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Summary. We consider the problem of robust estimation of the regression relationship between a response and a covariate
based on sample in which precise measurements on the covariate are not available but error-prone surrogates for the unob-
served covariate are available for each sampled unit. Existing methods often make restrictive and unrealistic assumptions
about the density of the covariate and the densities of the regression and the measurement errors, for example, normality
and, for the latter two, also homoscedasticity and thus independence from the covariate. In this article we describe Bayesian
semiparametric methodology based on mixtures of B-splines and mixtures induced by Dirichlet processes that relaxes these
restrictive assumptions. In particular, our models for the aforementioned densities adapt to asymmetry, heavy tails and multi-
modality. The models for the densities of regression and measurement errors also accommodate conditional heteroscedasticity.
In simulation experiments, our method vastly outperforms existing methods. We apply our method to data from nutritional
epidemiology.
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1. Introduction
We develop a Bayesian semiparametric approach for robust
estimation of a regression function when the covariate is mea-
sured with error, the density of the covariate, the density of
the measurement errors and the density of the regression er-
rors are all unknown, and the variability of both the measure-
ment errors and the regression errors may depend on the as-
sociated unobserved value of the covariate through unknown
relationships. By “robust” we mean that we avoid restrictive
assumptions common in the literature, such as homoscedas-
ticity and normally distributed measurement and regression
errors.

The literature on regression with errors in covariates is ex-
tensive. A brief review of the existing literature relevant to
our problem is presented here. For a more extensive review of
the state of the art see Carroll et al. (2006) and Buonaccorsi
(2010).

The problem of linear regression in the presence of er-
rors in covariates is vast, and besides the references above
also includes the classic text by Fuller (1987). More com-
plex problems have also been studied. Cheng and Riu (2006)
studied linear models and considered maximum likelihood,
method of moments and generalized least squares estimators
for heteroscedastic normally distributed regression and mea-
surement errors. However, they assume that the variances are
known and independent of the unobserved value of the co-
variate. Cook and Stefanski (1994) proposed a simulation-
extrapolation (SIMEX) based method that did not make any
assumptions about the density of the covariate and the den-
sity of the regression errors, but assumes homoscedasticity
of both regression and measurement errors: strictly speaking,
the latter is assumed to be normally distributed. The SIMEX

method also requires the density of the measurement errors to
be known. In the presence of replicated surrogates for the un-
observed covariate, Devanarayan and Stefanski (2002) relaxed
the homoscedasticity assumptions of the SIMEX approach,
but the measurement errors are still required to be normally
distributed. Carroll, Roeder, and Wasserman (1999a) pro-
posed a Bayesian solution to the problem for normally dis-
tributed homoscedastic regression and measurement errors.
They modeled the unknown density of the covariate by a fi-
nite mixture of normals.

Our focus here is on flexible nonparametric and semi-
parametric models for all the components. The problem of
nonparametric regression with errors in covariates when the
regression and measurement errors are both homoscedastic is
studied by Fan and Truong (1993), Carroll, Maca, and Rup-
pert (1999b), Berry, Carroll, and Ruppert (2002), Carroll and
Hall (2004) among others. Fan and Truong (1993) studied
deconvoluting kernel type estimators when the density of the
measurement errors is known. Carroll et al. (1999b) studied
SIMEX estimators for the nonparametric regression with
errors in covariates problem using three different types of
models for the regression function, kernel mixtures, smooth-
ing splines, and penalized truncated polynomial splines, but
assuming homoscedastic normally distributed measurement
errors. Berry et al. (2002) provided a Bayesian solution to the
problem in the presence of normally distributed regression
and measurement errors. They also assumed normality of the
covariate and modeled the regression function using smooth-
ing splines and penalized mixtures of truncated polynomial
splines. Carroll and Hall (2004) considered the problem of esti-
mating a low order estimate of the regression function, rather
than the regression function itself. Their method required
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knowledge of low order moments of the density of the mea-
surement errors that can also be estimated from replicated
surrogates. Schennach (2004a, 2004b) studied least squares
and Nadaraya–Watson type estimators for nonlinear and
nonparametric regression problems, respectively, when the
measurement error density is unknown but replicated proxies
are available and the measurement error in at least one of the
replicates is homoscedastic and independent of the covariate.
Delaigle and Meister (2007) relaxed the homoscedasticity
assumption on the measurement errors but retained it for
the regression errors. They developed deconvoluting kernel
type estimators for problems when replicated surrogates are
available for the unobserved covariates, the density of the
regression errors is unknown and homoscedastic, the density
of the measurement errors is unknown and heteroscedastic
but they are both independent of the covariate. Besides the
very strong independence assumption, when one would ex-
pect variability to depend on the error prone covariate, their
method can only use data that have at least two replicates,
whereas our method makes use of all observed data.

In this article we consider the problem of nonparametric
estimation of the regression function in the presence of con-
ditionally heteroscedastic regression and measurement errors,
when the densities of the covariate, the regression errors and
the measurement errors are all unknown. Conditional het-
eroscedasticity, in particular, can be a prominent feature of
the distributions of regression and measurement errors in ap-
plied problems, as we illustrate in this article. To the best of
our knowledge, this general problem has not been addressed.
Indeed, it is not clear how the general deconvoluting ker-
nel approach or even the automated SIMEX approach can
be extended to accommodate conditional heteroscedasticity
in regression and measurement errors. On the other hand, a
Bayesian hierarchical framework, as we show in this article,
can provide a natural way to tackle this otherwise compli-
cated problem where the regression function and the nuisance
densities can be modeled separately through a natural hierar-
chy. Importantly, the absence of precise covariate information
can render techniques that are successful in regression prob-
lems with accurately measured covariates inefficient, numer-
ically unstable, computationally challenging or intractable,
and such measurement error poses new modeling challenges.

We present a Bayesian semiparametric solution to the prob-
lem, catering to such issues pertaining specifically to the mea-
surement error setup. We model the density of the covariate
by a flexible location-scale mixture of normals induced by a
Dirichlet process (Ferguson, 1973). We model the regression
function using a flexible mixture of B-splines. For modeling
conditionally heteroscedastic regression and measurement er-
rors, we assume that they can be factored into “scaled errors”
that are independent of the covariate, and “variance func-
tion” components that explain the conditional heteroscedas-
ticity. The densities of the scaled errors are also modeled using
flexible mixture models induced by Dirichlet processes, each
component of the mixture being itself a two-component nor-
mal mixture with its mean restricted at zero. The variance
functions are modeled by positive mixtures of B-splines. Our
approach, thus, uses Dirichlet process mixtures to model the
three densities and B-spline mixtures to model the regression
and the two variance functions.

The article is organized as follows. Section 2 details the
models. Simulation experiments that compare the perfor-
mances of our method and the method of Berry et al. (2002)
are presented in Section 3, showing that our new methods
dominate. Section 4 presents an application in nutritional epi-
demiology. Implementation issues, such as automatic choice
of the hyper-parameters, details of the posterior calculations,
the choice of initial values, the structure of the B-splines and
additional supporting simulations are discussed in the Sup-
plementary Materials.

2. Models

We consider the problem of robust estimation of the regression
relationship between a response Y and a covariate X based on
sample in which direct measurements on X are not available,
but replicated proxies W for the latent X are available for
a subset of the observed data. Specifically, for i = 1, 2, . . . , n

individuals and for j = 1, 2, . . . , mi with mi >= 2 for at least
some individuals, we assume

Yi = r(Xi) + UY,i, (1)

Wij = Xi + UW,ij. (2)

Given Xi, the regression errors UY,i and the measurement er-
rors UW,ij have mean zero and are conditionally independent.

For random variables S and T , we denote the marginal den-
sity of S, the conditional density of S given T , and the joint
density of (S, T ) by the generic notation fS , fS|T and fS,T ,
respectively. The densities fX, fUY |X and fUW |X are all un-
known. Given r, fX, fUY |X and fUW |X, the likelihood fY,W1:m is
obtained by the convolution fY,W1:m(Y,W1:m) = ∫

fUY |X=x{Y −
r(x)}∏m

j=1
fUWj

|X=x(Wj − x)fX(x) dx. In a Bayesian hierarchi-

cal framework, the problem therefore reduces to separate
problems of modeling the density of the covariate fX, mod-
eling the regression function r, and modeling the conditional
densities of the regression and the measurement errors fUY |X
and fUW |X.

2.1. Density of the Covariate

We use Dirichlet process mixture models (DPMMs)
(Ferguson, 1973; Escobar and West, 1995) for modeling fX.
For modeling a density f , a DPMM with concentration pa-
rameter α, base measure P0, and mixture components coming
from a parametric family {fc(· | φ) : φ ∼ P0}, can be specified
as

f (·) =
∞∑

k=1

πk fc(· | φk), φk ∼ P0,

πk = sk

k−1∏
j=1

(1 − sj), sk ∼ Beta(1, α).

In the literature, this construction of random mixture weights
{πk}∞

k=1 (Sethuraman, 1994), is often represented as π ∼
Stick(α). DPMMs are therefore mixture models with a poten-
tially infinite number of mixture components or “clusters.”
For a given data set of finite size, however, the number of ac-
tive clusters exhibited by the data is finite and can be inferred
from the data.

Choice of the parametric family {fc(· | φ) : φ ∼ P0} is im-
portant. Mixtures of normal kernels are, in particular, very



Regression with Errors in Covariates 825

popular for their flexibility and computational tractability
(West, Müller, and Escobar, 1994; Escobar and West, 1995).
In this article also, fX is specified as a mixture of normal ker-
nels, with a conjugate normal-inverse-gamma (NIG) prior on
the location and scale parameters

fX(X) =
∞∑

k=1

πX,k Normal(X | μk, σ
2
k ), (3)

πX ∼ Stick(αX), (μk, σ
2
k ) ∼ NIG(μ0, σ

2
0/ν0, γ0, σ

2
0). (4)

Here Normal(· | μ, σ2) denotes a normal distribution with
mean μ and standard deviation σ. In what follows, the generic
notation p0 will sometimes be used for specifying priors and
hyper-priors.

2.2. Regression Function

The problem of flexible modeling of the regression function
is addressed in this subsection. Specifically, we are interested
in models that are numerically stable and lead to easy and
efficient posterior computation.

Mixtures of splines (de Boor, 2000) and Gaussian processes
(Rasmussen and Williams, 2006) are immensely popular and
successful for regression problems with precisely measured co-
variates. For measurement error problems, however, Gaussian
process priors are not particularly suitable since the unob-
served values of X would be involved in the prior covariance
matrix of the regression function and will not be condition-
ally independent in the posterior, rendering the method com-
putationally complex and numerically unstable. Splines, on
the other hand, do not lead to additional complications in
the measurement error setup. In regression with errors in co-
variates, Carroll et al (1999b) and Berry et al. (2002) used
penalized mixtures of truncated polynomial splines to model
the regression function. In this article, we model the regres-
sion function as a mixture of B-spline basis functions with
a smoothness inducing prior on the coefficients (Eilers and
Marx, 1996). The B-splines are locally supported, nearly or-
thogonal and can be computed using a simple recursion. These
properties of B-splines make them numerically more stable
than polynomial splines. Later on, B-splines are again used
to model conditional heteroscedasticity in regression and mea-
surement errors. Mixture of B-splines for modeling the regres-
sion function, thus, also allows reuse of programming codes
for fitting different components of the complete model.

For a given positive integer KR, partition an interval
[A, B] of interest into KR subintervals using knot points tR,1 =
· · · = tR,q+1 = A < tR,q+2 < · · · < tR,q+KR+1 = · · · = tR,2q+KR+1 =
B. Using these knot points, (q + KR) = JR B-spline bases
of degree q, denoted by Bq,JR

= {bq,1, bq,2, . . . , bq,JR
}, can be

defined through the recursion relation given on page 90 of de
Boor (2000). A flexible model for the regression function is
then given by

r(X) =
JR∑

j=1

bq,j(X)ξR,j = Bq,JR
(X)ξR, (5)

p0(ξR | JR, σ2
R,ξ) ∝ exp{−ξT

R PRξR/(2σ2
R,ξ)}, (6)

where ξR = {ξR,1, ξR,2, . . . , ξR,JR
}T. We choose PR = DT

R DR,
where DR is a JR × (JR + 2) matrix such that DRξR com-
putes the second differences in ξR. The prior p0(ξR | σ2

R,ξ)
induces smoothness in the coefficients because it penalizes∑JR

j=1
(�2ξR,j)

2 = ξT
R PRξR, the sum of squares of the second

order differences in ξR. The variance parameter σ2
R,ξ plays

the role of a smoothing parameter: the smaller the value of
σ2

R,ξ, the stronger the penalty and the smoother the regression
function.

2.3. Conditional Densities of Regression and
Measurement Errors

The problems of flexible modeling of fUY |X and fUW |X and are
now addressed. Specifically, we are interested in models for
fUY |X and fUW |X that can capture departures from normal-
ity, accommodate conditional heteroscedasticity and allow ef-
ficient estimation even though the conditioning variable X is
not measured accurately.

In the context of regression analysis with precisely mea-
sured covariates, moment constrained infinite mixture models
have recently been used by Pelenis (2014) for flexible model-
ing of the distribution of regression errors. Pelenis consid-
ered the mixture fUY |X(UY | X) = ∑∞

k=1
πk(X){pk Normal(UY |

μk1, σ
2
k1) + (1 − pk) Normal(UY | μk2, σ

2
k2)}, with the moment

constraint pkμk1 + (1 − pk)μk2 = 0 for all k. The zero mean
constraint of the components is inherited by the mixture,
so the usual assumption E(UY | X) = 0 is satisfied. Use of
two-component mixture of normals as components also al-
lows the mixture to capture departures from normality in
other unconstrained aspects of the distribution including
skewness, multimodality and heavy tails. Incorporating co-
variate information X in modeling the mixture probabili-
ties, this model allows all aspects of the error distribution
to vary flexibly with the covariates including the conditional
variance.

However, in the context of measurement error problems,
particularly when the number of surrogates for each unob-
served X is small and the measurement errors have signifi-
cant variability, the mixture probabilities πk’s, which are func-
tions of X and other parameters, become numerically unsta-
ble, making simultaneous learning of X and other parameters
of the model difficult and the residuals become noninforma-
tive about the true error distribution. For these reasons the
model of Pelenis (2014) may not be efficient for modeling
fUW |X. In addition, the problem of modeling the conditional
distribution of regression errors is even harder. First, there are
usually multiple proxies but only a single response available
for each unknown X. Hence, there is substantially less data
available for modeling fUY |X. Second, the conditional mean of
the surrogates, given X, is simply X, so the residuals can be
readily calculated. In contrast, to calculate the residuals for
regression errors the unknown regression function also needs
to be estimated, and hence the regression residuals are much
less informative about the truth.

Measurement error problems therefore require semi-
parametric alternatives, that is, models that may be less
flexible than that of Pelenis (2014) but still allow us to
break free from many unrealistic and restrictive parametric
assumptions of the existing literature. In this article one such
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semiparametric route is taken that can be used for modeling
both fUW |X and fUY |X. To avoid unnecessary repetition, the
subscripts Y and W are dropped and the generic notation
U is used to refer to both UY and UW . In the sections that
follow the subscripts reappear as and when necessary. The
same convention is followed for different components of the
models and the parameters involved. We assume

[U | X] = v1/2(X)ε, (7)

where ε, referred to as the “scaled errors” henceforth, are
independently and identically distributed with zero mean and
are also independent of X. The problem of modeling fU|X now
reduces to the problem of modeling two separate functions, v

and fε. Instances of modeling conditional heteroscedasticity
by making the structural assumption (7) on the errors are
abundant in the literature. See, for example, Crainiceanu et al.
(2007), Liu, Tong, and Wang (2006), Chan et al. (2006), and
Staudenmayer, Ruppert, and Buonaccorsi (2008). Invariably
these authors assumed fε = Normal(0, 1) and focused only on
modeling the variance function. In this article, the problem
of flexible modeling of fε is also addressed.

In the context of our problem, model (7) can be motivated
as follows. In the real world applications we are interested in,
conditional heteroscedasticity is a very prominent feature of
the regression and measurement errors, see Section 4. Model
(7) captures this through the “variance function” v(X). Other
features of fU|X, including skewness, multimodality and heavy
tails, are derived from fε. For reasons described above, varia-
tions in these features of fU|X for varying values of X, if any,
are extremely difficult to detect when X is measured impre-
cisely. Model (7) therefore assumes the scaled errors to be
independent of X. The model is, however, fairly robust to de-
partures from the assumed multiplicative structure. Numer-
ical evidence to support the robustness are presented in the
Supplementary Materials.

Since v(X)1/2ε = {c v(X)1/2}(ε/c) for any c > 0, the repre-
sentation of U given by (7) is not unique. However, for in-
ference on the regression function r, the variance function v

and the density of the scaled errors fε need not be separately
identifiable. Conditional variability of U may simply be ob-
tained as var(U | X) = v(X)var(ε), and to aid in comparison,
versions of fε adjusted to have unit variance may be retained
for each MCMC iteration.

To model fε, we can now use a DPMM with mix-
ture components as specified in Pelenis (2014). That
is, we let fε(ε) = ∑∞

k=1
πεkfcε(ε | pk, μk1, μk2, σ

2
k1, σ

2
k2), πε ∼

Stick(αε), where fcε(ε | p, μ1, μ2, σ
2
1 , σ2

2) = {p Normal(ε |
μ1, σ

2
1) + (1 − p) Normal(ε | μ2, σ

2
2)}, subject to the moment

constraint pμ1 + (1 − p)μ2 = 0. The moment constraint of
zero mean implies that each component density can be
described by four parameters. One such parametrization
that facilitates prior specification is in terms of parameters
(p, μ̃, σ2

1 , σ2
2), where (μ1, μ2) can be retrieved from μ̃ as μ1 =

c1μ̃, μ2 = c2μ̃, where c1 = (1 − p)/{p2 + (1 − p)2}1/2 and c2 =
−p/{p2 + (1 − p)2}1/2. Clearly the zero mean constraint is sat-
isfied, since pμ1 + (1 − p)μ2 = {pc1 + (1 − p)c2}μ̃ = 0. The
family includes normal densities as special cases with (p, μ̃) =
(0.5, 0) or (0, 0) or (1, 0). Symmetric component densities are

obtained as special cases when p = 0.5 or μ̃ = 0. The mix-
ture is symmetric when the all components are as well. Spec-
ification of the prior for fε is completed by assuming non-
informative priors for (p, μ̃, σ2

1 , σ2
2). Let Unif(
, u) denote a

uniform distribution on the interval (
, u), and IG(a, b) de-
note an inverse-Gamma distribution with shape parameter a

and scale parameter b. The DPMM prior on fε can then be
specified as

fε(ε) =
∞∑

k=1

πεkfcε(ε | pk, μ̃k, σ
2
k1, σ

2
k2), πε ∼ Stick(αε),

(8)

(pk, μ̃k, σ
2
k1, σ

2
k2) ∼ Unif(0, 1)Normal(0, σ2

μ̃)IG(aε, bε)IG(aε, bε).

(9)

To model v flexibly, similar to (5), we use a mixture of B-
spline basis functions with smoothness inducing priors on the
coefficients. The coefficients of (5) are now exponentiated to
ensure the function is positive.

v(X) =
J∑

j=1

bq,j(X) exp(ξj) = Bq,J(X) exp(ξ), (10)

p0(ξ | J, σ2
ξ ) ∝ exp{−ξT

R PRξR/(2σ2
ξ )}. (11)

In the Supplementary Materials, we discuss implemen-
tation issues, including automatic choice of the hyper-
parameters, and details of the posterior calculations, the
choice of initial values, the structure of the B-splines used
and additional supporting simulations.

3. Simulation Experiments

3.1. Basics

Based on M samples ξ
(m)
R , m = 1, . . . , M, drawn from the

posterior, a Monte Carlo estimate r̂(X) can be obtained

as r̂(X) = M−1
∑M

m=1
Bq,JR

(X)ξ
(m)
R . The integrated squared

error of estimation of the regression function r(·) by
the estimator r̂(·) is defined as ISE = ∫ {r(X) − r̂(X)}2 dX.
Based on B simulated data sets, a Monte Carlo estimate
of the mean integrated squared error (MISE) is given

by MISEest = B−1
∑B

b=1

∑N

i=1
{r(X�

i ) − r̂(b)(X�
i )}2�i, where

{X�
i }N

i=0 are a set of grid points on the range of X and
�i = (X�

i − X�
i−1) for all i.

We performed simulation experiments to compare the
MISE performance of our method with that of Berry et al.
(2002), referred to as the BCR method henceforth, a naive
method, and a deconvoluting kernel based estimator, referred
to as the DKE method henceforth. The naive method ig-
nores the measurement errors and treats the subject specific
means as the true covariates but accommodates conditional
heteroscedasticity in the regression errors. The DKE method
is implemented using the “DeconNpr” function from the R
package “decon” (Wang and Wang, 2011) allowing subject
specific heteroscedasticity. We compared the methods over a
wide range of possibilities. The reported estimated MISEs are
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all based on a grid of 500 equidistant points on [−2, 2] for
B = 200 simulated data sets. In each case 10,000 MCMC iter-
ations were run and the initial 5,000 iterations were discarded
as burn-in. To reduce autocorrelation among the sampled val-
ues, the post burn-in samples were thinned by a thinning in-
terval of length 5.

3.2. Setup 1: Homoscedasticity and Normally
Distributed X

We mimic simulation experiment setups from Berry
et al. (2002). We let fX(X) = Normal(X | 0, 1), r(X) =
sin(πX/2)/[1 + 2X2{sign(X) + 1}], UW ∼ Normal(0, 0.82),
var(UY ) = 0.32 and compare the methods over a factorial
combination of (i) two sample sizes n = 500, 1000; (ii) two
choices for the number of surrogates per subject m = 2, 3; and
(iii) five different distributions for the scaled regression errors
(three light-tailed densities including the Normal density and
two heavy-tailed densities, see Table 1 and Figure 1).

The results are presented in Table 2. The results show
that the MISE performance of our method is better than
the performance of the BCR method in all 20 cases consid-
ered, including the case of normally distributed regression er-
rors, when the parametric assumptions of the BCR method
are all satisfied. Results produced by our method and the
BCR method for this special case are summarized in Fig-

Table 1
The distributions used to generate the scaled errors in the

simulation experiments of Section 3.
SMRTCN(K, πε,p, μ̃, σ2

1, σ
2
2) denotes the scaled version of a

K component mixture of moment restricted two-component
normals:

∑K

k=1
πεkfcε(· | pk, μ̃k, σ

2
k1, σ

2
k2), scaled to have

variance one. Laplace(μ, b) denotes a Laplace distribution
with location μ and scale b. With μk denoting the kth order
central moments of the scaled errors, the skewness and excess
kurtosis of the distribution of scaled errors are measured by
the coefficients γ1 = μ3 and γ2 = μ4 − 3, respectively. The

shapes of these densities are illustrated in Figure 1.

Distribution of Skewness Excess
scaled errors (γ1) kurtosis (γ2)

(a) Normal(0,1) 0 0
(b) SMRTCN(1,1,0.4,2,2,1) 0.499 −0.966
(c) SMRTCN(1,1,0.5,2,1,1) 0 −1.760
(d) SMRTCN{2,(0.8,0.2),

(0.5,0.5),(0,0),(0.25,5),(0.25,5)} 0 7.524
(f) Laplace(0,2−1/2) 0 3

ure 2. The BCR method uses truncated polynomial splines (P-
splines), while we are using B-splines. As opposed to P-splines,
B-splines are locally supported and nearly orthogonal, and
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Figure 1. The distributions used to generate the scaled regression and measurement errors in simulation experiments,
superimposed over a standard normal density—(a) standard normal (solid lines in each panel, not shown separately), (b)
asymmetric bimodal, (c) symmetric bimodal, (d) symmetric heavy-tailed, and (e) symmetric heavy-tailed with a sharp peak
at zero. The figure appears in color in the electronic version of this article.
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Table 2
Mean integrated square error (MISE) performance of our
model (BSP) compared to the model of Berry et al. (2002)
(BCR), a naive model that ignores measurement errors

(Naive), and a deconvolution kernel estimator (DKE) for
homoscedastic simulation experiments in Section 3.2, with
X ∼ Normal(0, 1), r(X) = sin(πX/2)/[1 + 2X2{sign(X) + 1}],

UW ∼ Normal(0, 0.82) and five different densities for the
scaled regression errors (three light-tailed and two

heavy-tailed, see Table 1 and Figure 1 for details) with
var(UY ) = 0.32. Our method allows non-normality of X and

heteroscedasticity.

MISE × 100
True error Sample Number of
distribution size replicates BCR BSP Naive DKE

2 4.98 2.84 16.66 24.85
500 3 4.09 1.82 11.97 22.84Normal

2 3.11 1.53 18.05 20.21
1000 3 2.42 0.96 10.88 16.64

2 4.73 2.20 17.75 26.05Light-tailed 500
3 4.23 1.61 12.29 26.73bimodal

skewed 2 3.12 1.30 18.45 22.631000
3 2.50 0.92 10.80 19.67

2 4.83 3.49 18.60 26.08Light-tailed 500
3 4.30 1.78 12.50 24.05bimodal

symmetric 2 3.25 2.64 18.60 22.24
1000 3 2.53 0.85 11.13 18.67

2 4.78 1.82 17.75 21.69
500Heavy-tailed 3 4.09 1.38 11.37 19.22

symmetric 1 2 2.87 1.10 19.25 16.421000
3 2.38 0.76 11.08 15.90

2 4.77 2.34 18.72 24.28
500Heavy-tailed 3 4.14 1.77 11.75 23.76

symmetric 2 2 2.99 1.24 18.22 17.681000
3 2.41 0.92 10.69 16.66

are therefore numerically more stable than P-splines. This in-
creased numerical stability of our model results in better per-
formance even in situations when the parametric assumption
of the BCR model are satisfied. Additional simulation results
that support these findings are presented in the Supplemen-
tary Materials.

3.3. Setup 2: Homoscedasticity and Non-Normally
Distributed X

Next we keep the error variances constant at var(UY ) = 0.32

and var(UW ) = 0.82 and consider the same regression function
r(X) = sin(πX/2)/[1 + 2X2{sign(X) + 1}] as before, but allow
all the densities fX, fUY

, and fUW
to differ from Normality.

We now let fX(X) = 0.8 Normal(X | −1, 0.5) + 0.2 Normal(X |
1, 0.5) and compare the methods over a factorial combination
of (i) two sample sizes n = 500, 1000; (ii) two choices for the
number of surrogates per subject m = 2, 3; and (iii) five differ-
ent distributions for the scaled errors (three light-tailed and

two heavy-tailed, see Table 1 and Figure 1). The results are
presented in Table 3.

3.4. Setup 3: Heteroscedasticity and Non-Normally
Distributed X

Finally we consider conditionally heteroscedastic errors and
let vY (X) = (0.3 + X/8)2 and vW (X) = (0.8 + X/4)2. As be-
fore we let fX(X) = 0.8 Normal(X | −1, 0.5) + 0.2 Normal(X |
1, 0.5), r(X) = sin(πX/2)/[1 + 2X2{sign(X) + 1}] and compare
the methods over a factorial combination of (i) two sample
sizes n = 500, 1000; (ii) two choices for the number of surro-
gates per subject m = 2, 3; (iii) and five different distributions
for the scaled errors (three light-tailed and two heavy-tailed,
see Table 1 and Figure 1). The results are presented in Ta-
ble 4. Results for the heavy tailed error distribution (d) are
summarized in Figure 3.

Results presented in Tables 3 and 4 show that our method
vastly out-performed the BCR model in all 40 cases con-
sidered. For example, in Table 3, for the symmetric heavy-
tailed error distribution (d) with n = 1000, the improvement
in MISE over the BCR model is 18.17/1.21 ≈ 15 times when
there are 2 surrogates per unit and 14.50/0.94 ≈ 15 times
when there are 3 surrogates per unit. Similarly, in Table 4,
for the error distribution (d) with n = 1000, the improvement
in MISE is 23.89/1.49 ≈ 16 times for 2 surrogates per unit
and 15.42/1.05 ≈ 15 times for 3 surrogates per unit.

3.5. Additional Simulations

The use of B-splines in our model, as opposed to P-splines
used in the BCR model, can explain the somewhat surprising
results of Section 3.2, where our method was shown to outper-
form the BCR method even when the parametric assumptions
of the BCR method were satisfied. Additional simulation ex-
periments that support this claim are presented in the Sup-
plementary Materials, where we compared our method with
an improved version of the BCR method, referred to as the
BCRB method, that makes the same parametric assumptions
as the BCR model but uses B-splines, not P-splines, to model
the regression function. We considered two subcases from each
of the three scenarios considered above. When the parametric
assumptions of the BCR model were true, the BCRB method
outperformed our method. In all other cases, our method out-
performed the BCRB method.

Additional simulation experiments were also performed to
assess the MISE performance of our method when the true er-
ror generating densities depart from the multiplicative struc-
tural assumption (7). Results that suggest our model is fairly
robust to such departures are presented in the Supplementary
Materials.

The results of these additional simulation experiments em-
phasize the importance of using flexible but numerically stable
components for building measurement error models.

4. Example

As an illustration of our methodology, we analyze data col-
lected in the Eating at America’s Table (EATS) study (Subar
et al., 2001), a large scale epidemiologic study conducted by
the National Cancer Institute (NCI) to assess the role of diet
in the etiology and prevention of diseases.
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Figure 2. Results for our method corresponding to the median MISE in the simulation of Section 3.2 when the parametric
assumptions of Berry et al. (2002) are satisfied—X is Normal, the regression errors and the measurement errors are Normal
and homoscedastic. Sample size n = 1000 and m = 3 replicates per subject. In all panels the solid lines represent the truth,
the dot-dashed lines represent the estimates obtained by our method and the dashed lines represent the estimates obtained
by the method of Berry et al. (2002) (BCR). (A) The regression function estimated by our method and (B) the regression
function estimated by the BCR method. They are presented separately for clarity. In (A) and (B), the gray dots represent
estimated posterior mean of the covariate values (x-axis) and the observed responses (y-axis), and the bands represent point
wise 90% credible intervals. (C) The density of the covariate. The truth is standard normal. (D) The density of the scaled
regression errors. The truth is standard normal. (E) The variance function of the regression errors. The truth is constant. (F)
The density of the scaled measurement errors. The truth is standard normal. (G) The variance function of the measurement
errors. The truth is constant. The gray dots represent subject-specific sample means (x-axis) and variances (y-axis) of the
surrogates. The figure appears in color in the electronic version of this article.
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Table 3
Mean integrated square error (MISE) performance of our
model (BSP) compared to the model of Berry et al. (2002)
(BCR), a naive model that ignores measurement errors

(Naive), and a deconvolution kernel estimator (DKE) for the
simulation experiments in Section 3.3, with

X ∼ 0.8 Normal(−1, 0.5) + 0.2 Normal(1, 0.5),
r(X) = sin(πX/2)/[1 + 2X2{sign(X) + 1}] and five different
densities for the scaled errors (three light-tailed and two
heavy-tailed, see Table 1 and Figure 1 for details) with
var(UY ) = 0.32 and var(UW ) = 0.82. Our method allows

non-normality of X and heteroscedasticity.

MISE × 100
True error Sample Number of
distribution size replicates BCR BSP Naive DKE

2 20.30 6.97 30.80 43.58
500 3 17.29 3.64 21.15 37.08Normal

2 15.85 3.44 31.82 37.871000
3 13.18 2.31 21.11 32.14

2 19.52 4.66 34.44 46.67
Light-tailed 500

3 16.20 2.84 23.86 38.36bimodal
skewed 2 14.01 2.61 33.57 37.64

1000
3 11.79 1.55 23.22 33.30

2 20.18 5.09 34.67 45.97
Light-tailed 500

3 17.15 3.20 24.08 37.54bimodal
symmetric 2 15.73 2.67 31.61 38.95

1000
3 13.01 1.87 22.52 32.56

2 24.02 2.19 20.39 37.08
500Heavy-tailed 3 18.98 1.76 16.76 33.49

symmetric 1 2 18.17 1.21 21.16 32.001000
3 14.50 0.94 17.56 28.96

2 21.74 4.64 26.76 40.84
500Heavy-tailed 3 18.25 3.20 19.96 37.54

symmetric 2 2 16.99 2.32 25.27 33.901000
3 13.48 1.67 19.40 29.60

The most practical and economical method for collection
of dietary data in large epidemiologic studies is the food fre-
quency questionnaire (FFQ). In most studies the respondents
receive the FFQs by mail and are instructed to complete the
questionnaires independently and return them in postage paid
return envelopes. For obvious reasons the data collected by
FFQs on dietary intakes typically have a considerable mea-
surement error, and need to be validated prior to or as part
of dietary research. Improved methods can provide a better
idea about the relationship between reported FFQs and the
true unobserved dietary intakes. The study of the relation-
ship between reported FFQs and the true dietary intakes
is therefore of great importance in nutritional epidemiology.
Other approaches of data collection include 24 hour dietary
recalls, where participants are interviewed and their responses
recorded by trained professionals. Compared to FFQs, 24 hour
recalls are therefore much more expensive but the data col-

Table 4
Mean integrated square error (MISE) performance of our
model (BSP) compared to the model of Berry et al. (2002)
(BCR), a naive model that ignores measurement errors

(Naive), and a deconvolution kernel estimator (DKE) for the
simulation experiments in Section 3.4, with

X ∼ 0.8 Normal(−1, 0.5) + 0.2 Normal(1, 0.5),
r(X) = sin(πX/2)/[1 + 2X2{sign(X) + 1}],

vY (X) = (0.3 + X/8)2, vW (X) = (0.8 + X/4)2, and five
different densities for the scaled errors (three light-tailed and

two heavy-tailed, see Table 1 and Figure 1 for details).

MISE × 100
True error Sample Number of
distribution size replicates BCR BSP Naive DKE

2 30.85 8.47 21.59 55.00
500

3 24.74 5.21 15.44 41.57Normal
2 35.09 5.80 18.44 48.03

1000
3 27.36 3.93 11.58 36.14

2 43.92 7.54 19.74 52.35
Light-tailed 500

3 31.47 2.57 12.25 39.36bimodal
skewed 2 41.53 2.55 18.07 46.41

1000
3 30.10 1.67 12.69 34.53

2 33.72 4.15 20.48 57.02
Light-tailed 500

3 29.08 2.57 13.17 40.98bimodal
symmetric 2 33.50 2.25 17.42 51.66

1000
3 26.84 1.25 11.50 35.59

2 26.44 2.93 12.84 65.74
500Heavy-tailed 3 15.80 2.07 9.56 43.57

symmetric 1
2 23.89 1.49 13.40 60.531000
3 15.42 1.05 10.05 39.29

2 28.58 6.11 16.38 51.92
500Heavy-tailed 3 20.01 3.89 11.65 40.99

symmetric 2 2 26.73 3.44 15.16 47.531000
3 18.57 2.31 10.45 35.83

lected are also more accurate and detailed and can be used to
validate the FFQs.

In the EATS study, n = 965 participants returned FFQs
(Yi). They were interviewed mi = 4 times over the course of a
year and their 24 hour dietary recalls (Wij) were recorded. The
true long term average dietary intakes (Xi) are unobserved.

This is a non-standard setting in that Y is not a health
outcome, but rather is also a surrogate for X. Ideally one
would thus expect both W and Y to be unbiased for X, that
is, E(W | X) = E(Y | X) = X. While Y and W are both proxies
for X, the 24 hour recalls Wij are recorded by trained person-
nel after thoroughly conducted interviews, whereas the FFQs
Yi are merely self-reported. As compared to the 24 hour recalls
W , the FFQs Y are therefore much less reliable surrogates for
the unobserved X, and some departure from the ideal rela-
tionship E(Y | X) = X may be suspected. Our goal therefore
is to estimate the relationship between reported FFQs and the
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Figure 3. Results for heavy-tailed error distribution (d), sample size n = 1000 and m = 3 replicates per subject correspond-
ing to the median MISEs in the simulation of Section 3.4 when X is not Normally distributed, the regression errors and
the measurement errors are conditionally heteroscedastic and non-Normal. In all panels the solid lines represent the truth,
the dot-dashed lines represent the estimates obtained by our method and the dashed lines represent the estimates obtained by
the method of Berry et al. (2002) (BCR). (A) The regression function estimated by our method and (B) the regression function
estimated by the BCR method. They are presented separately for clarity. In (A) and (B), the gray dots represent estimated
posterior mean of the covariate values (x-axis) and the observed responses (y-axis), and the bands represent point wise 90%
credible intervals. (C) The density of the covariate. (D) The density of the scaled regression errors. (E) The variance function
of the regression errors. (F) The density of the scaled measurement errors. (G) The variance function of the measurement
errors. The gray dots represent subject-specific sample means (x-axis) and variances (y-axis) of the surrogates. The figure
appears in color in the electronic version of this article.

true dietary intakes through a flexible regression relationship
E(Y | X) = r(X), treating the 24 hour recalls Wij as unbiased
proxies.

Results for daily intakes of sodium produced by our method
and the method by Berry et al. (2002) (BCR) are summarized

in Figure 4. Conditional heteroscedasticity of measurements
errors is one salient feature of the proxies Wij, clearly identi-
fiable from the plot of subject-specific means versus subject-
specific variances. Since Yi is essentially also a surrogate for
Xi, a similar conditional heteroscedasticity pattern is expected
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Figure 4. Results for sodium from the EATS data set. In all panels the solid lines represent the estimates obtained by our
method and the dashed lines represent the estimates obtained by the method of Berry et al. (2002). (A) The regression function
estimated by our method and (B) the regression function estimated by the BCR method. They are presented separately for
clarity. In (A) and (B), the gray dots represent estimated posterior mean of the covariate values (x-axis) and the observed
responses (y-axis), and the bands represent point wise 90% credible intervals. (C) The density of the covariate. (D) The density
of the scaled regression errors. (E) The variance function of the regression errors. (F) The density of the scaled measurement
errors. (G) The variance function of the measurement errors. The gray dots represent subject-specific sample means (x-axis)
and variances (y-axis) of the surrogates. The figure appears in color in the electronic version of this article.

in the errors in the reported FFQs. The BCR method as-
sumes homoscedasticity and normality for the true intakes
and regression and measurement errors. Our method, on the
other hand, accommodates conditional heteroscedasticity in
both regression and measurement errors and also captures
departures from normality in their densities and the den-
sity of the true intakes, while providing a more robust and
realistic estimate of the regression relationship. The results

produced by our method indicate that the FFQs are over-
reported for low true intakes and are under-reported for high
true intakes. The results also indicate that the density of the
true sodium intakes and the densities of the regression and
measurement errors are all positively skewed. As expected
the estimated conditional heteroscedasticity patterns in the
24 recalls and the FFQs are also very similar. On the other
hand, although some departure from the ideal relationship
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E(Y | X) = X is suspected, the regression function estimated
by the BCR method is clearly unrealistic. This is not surpris-
ing, particularly in view of the strong parametric assumptions
made by the BCR method. This example vividly illustrates
the importance of the problem we addressed and methodology
we described.

5. Discussion

We considered the problem of robust estimation of a regres-
sion function in the presence of conditionally heteroscedastic
regression and measurement errors. The problem, though ex-
tremely important for real world applications, had never been
addressed before in the literature. The methodology we de-
scribed therefore makes important contributions to the mea-
surement error literature. Efficiency of the models in estimat-
ing the true regression function was illustrated through sim-
ulation experiments for a variety of situations. In particular,
we showed that our method vastly dominates the method of
Berry et al. (2002).

The proposed methodology being based on Bayesian hier-
archical framework, different components can be separately
reused to adapt to a wide variety of scenarios. For instance,
if one suspects the covariate, the regression and the measure-
ment errors to deviate from normality and homoscedasticity
but thinks that there is a quadratic relationship between the
latent covariate and the response, one might fit a quadratic re-
gression function while still using other flexible components of
our model to capture the suspected deviations. Our methods
can also be easily adapted to other special subcases, for exam-
ple, homoscedasticity of the regression error and/or the mea-
surement errors, normality of the measurement errors, etc. In
simulations not reported here, we have observed that some
gain in efficiency can be obtained if one restricts our model to
these special cases. However, the efficiency gain is generally
not enormous.

In some settings attempts are made to transform Y and
W so that an ideal model is achievable: constant variance of
transformed Y given transformed X, transformed W is unbi-
ased for the same transformation of X, and in both cases, the
transformed versions of X, UY and UW are all homoscedastic
and normally distributed, that is, the ideal model of Berry
et al. (2002) obtains. Of course, such transformation may not
make sense: as in our example, nutritionists will be more in-
terested in the regression of FFQ-measured sodium on true
sodium intake than they will be in the regression of the loga-
rithm of FFQ sodium on the logarithm of true sodium intake.
More to the point though, transformations to the ideal model
of Berry et al. (2002) are generally not possible. In that case,
our methodology provides robustness against violation of dis-
tributional assumptions and assumptions of homoscedasticity.

6. Supplementary Materials

The Supplementary Materials referenced in Section 2 and Sec-
tion 3 are available in a ZIP file under the Paper Information
link at the Biometrics website on Wiley Online Library. Im-
plementation issues such as automatic choice of the hyper-
parameters, details of the posterior calculations, the choice
of initial values, the structure of the B-splines and results of
additional supporting simulations are discussed in the Sup-

plementary Materials. The sodium data analyzed in Section
4 can be accessed from National Cancer Institute after signing
a Material Transfer Agreement. A simulated data set repre-
sentative of the actual data, generated from the fitted model,
is included in the Supplementary Materials. R programs im-
plementing our method are available with this paper at the
Biometrics web site on Wiley Online Library.
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