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Summary

In epidemiology the dependence of disease risk on an explanatory variable in the
presence of several confounding variables is commonly investigated by fitting a bi-
nary regression using a conditional likelihood, thus eliminating the nuisance parame-
ters. When the explanatory variable is measured with error the estimated regression
coefficient is biased, usually towards zero. Motivated by the need to correct for this
bias in analyses that combine data from a number of case-control studies of lung
cancer risk associated with exposure to residential radon, two approaches are inves-
tigated. Both employ the conditional distribution of the true explanatory variable
given the measured one. The method of regression calibration uses the expected
value of the true given the measured variable as the covariate. The second approach
integrates the conditional likelihood numerically by sampling from the distribution
of the true given the measured explanatory variable. The two approaches give very
similar point estimates and confidence intervals, not only for the motivating example
but also for an artificial data set. These results and some further simulations that
demonstrate correct coverage for the confidence intervals suggest that for studies of
residential radon and lung cancer the regression calibration approach will perform
very well, so that nothing more sophisticated is needed to correct for measurement

error.
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1 Introduction

In most countries, the natural radioactive gas radon is the largest source of exposure
to ionizing radiation in the general population [1]. Around 20 case-control studies
investigating the risk of lung cancer associated with radon exposure in the home
have been carried out in various different countries. In most of these studies the
lung cancer risk tends to increase with increasing exposure, but no individual study
has been large enough to provide an estimate of the risk that is sufficiently precise for
use in formulating policy to control radon-associated risks. The motivation for the
investigation reported here is the need to combine information from these studies,
in order to obtain a more precise estimate of the risk. The statistical analysis,
described in more detail below, is essentially a binary regression of case-control
status on the estimated radon exposure of each individual included in the analysis.
Estimating the exposure involves attempting to measure the radon concentration in
both current and previous homes of each of the individuals. Where measurements
are obtained they are subject to substantial error, with a coefficient of variation
of around 50% [2, 3]. Furthermore, some measurements are missing, because the
home cannot be accessed. It is known that in both linear [4] and nonlinear [5]
regression measurement error in the explanatory variable will affect the regression
coefficient, usually shrinking it towards zero compared with that from a regression
on the same variable measured without error. A combined analysis correcting for
this attenuation has recently been carried out for data from 13 European studies [2],
and a further analysis combining data from over 20 studies worldwide is underway

2, 6, 7).



It is sometimes argued that such correction is inappropriate, because any predic-
tions or actions would in any case be based on measured, not true, radon exposures
so that risk estimates should therefore be based on the measured exposures. In the
case of an exercise combining several studies there is a problem with this argument.
Exactly for simple linear regression, and approximately for nonlinear regression, the
bias in the regression coefficient estimated using measured values is determined by
the ratio of the measurement error variance to the variance of the explanatory vari-
able. In the radon studies these ratios vary from study to study [2, 8] and so in the
absence of any correction the different studies will estimate regression parameters
that are different both numerically and in their precise meaning. If the data from
several studies are combined with no correction for measurement error, the extent of
the attenuation in the resulting estimate of the regression coefficient will depend on
the variance ratios in all the component studies and will not have a clear interpreta-
tion in the context of any one of them. Implicit in any exercise combining studies is
the desire to estimate some globally meaningful quantity that is comparable across
studies. The obvious such quantity here is the dependence of risk on true radon
exposure.

Sections 2 and 3 briefly describe the European collaborative analysis, and re-
view some of the possible approaches to correcting for measurement error in this
situation. The two approaches selected for further investigation are regression cal-
ibration [5] and a Monte Carlo integration of the unobserved true radon exposure
from a likelihood involving both the unobserved true and the measured exposure.

These approaches are described in Sections 4 and 5 and the results of applying them



in the European collaborative analysis are reported in Section 6. In Section 7 the
same methods are applied to an artificial data set and to repeated simulations of
this artificial data set, where they give very accurate results. Section 8 contains a

brief discussion of the results and some conclusions.

2 Collaborative analysis of 13 radon studies

Data from 13 case-control studies of residential radon and lung cancer, carried out in
nine European countries, have recently been combined [2, 9]. In total there were 7148
cases of lung cancer and 14 208 controls in the combined data set. The explanatory
variable for each individual was his or her average exposure to residential radon
concentration over a period of 30 years. There were, on average, 2.7 addresses
per individual. Attempts were made to measure the radon concentrations in as
many of these as possible using long-term a-track detectors, and measurements
were available for around 80% of the 30-year period on average. They were, however,
subject to considerable measurement error. Investigations have been carried out in
several of the countries to estimate at least some of the components of this error by
making repeated measurements in the same home on different occasions [2]. All these
investigations indicated normally distributed additive measurement error on a log
scale, with a typical standard deviation being 0.5. This corresponds to a coefficient
of variation of 50% in the untransformed radon measurements. It is the magnitude
of this variation that makes correction for measurement error so important.

All of the correction methods considered here utilise the population distributions

of residential radon concentrations in each of the study areas. As the disease stud-



ied has low incidence these distributions may be estimated from the large number
of measurements made on control individuals in the studies. In every study the
distribution of log radon was found to be approximately normal.

To adjust for confounding variables, the data were cross-classified by study, age,
sex, region of residence, and smoking history. This cross classification produced
around 1700 strata. For an individual in stratum s the probability of disease given

exposure was modelled as

as(1+ gr)
1+ as(1+pr)’

(1)

ply=1[r,s) =

where y = 1 for cases and 0 for controls, r is radon exposure for the individual and
o is a baseline odds for stratum s. The use of the linear form 1+ Sr rather than the
more usual exp(4r) is common in modelling radiation risks [10]. However, with the
exception of the result in the appendix, which is specific to this linear odds model,
the methodology described here would apply equally well to the logistic model.

In situations such as this one, where there are very many strata S, it is usual to

base the analysis on the conditional likelihood

> ZEC 1 + ﬁrzs)
B o 1;[ peP Hzec”(l + 67’15) (2)

Here r;s is the exposure for individual ¢ in stratum s and Cj is the set of cases in
stratum s. Suppose there are ngs controls and ni cases in stratum s. Then the
sum in the denominator is over the (ngs + n15)!/(ngs!nis!) possible selections of ny,
cases from ngs + nys individuals, and C? indexes the cases for selection p. This
likelihood, which is appropriate for use in the analysis of a case-control study, is the

result of an argument that conditions on the set of exposures in each stratum [11,



12]. The conditioning eliminates the baseline parameters oy, saving computation
and avoiding the bias that can arise when maximum likelihood is used with very

many nuisance parameters.

3 Correcting for measurement error

Carroll et al. [5] provide a good review of the general methodology for measurement
error in nonlinear regression, including binary logistic regression. One of the meth-
ods described there, regression calibration, is attractive because of its simplicity,
and appears to work well in many situations.

The basic idea of regression calibration is to replace the unobserved true ex-
planatory variable in the regression by its expectation given its measured value.
This requires some modelling of both the explanatory variable and the measure-
ment process. Here, the log-normal population distribution of residential radon
concentrations and the log-normal multiplicative measurement errors are used to
derive the expectation of true radon exposure given measured exposure. In the case
of a simple linear regression, regression calibration would reproduce the correct re-
gression function. For a nonlinear one the regression function is only approximately
correct, but the approximation is often a good one. Rosner et al. [13] use this
approach for logistic regression in an epidemiological context, and both Lagarde et
al. [14] and Wang et al. [15, 3] use it to analyse studies of residential radon and
lung cancer, employing the model in (1).

In the case of logistic regression, Reeves et al. [16] exploit the similarity between

the logistic and probit functions to derive an approximation to the true regression on



the measured covariate that is better than the regression calibration approximation.
Their correction to the exposure variable depends on the unknown parameters of
the regression, but the fitting can be implemented using a simple iterative approach.
This method was used in the original analysis of one of the 13 European radon
studies [17]. One limitation of the method is that it does not apply, in general, to
the conditional likelihood. Reeves et al. do not give any results for the linear odds

model (1), but one of their results is extended this model in the appendix to this

paper.

4 Integrating the likelihood

Consider a population in which three variables, x, vy, z, are associated with each indi-
vidual. These correspond here to true radon exposure, disease status and measured

radon exposure, though the argument below is general. In the population
x has distribution p(x),

y given z has distribution p(y|z, #) depending on an unknown parameter 6 but

not on z, and
z given x has distribution p(z|z) independently of y and not involving 6.

Suppose a random sample is taken from the population and y and z are observed
but = is not. Then the likelihood for # may be obtained by integrating z from the

joint probability of observing all three variables, thus

ply.2l0) = [ ply,z al0)ds



= [ plylz.2.0)p(alz, O)p(:10)d

= [ plyl, Op(al2)p(:)da

In passing from the second to the third line the conditioning on z in p(y|z, z, ) may
be omitted because y is independent of the measured variable 2z given the true value
x. Similarly, the conditioning on € is dropped from the other two terms because
neither the measurement process nor the marginal distribution of x depends on 6.
Finally p(z), which can be taken outside the integral and does not involve 6, is
dropped, leaving

ply.210) o< [ p(yle, O)p(alz)da. (3)
The right hand side of (3) is the integral with respect to the distribution of the
unobserved true explanatory variable x given the measured one z of the likelihood
for the regression of y on z.

The method of regression calibration may be seen as a single-point approximation
to this integral, p(y|z,., 0), with z,. = E(z|z). The alternative approach studied
here involves direct evaluation of (3) by Monte Carlo integration.

The derivation above of (3) assumed a random sample from a population. Here
(3) will be used in the analysis of case-control studies, with p(y|x, #) replaced by the
conditional likelihood (2). This needs some justification.

The use in the analysis of case-control studies of the logistic likelihood that would
be appropriate for a cohort study is common practice. It has been shown [11, 18,
19] that this leads to correct inferences for slope parameters, though the intercepts
will have different interpretations. In particular, Carroll et al. [19] consider the

effect of measurement error as well as other complicating factors in this context and



conclude that even in the presence of these complications it will not be misleading to
analyse as though the data were from a cohort study. Farewell [11] gives a specific
justification of the use of the conditional likelihood for data from a case-control
study. These arguments carry through equally well for the linear odds model (1)
and its conditional likelihood (2).

An examination of Farewell’s conditioning argument shows that it cannot provide
a formal justification for the use of the conditional likelihood in (3). The conditional
likelihood is a ratio of two probabilities, which should be integrated separately and
then divided, whereas it is the ratio that will be integrated in (3). An informal jus-
tification might be made along the lines that the conditional likelihood captures the
marginal information about . If it actually was a marginal likelihood, obtainable
by integrating out the intercept parameters over some suitable prior distribution,
one could justify the procedure here formally. It seems unlikely that there is any
prior that gives exactly the conditional likelihood, but it may still be reasonable to
treat it as though there was.

Thus to analyse the case-control studies (3) will be replaced by

UB.y,2) = [ L8y, 2)p(al)da (4)

where £.(f3,y, z) is the conditional likelihood in (2). Then the regression calibration
approximation becomes /.(3,y, x,.) and the challenge for the Monte Carlo integra-
tion is to evaluate (4). This is made easier by the fact that the resulting likelihood
is a function of a single parameter [, allowing it to be tabulated. However, if 3 is
one dimensional, z is certainly not. The single integral sign in (4) conceals the fact
that the integral is over as many dimensions as there are individuals in the data.
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The next section discusses the estimation of this integral.

5 Implementation of Monte Carlo Integration

The approach to estimating S is to tabulate its likelihood on a one-dimensional
grid over a suitably chosen range. For each value of § the likelihood £(3,y, 2) is
calculated by Monte Carlo evaluation of the integral in (4). A point estimate and
confidence intervals for 5 may then be derived directly from the likelihood.

The most straightforward way to carry out the Monte Carlo integration would be
to generate repeated samples from the distribution p(x|z), evaluate the conditional
likelihood £.(/3, y, ) for each sample, and average these conditional likelihoods. How-

ever there are two ways in which it is possible to improve on this approach.

5.1 Factorisation by strata

The conditional likelihood (2) factorises into a product of independent contributions,
one from each stratum. When p(z|z) also factorises, which it usually will do, the
multiple integral in (4) may be written as a product over strata of an integral for
each stratum. For a given number of Monte Carlo samples, a much more accurate
result will be obtained by averaging for each stratum separately the contributions
to the conditional likelihood and then multiplying these averages than it would
by multiplying and then averaging. This is because treating the strata separately
reduces the dimensionality of the integrals being estimated from the size of the
entire study to the size of a single stratum. The conditional likelihood approach is
typically used for data sets that have many strata, each containing a modest number

11



of individuals. The dimension reduction is crucial to the feasibility of the Monte

Carlo integration in this situation.

5.2 More efficient sampling

For Monte Carlo integration to be efficient it is preferable that the samples generated
should be concentrated in the region where the integrand is non-negligible. To
achieve that here it may be desirable to sample = from a density ¢(z) different to

p(x|z). Rewriting the integral in (4) as

6.2) = [ {16,007 oty 5)
q(z)
shows that one then needs to compute for each sample from ¢(z) the term in { }
and average this over samples. Though the dependence is not explicitly shown, ¢(z)
may depend on z or even on y. In particular it may be helpful to sample from
different distributions for cases and controls, because £.(/3,y,x) as a function of z
for fixed 5 > 0 and y attains its largest values when the cases have greater x than
the controls, and will be relatively small for most samples when p(x|z) is used for

both cases and controls. This idea is used in the example described below and is

discussed further in that context.

5.3 Computation

The computations for the example below were carried out partly using Epicure [20]
and partly using MATLAB. The original intention had been to use Epicure for all the
computations with the conditional likelihood, but the program was never intended
to be embedded in a Monte Carlo simulation, and proved to be unacceptably slow for

12



such use. Therefore the algorithm of Gail et al. [21] was programmed in MATLAB
and checked against results from Epicure. One point of note in the computations
is that it is the likelihoods, not the log likelihoods, that are averaged, and care is

needed to avoid overflows or underflows in these.

5.4 Some comments

The idea of integrating the likelihood is not new. Carroll et al. [5] (Section 7.9.1)
describe an approach due to McFadden [22] in which the likelihood is integrated
numerically at each step in an iterative maximum likelihood procedure for multiple
parameters. What is different here is that because there is only one parameter, 3, it
is possible to tabulate the likelihood, simplifying the whole procedure considerably.

An alternative procedure that might appear tempting would be to compute the
maximum likelihood estimate /3, for each Monte Carlo sample from p(z|z) and use
the mean and standard deviation of the distribution of these values to estimate (3
and the extra variability due to the measurement error. However, the average of the
locations of the maxima of the individual likelihoods, which is what this procedure
uses to estimate 3, can be very far from the location of the maximum of the averaged
likelihoods. Theoretical calculations in the case of simple linear regression suggest
that the average of the Bml obtained by this alternative procedure will be almost
the same as if the measured values z had been used in the regression. Theory also
suggests that a weighted average, using the values of the likelihood at the maximum
as weights, might give a reasonable point estimate for 5. Some computations with

the linear odds model confirm that these results hold for this model also. The
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approach of tabulating the integrated likelihood seems preferable though, because

it provides a simple way of quantifying the uncertainty.

6 Some results from the European collaborative

analysis

One analysis of the European data was carried out using measured radon concentra-
tions with no adjustment for measurement error. In this analysis the value used for
a home for which no measurement was available was an estimate of the mean mea-
sured radon concentration in the population of homes in the region, or in some cases
a subregion, of the study. The regression coefficient § was estimated as 0.00084, with
a 95% likelihood-based confidence interval of (0.00030,0.00158) [2, 9]. This value
of 3 corresponds to an increase of 8.4% in the risk of lung cancer per 100 Bq/m?
increase in radon concentration. Correcting for measurement error using the inte-
grated likelihood approach nearly doubled the point estimate to 0.0016, and changed
the confidence interval to (0.0005,0.0031). Correcting using regression calibration
gave virtually identical results. The implementation of these corrections is described
in detail elsewhere [2]. Essentially the same procedures are followed in the artificial

example of the next section.

7 An artificial example

A possible conclusion from the results described above is that since both approaches
agree they are both working well. In order to increase the confidence in this conclu-
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sion an artificial example was constructed to mimic at least the main features of the
radon studies. For this artifical data set the true radon exposures and the true value

of 8 are known, making it possible to judge the performance of correction methods.

7.1 Simulation of the data

Populations were generated, separately for each of two areas, as follows. FEach
individual was assumed to have lived in two homes, with equal lengths of time in
each home. A true radon value for each home was generated as exp(z), with =
sampled independently from N(4.25,0.64) in area 1 and N(5.25,0.64) in area 2.
Given the two radon values exp(z1) and exp(z) for an individual, a binary disease
status y was generated with

a1+ pr)
T 1+ a(l+8r)

ply=1)
where the exposure variable r = {exp(z) + exp(z3)}/2 and the two constants are
a =0.0023 and S = 0.008.

This process generates populations with incidence rates of 0.4% in area 1 and
0.7% in area 2. The populations were generated to be large enough so that data
for two case-control studies, one for each area, could be constructed by random
sampling of 500 diseased cases and 1000 non-diseased controls. Within each study
the 1500 observations were randomly split into 60 strata of 25 observations each, the
resulting numbers of cases per stratum varying from 3 to 14. The combined sample
of 3000 observations in 120 strata forms the artificial data set. Of course it would
be possible to get 500 cases without generating such large populations by increasing

a very substantially, but this would lead to a quite different distribution of radon
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values for the cases in the resulting data.

The final step was to add measurement errors sampled independently from
N(0,0.25) to the log-radon values x for each house to give a measured log-radon z,
and to flag some of these measurements as missing. Each measurement was flagged
independently with probability 0.2, resulting in 20% missing measurements over-
all and, as expected, 4% of individuals with missing measurements for both their
houses.

The main differences between the artificial example and the collaborative analysis
are that the artificial example is smaller, with 3000 rather than 21 000 individuals,
and the effect is larger, with § = 0.008 compared to the estimate of 0.0016. The net
effect of these two differences is that /3 is estimated with roughly the same relative
precision in the two data sets. The radon distributions and the overall structure are
very similar. The result derived in the appendix (see also the discussion section)
suggests that the fact that the effect is larger in the artificial example should make

it more of a challenge for the regression calibration method.

7.2 Analysis with true and measured values

The artificial data were first analysed using the conditional likelihood (2), first with
r = {exp(z1)+exp(xs)}/2, the true radon, and then with m = {exp(z;)+exp(22)}/2,
the measured radon, as the explanatory variable, in each case with no missing ob-
servations. Figure 1 shows the two log likelihoods, each with its maximum value
subtracted. Maximum likelihood estimates and 95% likelihood confidence intervals,

the latter derived from the intersection of the log likelihoods with the horizontal line
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at 1.92 in Figure 1, are given in the first two rows of Table I.
Fkxkk Insert Figure 1 and Table T around here *****

The discrepancy between the maximum likelihood estimate of 0.0062 based on
the true radon concentrations and the value of 0.0080 used to generate the data
set is well within sampling variability. The attenuation due to measurement error is
considerable: both estimate and confidence interval are shrunk by a factor of around

0.5.

7.3 Regression calibration

Implementing the regression calibration approach requires the conditional expecta-
tion of the true exposure variable given the measured one. Here the true log radon
concentrations x in area A are drawn from N(u4,0%) for A = 1,2, and the corre-
sponding measurement z has distribution N(xz,02 ). Combining these two leads to

the distribution of x|z as N(f|,, 07,) with

1 1\ '/ 2 A
M|z = 0_24'% 0_—24-% (6)

) 11\
Oglz = 0_2—’_% :

Then the true radon exp(x) for a particular home, given the measurement z on that

and

2

x‘z), and to apply the regression calibration

home, has expectation exp(j, + 0.50
method we use these values to construct the explanatory variable. Homes for which
there is no measurement are covered by the same formulae if we let 0% — oc, so

that f1,, = pua and 03, = 0%. This corresponds, though now using true rather than
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measured radon, to the way such homes were treated in the collaborative analysis
without correction for measurement error, since exp(pa+0.50%) estimates the mean
of the distribution of true radon concentrations in area A.

Implementing the above requires estimates of the measurement error variance

02 and the means p, and variances 0% of the distributions of true log radons

m
in each area. For o2 we used the correct value 0.25. In the collaborative analysis
measurement error variances were estimated from the replicated measurements made
in several of the studies. To estimate the other parameters we used, as in the
collaborative analysis, the measured log radons in the data set. This estimation is
complicated by the fact that we have separate random samples of cases and controls,
but 114 and 0% correspond to the overall populations in the two areas. The first two
rows of Table IT show the observed means and variances of the non-missing measured
log radons, separately for cases and controls, in areas 1 and 2. The variances in the
columns headed ‘Corrected’ have had the measurement error variance o2, = 0.25

subtracted from them so that they, like the means, are unbiased estimates of the

corresponding population parameters for true log radon values.

**EE* Tnsert table IT around here *****

The third row of Table IT combines the separate case and control estimates to
produce estimates for the populations from which the case and control samples
were drawn. This requires independent estimates of the incidence rates ¢ in the

populations, taken to be 0.04 for area 1 and 0.07 for area 2 here. Then

Hpop = d)ﬂcase + (1 - ¢)Mcontrol
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and

Ugop = ¢2‘73ase + (1 - ¢)20-zontrol + d(1 — ) (ease — ,Ucontrol)2-
The effect of the low incidence rates and the modest differences between radon
concentrations in case and control groups is that the result is the same, to the
accuracy used, as simply using the mean and corrected variance from the control
sample to estimate u4 and 0. This is what was done in the collaborative analysis.

Using these data-based estimates for the parameters involved in p(z|z) introduces
an extra source of variability into the procedure, and induces various dependencies
between quantities treated as independent in some of the arguments above. Be-
cause the estimates are based on large samples, both the extra variability and the
dependencies are small, and they will be neglected.

The result of applying the regression calibration method to the artificial data set
is the log likelihood shown as a dashed line in Figure 2. For comparison, the solid
line in Figure 2 is the log likelihood using true radon values, already seen in Figure
1. The maximum likelihood estimate and likelihood-based 95% confidence interval

using regression calibration are given in the third row of Table I.
FHHH* Tnsert Figure 2 around here **#%*

The correction recovers almost exactly the point estimate obtained with the true
explanatory variable, as it is designed to do. The spread of the log likelihood, and
in consequence the width of the confidence interval, are increased compared with
that derived from the true values. This is appropriate, because there is now extra
uncertainty due to the measurement error. In Section 7.5 the coverage of the interval
is investigated in some further simulations.
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7.4 Integrating the likelihood

To integrate the likelihood the same distributions of x given z were employed as in
the regression calibration approach, using the same estimates for population means
and variances. A naive approach, sampling from p(z|z), and a more efficient sam-
pling strategy, described in detail below, were both investigated. In both cases the
likelihoods were averaged separately for each of the 120 strata and the resulting
averages multiplied.

To make the sampling more efficient the idea described in Section 5.2 was used.
Controls were still sampled from p(z|z). For cases, the case means, Mg, with
values 4.30 and 5.52 for areas 1 and 2 (Table II, row 1), were used instead of the
population means, m,,,, with values 4.26 and 5.26 (Table II, row 3), as substitutes
for 414 in calculating ji,), via (6). The variance estimates, v,o,, of 0.58 and 0.68
were not changed. Radon concentrations for homes associated with cases were then
sampled from this modified form of p(z|z). With this choice for the density ¢ in (5),
the factor p(z|z)/q(x) in (5) is 1 for controls but can be shown after some algebra

to receive a multiplicative contribution of

exp { (_m,, Opv_ mmse> x} (7)
pop

for each x sampled for a home associated with a case. It is worth emphasizing
that no change has been made to the integral being computed, which is still (4)
with p(z|z) based on the overall population radon distribution. The distribution of
radon for cases is introduced only to obtain samples that give higher likelihoods,
and the effect of the change is exactly compensated by the factors in (7). Some
preliminary comparisons showed that this approach gave a worthwhile reduction in
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the variance of the Monte Carlo integration results, and the results reported below
employ it.

The dotted curve in Figure 2 is the log of the integrated likelihood averaged over
ten thousand samples. The resulting maximum likelihood estimate B and confidence
interval (L, U) are given in the last row of Table I. To give some idea of the extent of
convergence, Figure 3 shows ten log likelihoods, each using one thousand of the ten
thousand samples, and each with its maximum value subtracted. The ten estimates
of B, L and U have relative standard deviations of around 1% in each case. The
upper confidence limits U, which are the most variable in absolute terms, range from

0.0131 to 0.0136. This is acceptable accuracy in this context.

kK Insert Figure 3 around here *##*

7.5 Repeated sampling behaviour of the regression calibra-
tion estimate and confidence interval

A further simulation was carried out to investigate the behaviour under repeated
sampling of the point estimate and confidence interval given by regression calibra-
tion. Fixing the strata, the case-control status, and the missing-value indicators in
the artificial data set, 10 000 such sets were generated by repeated simulation of the
true and measured radon values from the appropriate distributions. Point estimates
and likelihood confidence intervals were computed for each data set using the true
radon values and by applying the regression calibration method to the measured
ones. Including the integrated likelihood approach in this simulation would have
been impractical in terms of computer time.
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Using the true radon values, the 10 000 point estimates of 3, whose value is
known here to be 0.008, had sample mean 0.0085, median 0.0080 and coefficient
of variation 0.31 and were distributed lognormally. The 10 000 point estimates
derived from the measured radons using regression calibration had sample mean
0.0088, median 0.0080 and coefficient of variation 0.42 and were also distributed
lognormally.

On a log scale, both samples of estimates of § had mean and median log(0.0080)
making them unbiased estimators of log(3). The biases on the untransformed scale
are due to the skewed sampling distributions, and the difference in the biases is a
consequence of the difference in the coefficients of variation. The increase in the
coefficient of variation (or the standard deviation on the log scale) of the samples of
point estimates from 0.31 when the true radon values are used to 0.42 in the case of
regression calibration is an indication of the impact of the measurement errors and
missing values on the inference.

The initial artificial data set, for which the results are given in Table I, was not
specially selected, but it is clear that such perfect agreement between the regression
calibration B and that using true radon values was fortuitous. With measurement
errors as large as they are here there is substantial variabilty in both estimators of
[ and in the differences between them. However the simulations confirm that there
is no systematic error in the regression calibration estimate.

The results for the coverage of the 95% likelihood confidence intervals also con-
firm the correct performance of the regression calibration approach. In 10 000 repe-

titions the true § = 0.008 should be excluded 250 times at each end of the interval,
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with the observed numbers of exclusions having a standard deviation of 16, derived
from the binomial distribution with N =10 000 and p = 0.025. The observed num-
bers of exclusions at the lower and upper ends respectively were 257 and 243 using
the true radons, an overall coverage of exactly 95%, and 258 and 267 using the
measured radons and regression calibration, giving an overall coverage of 94.75%.

All these results are consistent with correct coverage properties.

8 Discussion

The initial motivation for implementing the integrated likelihood approach was to
improve on regression calibration for the collaborative analysis of the 13 radon stud-
ies. When, after a great deal of computation, the two approaches gave virtually
identical results, the further investigations described here were carried out. For the
artificial example, which copies the key features of the radon studies and for which
the two approaches also give very similar results, it seems that there is little scope for
improving on regression calibration. Not only does it give good point estimates but,
perhaps more surprisingly, the coverage properties of the resulting confidence inter-
val are also correct. We conclude that there is no need for any more sophisticated
approach in the collaborative analysis.

Should it have been obvious a priori that regression calibration was adequate?
One way of assessing this for the linear odds model is to examine the values of the
factor f in equation (11) of the appendix. If these are close to 1 for all observations,
it suggests that regression calibration may perform well. For the artificial example

the values of f are mostly close to 1, with the most extreme values reaching only

23



1.1. Thus the fact that regression calibration produces such good point estimates of
£ might have been predicted. However the remarkable accuracy of the confidence
intervals is still somewhat surprising.

Though the integrated likelihood approach is not needed for the radon studies,
regression calibration will not always work so well. For example, some further lim-
ited simulations with larger values of  suggest that the integrated likelihood and
regression calibration begin to diverge as [ increases, as one would expect from
examination of (11). When it is necessary, integrating the likelihood is a feasible

approach, even with quite large datasets.

Appendix

When the exposure variable in the linear-odds model (1) is r = exp(z), and the
distribution of the true z given the observed z is normal, it is possible to derive a
good approximation to the form of p(y = 1|z), thus extending the results of Reeves
et al. [16] to this case.

Dropping the subscript s and expressing the probability in terms of = gives

B ol 4+ pen)
ply =1lz) = 1+ a(l+ Ber)’

(8)

which can be written in the form

«Q 1 « 1

py=1o) =+ MO+ =+

O(k{f +z}) , (9)

where A(t) = €' /(1 + €') is the logistic function, # = In{fa/(1 + «)}, ®(.) is the cdf
of the standard normal distribution, and k£ = 0.588 = 1/1.70 is the constant in the
well-known [23] approximation A(t) ~ ®(kt).
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If x|z has a normal distribution with mean z* and variance o2 it is possible to

integrate the approximate form (9) over this distribution to give

=1|z) =
ply 12) l+a 1+«

o 1 o k{0 + 2*}
V1+k202)

Reversing the initial manipulations, this becomes

a(l + fBe*)
=1lz) ~ , 10
where the factor f is given by
-5
a *
= z 11
/ (1 + 0466 ) ’ (1)

with 6 = 1 — (1 + k?¢%)7%°. The only approximation in this argument is the use of
A(t) =~ ®(kt), and this is known to be good except in the extreme tails [23].

The expression in (10) is the equivalent for this model of equation (20) of Reeves
et al. for the logistic model. It shares with the logistic case the problem that the
intercept parameters do not cancel if this form is used in the conditional likelihood,
making it difficult to exploit this result in the analysis here. However, when f is
close to 1, (10) is close to (8) with x replaced by z* = E(z|z). Thus, examination of
the size of f may suggest when regression calibration will be adequate for the linear

odds model.
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Table 1. Point estimates, 3 and the lower, L, and upper, U, limits of 95% likelihood-
based confidence intervals for the regression parameter in the artificial example of

Section 7.1.

~

Analysis 6] L U

True radon values 0.0062 0.0035 0.0109
Measured radon, no correction 0.0034 0.0019 0.0057
Regression calibration 0.0059 0.0027 0.0127

Integration 0.0061 0.0028 0.0134
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Table II. Means and variances of non-missing measured log radons in each area,
separately for cases and controls and combined to produce estimates for the true log

radons in the overall population.

Area 1 Area 2
Mean Variance Mean Variance
Raw Corrected Raw Corrected
Cases 4.30 0.97 0.72 5.52 0.91 0.66
Controls  4.26 0.83 0.58 5.26 0.93 0.68
Overall 4.26 0.58 5.26 0.68
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Figure 1. Log likelihoods for g for the artificial example of Section 7.1 using the

true (solid line) and the measured (dashed line) radon exposures.
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Figure 2. Log likelihoods for g for the artificial example of Section 7.1 using the
true radon exposures (solid line) and using two approaches to correct for the effect

of measurement error, regression calibration (dashed line) and integrated likelihood

(dotted line).
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Figure 3. Ten log integrated likelihoods for g for the artificial example of Section

7.1. Each is the result of a separate Monte Carlo integration.
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