plot of W versus S2
W with

a simple lowess fit superimposed. The right panel shows the plot of W4 versus C123.
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1116 A. SARKAR ET AL.

clearly identifiable from the plot of subject-specific means versus subject-specific variances.
We did not see any nonrandom pattern in the scatterplots of Wj1 versus Cj2j3j4 for various
j1 
= j2 
= j3 
= j4. A combined p-value of 1 given by nonparametric tests of association
combined by the truncated product method of Zaykin et al. (2002) with truncation limit
as high as 0.50 is also strong evidence in favor of independence of Wj1 and Cj2j3j4 for all
j1 
= j2 
= j3 
= j4. By the arguments presented in Section 3, model (1)–(2) may, therefore,
be assumed to be valid for reported daily intakes of folate. Data on many more dietary
components were recorded in the EATS study. Due to space constraints, it is not possible
to present diagnostic plots for other dietary components. However, it should be noted that
the combined p-values for nonparametric tests of association between Wj1 and Cj2j3j4 for
various j1 
= j2 
= j3 
= j4 for all 25 dietary components, for which daily dietary intakes
were recorded in the EATS study, are greater than 0.50 even for a truncation limit as high
as 0.50; see Table S.1 of the online supplementary materials.

5.2 RESULTS FOR DAILY INTAKES OF FOLATE

Estimates of the density of daily intakes of folate and other nuisance functions of
secondary importance produced by different deconvolution models are summarized in
Figure 4. When the density of scaled errors is allowed to be flexible, as in Model-III, the
estimated density of daily folate intakes is visibly very different from the estimates when the
measurement errors are assumed to be normally or skew-normally distributed, as in Model-
I, Model-II, or the SRB model, particularly in the interval of 3–6 mcg. Estimated 90%
credible intervals for fX(3.7) for Model-I is (0.167, 0.283), for Model-II is (0.237, 0.375),
and for Model-III is (0.092, 0.163). Since the credible interval for Model-III is disjoint
from the credible intervals for the other models, the differences in the estimated densities
at 3.7 may be considered to be significant.

Our analysis also showed that the measurement error distributions of all dietary com-
ponents included in the EATS study deviate from normality and exhibit strong conditional
heteroscedasticity. These findings emphasize the importance of flexible conditionally het-
eroscedastic error distribution models in nutritional epidemiologic studies.

6. SUMMARY AND DISCUSSION

6.1 SUMMARY

We have considered the problem of Bayesian density deconvolution in the presence of
conditionally heteroscedastic measurement errors. Attending to the specific needs of decon-
volution problems, three different approaches were considered for modeling the distribution
of measurement errors. The first model made the conventional normality assumption about
the measurement errors. The next two models allowed, with varying degrees of flexibil-
ity, the distribution of measurement errors to deviate from normality. In all these models
conditional heteroscedasticity was also modeled nonparametrically. The proposed method-
ology, therefore, makes important contributions to the density deconvolution literature,
allowing both the distribution of interest and the distribution of measurement errors to
deviate from standard parametric laws, while at the same time accommodating conditional
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Figure 4. Results for data on daily folate intakes from EATS example. The top panel shows the estimated
densities of daily folate intake under different models. The bottom left panel shows estimated densities of scaled
errors under Model-II (dashed line) and Model-III (solid bold line) superimposed over a standard Normal density
(solid line). The bottom right panel shows estimated variance functions under different models. The gray dots
represent subject-specific sample means (x-axis) and variances (y-axis). For the top panel and the bottom right
panel, the solid thin line is for Model-I; the dashed line is for Model-II; the solid bold line is for Model-III; and
the dot-dashed line is for the Model of Staudenmayer, Ruppert, and Buonaccorsi (2008).

heteroscedasticity. Efficiency of the models in recovering the true density of interest was
illustrated through simulation experiments, and in particular we showed that our method
vastly dominates that of Staudenmayer, Ruppert, and Buonaccorsi (2008). Results of the
simulation experiments suggested that all the models introduced in this article out-perform
previously existing methods, even while relaxing some of the restrictive assumptions of pre-
vious approaches. Simulation experiments also showed that our Bayesian semiparametric
deconvolution approaches proposed in this article will often be more efficient than possible
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1118 A. SARKAR ET AL.

nonparametric alternatives, even when the true data-generating process deviates from the
assumed semiparametric framework.

6.2 DATA TRANSFORMATION AND HOMOSCEDASTICITY

In our application area of nutrition, many researchers assume that W is unbiased for X
in the original scale that the nutrient is measured, that is, E(W |X) = X as in our model;
see Willett (1998), Spiegelman, McDermott, and Rosner (1997), Spiegelman, Carroll, and
Kipnis (2001), and Spiegelman, Zhao, and Kim (2005) and Kipnis et al. (2009). It is this
original scale of X then that is of scientific interest in this instance. An alternative technique
is a transform-retransform method: attempt to transform the Wij data to make it additive and
with homoscedastic measurement error, fit in the transformed scale, and then back-transform
the density. For example, if Wij = Xi exp(Uij − σ 2

u /2) where Uij = Normal(0, σ 2
u ), then

log(Wij) = log(Xi) − σ 2
u /2 + Uij, the classical homoscedastic deconvolution problem with

target X∗ = log(X) − σ 2
u /2. One could then use any homoscedastic deconvolution method

to estimate the density of X∗, and then from that estimate the density of X. Our methods
obviously apply to such a problem. We have used the kernel deconvolution R package
“decon” (Wang and Wang 2011), the only available set of programs, and compared it to
our method both using transform-retransform with homoscedasticity and by working in the
original scale, using Model III. In a variety of target distributions for X and a variety of
sample sizes, our methods consistently have substantially lower MISE.

It is also the case though that transformations to a model such as h(W ) = h(X) + U with
U = Normal(0, σ 2

u ) do not satisfy the unbiasedness condition in the original scale. In the
log-transformation case, there is a multiplicative bias, but in the cube-root case, E(W ) =
E(X) + 3σ 2

u E(X1/3), a model that many in nutrition would find uncomfortable and, indeed,
objectionable.

Of course, other fields would be amenable to unbiasedness on a transformed scale, and
hope that the measurement error is homoscedastic on that scale. Even in this problem, our
methodology is novel and dominates other methods that have been proposed previously.
Our methods apply to this problem, allowing flexible Bayesian semiparametric models for
the density of X in the transformed scale, flexible Bayesian semiparametric models for
the density of the measurement errors, and, if desired, at the same time build modeling
robustness lest there be any remaining heteroscedasticity. We have experimented with
this ideal case, and even here our methods substantially dominate those currently in the
literature. It must also be remembered too that it is often not possible to transform to
additivity with homoscedasticity: one example in the EATS data of Section 5, where this
occurs with vitamin B for the Box-Cox family. Details are available from the first author.

6.3 EXTENSIONS

Application of the Bayesian semiparametric methodology, introduced in this article
for modeling conditionally heteroscedastic errors with unknown distribution where the
conditioning variable is not precisely measured, is not limited to deconvolution problems.
An important extension of this work and the subject of an ongoing research project is an
application of the proposed methodology to errors-in-variables regression problems.
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DENSITY DECONVOLUTION 1119

APPENDIX A: MODEL IDENTIFIABILITY

Hu and Schennach (2008) showed that models such as ours are identified under very
weak conditions. They show that when four variables, (Y,W,Z,X), where X is the only
unobserved variate, are continuously distributed, their joint distribution is identified under
the following conditions; their conditions are even weaker, but these suffice for our case.

Conditions 1. fY |W,Z,X = fY |X. 2. fW |Z,X = fW |X. 3. E(W | X) = X. 4. The set {Y :
fY |X(Y | X1) 
= fY |X(Y | X2)} has positive probability under the marginal of Y for all
X1 
= X2. 5. The marginal, joint and conditional densities of (Y,W,Z,X) are bounded.

They also have a highly technical assumption about injectivity of operators, which
is satisfied if the distributions of W given X and Z given X are complete. This means,
for example, that if

∫
g(W )fW |X(W | X)dW = 0 for all X, then g ≡ 0. This is a weak

assumption and we comment upon it no further.
When mi ≥ 3, identifiability of our model (1)–(2) is assured as it falls within the general

framework of Hu and Schennach (2008). To see this, replace their Yi by our Wi1, their Wi by
our Wi2, their Zi by our Wi3 and their Xi by our Xi . Conditions 1.1–1.4 then follow from
the fact that (εi1, εi2, εi3, Xi) have a continuous distribution and are mutually independent
with E(εij) = 0. Condition 1.5 follows assuming the variance function v is continuous.

We conjecture that model (1)–(2) is identifiable even with mi ≥ 2 under very weak
assumptions. We have numerical evidence to support the claim.

APPENDIX B: CHOICE OF HYPERPARAMETERS

For the DPMM prior for fX, the prior variance of each σ 2
k is σ 4

0 /{(γ0 − 2)2(γ0 − 1)},
whereas the prior variance of each μk , given σ 2

k , is σ 2
k /ν0. Small values of γ0 and ν0 im-

ply large prior variance and hence non-informativeness. We chose γ0 = 3 and ν0 = 1/5.
The prior marginal mean and variance of X, obtained by integrating out all but the hy-
perparameters, are given by μ0 and σ 2

0 (1 + 1/ν0)/(γ0 − 1), respectively. Taking an em-
pirical Bayes type approach, we set μ0 = W and σ 2

0 = S2
W(γ0 − 1)/(1 + 1/ν0), where

W is the mean of the subject-specific sample means W1:n, and S2
W is an estimate of the

across subject variance from a one way random effects model. To ensure noninforma-
tiveness, hyperparameters appearing in the prior for fε are chosen as σμ̃ = 3, aε = 1 and
bε = 1. For real world applications, the values of A and B may not be known. We set
[A,B] = [min(W1:n) − 0.1range(W1:n), max(W1:n) + 0.1range(W1:n)]. The DP concen-
tration parameters αX and αε could have been assigned gamma hyperpriors (Escobar and
West 1995), but in this article we kept them fixed at αX = 0.1 and αε = 1, respectively. The
prior mean and standard deviation of λ were set at μ0λ = 0 and σ0λ = 4. For modeling the
variance functions v and ṽ, quadratic (q=2) B-splines based are used. See the supplementary
materials for detailed expressions. The B-splines are based on (2 × 2 + 10 + 1) = 15 knot
points that divide the interval [A,B] into K = 10 subintervals of equal length. We take
X0 = t5. The identifiability restriction on the variance function for Model III now becomes
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1120 A. SARKAR ET AL.

{exp(ξ3) + exp(ξ4)} = 2. The inverse-gamma hyperprior on the smoothing parameter σ 2
ξ is

noninformative if bξ is small relative to ξTP ξ . We chose aξ = bξ = 0.1.

APPENDIX C: POSTERIOR INFERENCE

Define cluster labels C1:n, where Ci = k if Xi is associated with the kth compo-
nent of the DPMM. Similarly for Model-III, define cluster labels {Zij}n,mi

i,j=1, where
Zij = k if εij comes from the kth component of (14). Let N = ∑n

i=1 mi denote the total
number of observations. With a slight abuse of notation, define W1:N = {Wij}n,mi

i,j=1 and
Z1:N = {Zij}n,mi

i,j=1. Then for Model-I, fW |X(Wij | Xi, ξ ) = Normal{Wij | Xi, v(Xi, ξ )};
for Model-II, fW |X(Wij | Xi, ξ , λ) = SN{Wij | Xi, v(Xi, ξ ), λ}; and for Model-
III, given Zij = k, fW |X(Wij | Xi, ξ , pk, μk1, μk2, σ

2
k1, σ

2
k2) = pkNormal{Wij | Xi +

ṽ(Xi, ξ )1/2μk1, ṽ(Xi, ξ )σ 2
k1} + (1 − pk)Normal{Wij | Xi + ṽ(Xi, ξ )1/2μk2, ṽ(Xi, ξ )σ 2

k2}.
In what follows, ζ denotes a generic variable that collects all other parameters of a model,
including X1:n, that are not explicitly mentioned.

It is possible to integrate out the random mixture probabilities from the prior and
posterior full conditionals of the cluster labels. Classical algorithms for fitting DPMMs
make use of this and work with the resulting Polya urn scheme. Neal (2000) provided an
excellent review of this type of algorithm for both conjugate and nonconjugate cases. In this
article, the parameters specific to DPMMs are updated using algorithms specific to those
models and other parameters are updated using the Metropolis-Hastings algorithm. In what
follows, the generic notation q(current → proposed) denotes the proposal distributions of
the Metropolis-Hastings steps proposing a move from the current value to the proposed
value.

The starting values of the MCMC chain are determined as follows. Subject-specific
sample means W1:n are used as starting values for X1:n. Each Ci is initialized at i with each
Xi coming from its own cluster with mean μi = Xi and variance σ 2

i = σ 2
0 . In addition, σ 2

ξ is

initialized at 0.1. The initial value of ξ is obtained by maximizing �(ξ | 0.1, W1:n) with
respect to ξ , where �(ξ | σ 2

ξ , X1:n) denotes the conditional log-posterior of ξ . The parameters
of the distribution of scaled errors are initialized at values that correspond to the special
standard normal case. For example, for Model-II, λ is initialized at zero. For Model-III,
Zij’s are all initialized at 1 with (p1, μ̃1, σ

2
11, σ

2
12) = (0.5, 0, 1, 1). The MCMC iterations

comprise the following steps.

1. Updating the parameters of the distribution of X: Conditionally given X1:n, the
parameters specifying the DPMM for fX can be updated using a Gibbs sampler
(Neal 2000, Algorithm 2). The full conditional of Ci is given by

p(Ci = k, k ∈ C−i | X1:n, C−i , ζ ) = b
n−i,k

n − 1 + αX

Normal
(
Xi | μk, σ

2
k

)
,

p(Ci /∈ C−i | X1:n, C−i , ζ ) = b
αX

n − 1 + αX

t2γ0 (ti),

where b denotes the appropriate normalizing constant; for each i, C−i = C1:n − {Ci};
n−i,k = ∑

{l:l 
=i} 1{cl=k} is the number of cl’s that equal k in C−i ; and ti = γ
1/2
0 (Xi −
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DENSITY DECONVOLUTION 1121

μ0)/{σ0(1 + 1/ν0)1/2}. tm denotes the density of a t-distribution with m degrees of
freedom.
For all k ∈ C1:n, we update (μk, σ

2
k ) using the closed-form joint full conditional given

by {(μk, σ
2
k ) | X1:n, ζ } = NIG(μnk, σ

2
nk/νnk, γnk, σ

2
nk), where nk = ∑n

i=1 1{Ci=k} is
the number of Xi’s associated with the kth cluster; νnk = (ν0 + nk); γnk = (γ0 +
nk/2); μnk = (ν0μ0 + nk

∑
{i:Ci=k} Xi)/(ν0 + nk) and σ 2

nk = σ 2
0 + (

∑
{i:Ci=k} X2

i +
ν0μ

2
0 − νnkμ

2
nk)/2.

2. Updating X1:n: Because the Xi’s are conditionally independent, the full condi-
tional of Xi is given by p(Xi | W1:N, ζ ) ∝ f̂X(Xi | ζ ) × ∏mi

j=1 fW |X(Wij | Xi, ζ ).
We use a Metropolis-Hastings sampler to update the Xi’s with proposal q(Xi →
Xi,new) = T N (Xi,new | Xi, σ

2
X, [A,B]), where σX = (the range of W1:n)/6 and

TN(· | m, s2, [�, u]) denotes a truncated normal distribution with location m and
scale s restricted to the interval [�, u].

3. Updating the parameters of the distribution of scaled errors: For Model-II and
Model-III, the parameters involved in the distribution of scaled errors have to be
updated.
For Model-II, the distribution of scaled error is SN(0, 1, λ), involving only the
parameter λ. The full conditional of λ is given by p(λ | W1:N, ζ ) ∝ p0(λ) ×∏n

i=1

∏mi

j=1 fW |X(Wij | λ, ζ ). We use Metropolis-Hastings sampler to update λ with
random walk proposal q(λ → λnew) = Normal(λnew | λ, σ 2

λ ).
For Model-III, we use Metropolis-Hastings samplers to update the latent parameters
Z1:N as well as the component specific parameters (pk, μ̃k, σ

2
k1, σ

2
k2)’s (Neal 2000,

Algorithm 5). We propose a new value of Zij, say Zij,new, according to its marginalized
conditional prior

p(Zij = k, k ∈ Z−ij | Z−ij ) = N−ij,k/(N − 1 + αε),

p(Zij /∈ Z−ij | Z−ij ) = αε/(N − 1 + αε),

where, for each (i, j ) pair, Z−ij = Z1:N − {Zij}; N−ij,k = ∑
{rs:rs 
=ij} 1{Zrs=k},

the number of Zrs’s in Z−ij that equal k. If Zij,new /∈ Z−ij , we draw
(pZij,new , μ̃Zij,new , σ 2

Zij,new1, σ
2
Zij,new2) from the prior p0(p, μ̃, σ 2

1 , σ 2
2 ). We update Zij to

its proposed value with probability

min

{
1,

fW |X
(
Wij | pZij,new , μ̃Zij,new , σ 2

Zij,new1, σ
2
Zij,new2, ζ

)
fW |X

(
Wij | pZij , μ̃Zij , σ

2
Zij1

, σ 2
Zij2

, ζ
) }

.

For all k ∈ Z1:N , we propose a new value for (pk, μ̃k, σ
2
k1, σ

2
k2) with

the proposal q{θ k = (pk, μ̃k, σ
2
k1, σ

2
k2) → (pk,new, μ̃k,new, σ 2

k1,new, σ 2
k2,new) =

θ k,new} = TN(pk,new | pk, σ
2
p, [0, 1])×Normal(μ̃k,new | μ̃k, σ

2
μ̃) × TN(σ 2

k1,new |
σ 2

k1, σ
2
σ , [max{0, σ 2

k1 − 1}, σ 2
k1 + 1]) × TN(σ 2

k2,new | σ 2
k2, σ

2
σ , [max{0, σ 2

k2 −
1}, σ 2

k2 + 1]). We update θ k to the proposed value θ k,new with probability

min

{
1,

q(θ k,new → θ k)

q(θ k → θ k,new)

∏
{ij :zij=k} fW |X(Wij | θ k,new, ζ )p0(θ k,new)∏

{ij :zij=k} fW |X(Wij | θ k, ζ )p0(θ k)

}
.
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1122 A. SARKAR ET AL.

4. Updating the parameters of the variance function: The full conditional for ξ is
given by p(ξ | W1:N, ζ ) ∝ p0(ξ ) × ∏n

i=1

∏mi

j=1 fW |X(Wij | ξ , ζ ). We use Metropolis-
Hastings sampler to update ξ with random walk proposal q(ξ → ξ new) =
MVN(ξ new | ξ , �ξ ), where MVNj (μ,�) denotes a J -variate normal distribution
with mean μ and positive semidefinite covariance matrix �. For Model III, the
identifiability restriction is imposed by replacing ξnew,3 = log{2 − exp(ξnew,4)}.
Finally, we update the hyperparameter σ 2

ξ using its closed-form full conditional

(σ 2
ξ | ξ , ζ ) = IG{aξ + (J + 2)/2, bξ + ξ

′
P ξ/2}.

The covariance matrix �ξ of the proposal distribution for ξ is taken to be the inverse
of the negative Hessian matrix of l(ξ | 0.1, W1:n) evaluated at the chosen initial value of
ξ . See Appendix D for more details. Other variance parameters appearing in the proposal
distributions are tuned to get good acceptance rates for the Metropolis-Hastings samplers,
the values σλ = 1, σp = 0.01, and σσ = 0.1 working well in the examples considered. In
simulation experiments, 5000 MCMC iterations with the initial 3,000 discarded as burn-in
produced very stable estimates of the density and the variance function.

The posterior estimate of fX is given by the unconditional predictive density fX(· |
W1:N ). A Monte Carlo estimate of fX(· | W1:N ), based on M samples from the posterior, is
given by

f̂X(X | W1:N ) = M−1
M∑

m=1

[
k(m)∑
k=1

{n(m)
k /(αX + n)}Normal

(
X | μ

(m)
k , σ

(m)2
k

)
+{αX/(αX + n)}t2γ0 (tX)

]
,

where tX = t(X) = γ
1/2
0 (X − μ0)/{σ0(1 + 1/ν0)1/2}, (μ(m)

k , σ
(m)2
k ) is the sampled value of

(μk, σ
2
k ) in the mth sample, n

(m)
k is the number of Xi’s associated with the kth cluster,

and k(m) is the total number of active clusters. With (p(m)
k , μ̃

(m)
k , σ

(m)2
k1 , σ

(m)2
k2 ), N (m)

k , and
k(m)
ε defined in a similar fashion, the posterior Monte Carlo estimate of fε for Model-III is

f̂ε(ε | W1:N ) = M−1
M∑

m=1

[
k(m)
ε∑

k=1

{
N

(m)
k /(αε + N )

}
fcε

(
ε | p

(m)
k , μ̃

(m)
k , σ

(m)2
k1 , σ

(m)2
k2

)
+{αε/(αε + N )}

∫
fcε

(
ε | p, μ̃, σ 2

k1, σ
2
k2

)
dp0(p, μ̃, σ 2

k1, σ
2
k2)

]
.

The integral above cannot be exactly evaluated. Monte Carlo approximation may be
used. If N >> αε , the term may simply be neglected. For Model II, fε can be estimated
by f̂ε(ε | W1:N ) = ∑M

m=1 SN(ε | 0, 1, λ(m))/M . For Models I and II, an estimate of the
variance function v can similarly be obtained as v̂(X | W1:N ) = ∑M

m=1 v(X | ξ (m))/M . An
estimate of the restricted variance function ṽ for Model III can be obtained using a similar
formula. For Model III, v̂ and a scaled version of f̂ε , scaled to have unit variance, can be
obtained using the estimate of ṽ(X0).
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DENSITY DECONVOLUTION 1123

APPENDIX D: INITIAL VALUES AND PROPOSALS FOR

The conditional posterior log-likelihood of ξ for Model-I is given by

�(ξ | σ 2
ξ , X1:n) = − 1

2σ 2
ξ

ξTP ξ −
n∑

i=1

{
mi

2
logv(Xi, ξ ) +

mi∑
j=1

1

2v(Xi, ξ )
(Wij − Xi)

2

}
.

The initial values for the M-H sampler for ξ is obtained as ξ (0) = arg max �(ξ |
0.1, W1:n). Numerical optimization is performed using the optim routine in R with the
analytical gradient supplied.

The covariance matrix of the random walk proposal for ξ is taken to be the inverse of
the negative of the matrix of second partial derivatives of �(ξ | 0.1, W1:n) evaluated at ξ (0).
Expressions for the gradient and the second derivatives are given below.

∂�(ξ | σ 2
ξ , X1:n)

∂ξk

= − (P ξ )k
σ 2

ξ

−
n∑

i=1

{
mi −

mi∑
j=1

(Wij − Xi)2

v(Xi, ξ )

}
b2,k(Xi) exp(ξk)

2v(Xi, ξ )
,

∂2�(ξ | σ 2
ξ , X1:n)

∂ξ 2
k

= − (P )kk

σ 2
ξ

−
n∑

i=1

{
mi∑

j=1

(Wij − Xi)2

v(Xi, ξ )
− mi

2

}
b2,k(Xi)2

v(Xi, ξ )2
exp(2ξk)

−
n∑

i=1

{
mi −

mi∑
j=1

(Wij − Xi)2

v(Xi, ξ )

}
b2,k(Xi) exp(ξk)

2v(Xi, ξ )
,

∂2�(ξ | σ 2
ξ , X1:n)

∂ξk∂ξk′
= − (P )kk′

σ 2
ξ

−
n∑

i=1

{
mi∑

j=1

(Wij − Xi)2

v(Xi, ξ )
− mi

2

}

× b2,k(Xi)b2,k′(Xi)

v(Xi, ξ )2
exp(ξk + ξk′).

SUPPLEMENTARY MATERIALS

Results of Additional Simulation Experiments, R programs, Data: The supplemen-
tary materials, available in a single zip file (supplements.zip), contain some figures
and tables referenced in the main article, results of additional simulation experiments,
and R programs for implementing our methods with default hyper-prior choices. The
EATS dataset analyzed in this article reside at the National Cancer Institute (NCI,
http://www.cancer.gov/) and may be obtained from NCI arranging a Material Transfer
Agreement. A simulated dataset representative of the actual data (i.e., generated from
the fitted model) is included in the supplementary materials. A readme file (ReadMe.txt)
that provides further details of the contents is also included.
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