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SummaryIn epidemiology the dependen
e of disease risk on an explanatory variable in thepresen
e of several 
onfounding variables is 
ommonly investigated by �tting a bi-nary regression using a 
onditional likelihood, thus eliminating the nuisan
e parame-ters. When the explanatory variable is measured with error the estimated regression
oeÆ
ient is biased, usually towards zero. Motivated by the need to 
orre
t for thisbias in analyses that 
ombine data from a number of 
ase-
ontrol studies of lung
an
er risk asso
iated with exposure to residential radon, two approa
hes are inves-tigated. Both employ the 
onditional distribution of the true explanatory variablegiven the measured one. The method of regression 
alibration uses the expe
tedvalue of the true given the measured variable as the 
ovariate. The se
ond approa
hintegrates the 
onditional likelihood numeri
ally by sampling from the distributionof the true given the measured explanatory variable. The two approa
hes give verysimilar point estimates and 
on�den
e intervals, not only for the motivating examplebut also for an arti�
ial data set. These results and some further simulations thatdemonstrate 
orre
t 
overage for the 
on�den
e intervals suggest that for studies ofresidential radon and lung 
an
er the regression 
alibration approa
h will performvery well, so that nothing more sophisti
ated is needed to 
orre
t for measurementerror.Keywords: binary regression; 
ase-
ontrol study; 
onditional likelihood; measure-ment error; radon; regression 
alibration
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1 Introdu
tionIn most 
ountries, the natural radioa
tive gas radon is the largest sour
e of exposureto ionizing radiation in the general population [1℄. Around 20 
ase-
ontrol studiesinvestigating the risk of lung 
an
er asso
iated with radon exposure in the homehave been 
arried out in various di�erent 
ountries. In most of these studies thelung 
an
er risk tends to in
rease with in
reasing exposure, but no individual studyhas been large enough to provide an estimate of the risk that is suÆ
iently pre
ise foruse in formulating poli
y to 
ontrol radon-asso
iated risks. The motivation for theinvestigation reported here is the need to 
ombine information from these studies,in order to obtain a more pre
ise estimate of the risk. The statisti
al analysis,des
ribed in more detail below, is essentially a binary regression of 
ase-
ontrolstatus on the estimated radon exposure of ea
h individual in
luded in the analysis.Estimating the exposure involves attempting to measure the radon 
on
entration inboth 
urrent and previous homes of ea
h of the individuals. Where measurementsare obtained they are subje
t to substantial error, with a 
oeÆ
ient of variationof around 50% [2, 3℄. Furthermore, some measurements are missing, be
ause thehome 
annot be a

essed. It is known that in both linear [4℄ and nonlinear [5℄regression measurement error in the explanatory variable will a�e
t the regression
oeÆ
ient, usually shrinking it towards zero 
ompared with that from a regressionon the same variable measured without error. A 
ombined analysis 
orre
ting forthis attenuation has re
ently been 
arried out for data from 13 European studies [2℄,and a further analysis 
ombining data from over 20 studies worldwide is underway[2, 6, 7℄. 3



It is sometimes argued that su
h 
orre
tion is inappropriate, be
ause any predi
-tions or a
tions would in any 
ase be based on measured, not true, radon exposuresso that risk estimates should therefore be based on the measured exposures. In the
ase of an exer
ise 
ombining several studies there is a problem with this argument.Exa
tly for simple linear regression, and approximately for nonlinear regression, thebias in the regression 
oeÆ
ient estimated using measured values is determined bythe ratio of the measurement error varian
e to the varian
e of the explanatory vari-able. In the radon studies these ratios vary from study to study [2, 8℄ and so in theabsen
e of any 
orre
tion the di�erent studies will estimate regression parametersthat are di�erent both numeri
ally and in their pre
ise meaning. If the data fromseveral studies are 
ombined with no 
orre
tion for measurement error, the extent ofthe attenuation in the resulting estimate of the regression 
oeÆ
ient will depend onthe varian
e ratios in all the 
omponent studies and will not have a 
lear interpreta-tion in the 
ontext of any one of them. Impli
it in any exer
ise 
ombining studies isthe desire to estimate some globally meaningful quantity that is 
omparable a
rossstudies. The obvious su
h quantity here is the dependen
e of risk on true radonexposure.Se
tions 2 and 3 brie
y des
ribe the European 
ollaborative analysis, and re-view some of the possible approa
hes to 
orre
ting for measurement error in thissituation. The two approa
hes sele
ted for further investigation are regression 
al-ibration [5℄ and a Monte Carlo integration of the unobserved true radon exposurefrom a likelihood involving both the unobserved true and the measured exposure.These approa
hes are des
ribed in Se
tions 4 and 5 and the results of applying them4



in the European 
ollaborative analysis are reported in Se
tion 6. In Se
tion 7 thesame methods are applied to an arti�
ial data set and to repeated simulations ofthis arti�
ial data set, where they give very a

urate results. Se
tion 8 
ontains abrief dis
ussion of the results and some 
on
lusions.
2 Collaborative analysis of 13 radon studiesData from 13 
ase-
ontrol studies of residential radon and lung 
an
er, 
arried out innine European 
ountries, have re
ently been 
ombined [2, 9℄. In total there were 7148
ases of lung 
an
er and 14 208 
ontrols in the 
ombined data set. The explanatoryvariable for ea
h individual was his or her average exposure to residential radon
on
entration over a period of 30 years. There were, on average, 2.7 addressesper individual. Attempts were made to measure the radon 
on
entrations in asmany of these as possible using long-term �-tra
k dete
tors, and measurementswere available for around 80% of the 30-year period on average. They were, however,subje
t to 
onsiderable measurement error. Investigations have been 
arried out inseveral of the 
ountries to estimate at least some of the 
omponents of this error bymaking repeated measurements in the same home on di�erent o

asions [2℄. All theseinvestigations indi
ated normally distributed additive measurement error on a logs
ale, with a typi
al standard deviation being 0.5. This 
orresponds to a 
oeÆ
ientof variation of 50% in the untransformed radon measurements. It is the magnitudeof this variation that makes 
orre
tion for measurement error so important.All of the 
orre
tion methods 
onsidered here utilise the population distributionsof residential radon 
on
entrations in ea
h of the study areas. As the disease stud-5



ied has low in
iden
e these distributions may be estimated from the large numberof measurements made on 
ontrol individuals in the studies. In every study thedistribution of log radon was found to be approximately normal.To adjust for 
onfounding variables, the data were 
ross-
lassi�ed by study, age,sex, region of residen
e, and smoking history. This 
ross 
lassi�
ation produ
edaround 1700 strata. For an individual in stratum s the probability of disease givenexposure was modelled as p(y = 1jr; s) = �s(1 + �r)1 + �s(1 + �r) ; (1)where y = 1 for 
ases and 0 for 
ontrols, r is radon exposure for the individual and�s is a baseline odds for stratum s. The use of the linear form 1+�r rather than themore usual exp(�r) is 
ommon in modelling radiation risks [10℄. However, with theex
eption of the result in the appendix, whi
h is spe
i�
 to this linear odds model,the methodology des
ribed here would apply equally well to the logisti
 model.In situations su
h as this one, where there are very many strata S, it is usual tobase the analysis on the 
onditional likelihood`
(�; y; r) = SYs=1 Qi2Cs(1 + �ris)Pp2P Qi2Cps (1 + �ris) : (2)Here ris is the exposure for individual i in stratum s and Cs is the set of 
ases instratum s. Suppose there are n0s 
ontrols and n1s 
ases in stratum s. Then thesum in the denominator is over the (n0s + n1s)!=(n0s!n1s!) possible sele
tions of n1s
ases from n0s + n1s individuals, and Cps indexes the 
ases for sele
tion p. Thislikelihood, whi
h is appropriate for use in the analysis of a 
ase-
ontrol study, is theresult of an argument that 
onditions on the set of exposures in ea
h stratum [11,6



12℄. The 
onditioning eliminates the baseline parameters �s, saving 
omputationand avoiding the bias that 
an arise when maximum likelihood is used with verymany nuisan
e parameters.
3 Corre
ting for measurement errorCarroll et al. [5℄ provide a good review of the general methodology for measurementerror in nonlinear regression, in
luding binary logisti
 regression. One of the meth-ods des
ribed there, regression 
alibration, is attra
tive be
ause of its simpli
ity,and appears to work well in many situations.The basi
 idea of regression 
alibration is to repla
e the unobserved true ex-planatory variable in the regression by its expe
tation given its measured value.This requires some modelling of both the explanatory variable and the measure-ment pro
ess. Here, the log-normal population distribution of residential radon
on
entrations and the log-normal multipli
ative measurement errors are used toderive the expe
tation of true radon exposure given measured exposure. In the 
aseof a simple linear regression, regression 
alibration would reprodu
e the 
orre
t re-gression fun
tion. For a nonlinear one the regression fun
tion is only approximately
orre
t, but the approximation is often a good one. Rosner et al. [13℄ use thisapproa
h for logisti
 regression in an epidemiologi
al 
ontext, and both Lagarde etal. [14℄ and Wang et al. [15, 3℄ use it to analyse studies of residential radon andlung 
an
er, employing the model in (1).In the 
ase of logisti
 regression, Reeves et al. [16℄ exploit the similarity betweenthe logisti
 and probit fun
tions to derive an approximation to the true regression on7



the measured 
ovariate that is better than the regression 
alibration approximation.Their 
orre
tion to the exposure variable depends on the unknown parameters ofthe regression, but the �tting 
an be implemented using a simple iterative approa
h.This method was used in the original analysis of one of the 13 European radonstudies [17℄. One limitation of the method is that it does not apply, in general, tothe 
onditional likelihood. Reeves et al. do not give any results for the linear oddsmodel (1), but one of their results is extended this model in the appendix to thispaper.
4 Integrating the likelihoodConsider a population in whi
h three variables, x; y; z, are asso
iated with ea
h indi-vidual. These 
orrespond here to true radon exposure, disease status and measuredradon exposure, though the argument below is general. In the populationx has distribution p(x),y given x has distribution p(yjx; �) depending on an unknown parameter � butnot on z, andz given x has distribution p(zjx) independently of y and not involving �.Suppose a random sample is taken from the population and y and z are observedbut x is not. Then the likelihood for � may be obtained by integrating x from thejoint probability of observing all three variables, thusp(y; zj�) = Z p(y; z; xj�)dx8



= Z p(yjz; x; �)p(xjz; �)p(zj�)dx= Z p(yjx; �)p(xjz)p(z)dx :In passing from the se
ond to the third line the 
onditioning on z in p(yjz; x; �) maybe omitted be
ause y is independent of the measured variable z given the true valuex. Similarly, the 
onditioning on � is dropped from the other two terms be
auseneither the measurement pro
ess nor the marginal distribution of x depends on �.Finally p(z), whi
h 
an be taken outside the integral and does not involve �, isdropped, leaving p(y; zj�) / Z p(yjx; �)p(xjz)dx : (3)The right hand side of (3) is the integral with respe
t to the distribution of theunobserved true explanatory variable x given the measured one z of the likelihoodfor the regression of y on x.The method of regression 
alibration may be seen as a single-point approximationto this integral, p(yjxr
; �), with xr
 = E(xjz). The alternative approa
h studiedhere involves dire
t evaluation of (3) by Monte Carlo integration.The derivation above of (3) assumed a random sample from a population. Here(3) will be used in the analysis of 
ase-
ontrol studies, with p(yjx; �) repla
ed by the
onditional likelihood (2). This needs some justi�
ation.The use in the analysis of 
ase-
ontrol studies of the logisti
 likelihood that wouldbe appropriate for a 
ohort study is 
ommon pra
ti
e. It has been shown [11, 18,19℄ that this leads to 
orre
t inferen
es for slope parameters, though the inter
eptswill have di�erent interpretations. In parti
ular, Carroll et al. [19℄ 
onsider thee�e
t of measurement error as well as other 
ompli
ating fa
tors in this 
ontext and9




on
lude that even in the presen
e of these 
ompli
ations it will not be misleading toanalyse as though the data were from a 
ohort study. Farewell [11℄ gives a spe
i�
justi�
ation of the use of the 
onditional likelihood for data from a 
ase-
ontrolstudy. These arguments 
arry through equally well for the linear odds model (1)and its 
onditional likelihood (2).An examination of Farewell's 
onditioning argument shows that it 
annot providea formal justi�
ation for the use of the 
onditional likelihood in (3). The 
onditionallikelihood is a ratio of two probabilities, whi
h should be integrated separately andthen divided, whereas it is the ratio that will be integrated in (3). An informal jus-ti�
ation might be made along the lines that the 
onditional likelihood 
aptures themarginal information about �. If it a
tually was a marginal likelihood, obtainableby integrating out the inter
ept parameters over some suitable prior distribution,one 
ould justify the pro
edure here formally. It seems unlikely that there is anyprior that gives exa
tly the 
onditional likelihood, but it may still be reasonable totreat it as though there was.Thus to analyse the 
ase-
ontrol studies (3) will be repla
ed by`(�; y; z) = Z `
(�; y; x)p(xjz)dx (4)where `
(�; y; x) is the 
onditional likelihood in (2). Then the regression 
alibrationapproximation be
omes `
(�; y; xr
) and the 
hallenge for the Monte Carlo integra-tion is to evaluate (4). This is made easier by the fa
t that the resulting likelihoodis a fun
tion of a single parameter �, allowing it to be tabulated. However, if � isone dimensional, x is 
ertainly not. The single integral sign in (4) 
on
eals the fa
tthat the integral is over as many dimensions as there are individuals in the data.10



The next se
tion dis
usses the estimation of this integral.
5 Implementation of Monte Carlo IntegrationThe approa
h to estimating � is to tabulate its likelihood on a one-dimensionalgrid over a suitably 
hosen range. For ea
h value of � the likelihood `(�; y; z) is
al
ulated by Monte Carlo evaluation of the integral in (4). A point estimate and
on�den
e intervals for � may then be derived dire
tly from the likelihood.The most straightforward way to 
arry out the Monte Carlo integration would beto generate repeated samples from the distribution p(xjz), evaluate the 
onditionallikelihood `
(�; y; x) for ea
h sample, and average these 
onditional likelihoods. How-ever there are two ways in whi
h it is possible to improve on this approa
h.5.1 Fa
torisation by strataThe 
onditional likelihood (2) fa
torises into a produ
t of independent 
ontributions,one from ea
h stratum. When p(xjz) also fa
torises, whi
h it usually will do, themultiple integral in (4) may be written as a produ
t over strata of an integral forea
h stratum. For a given number of Monte Carlo samples, a mu
h more a

urateresult will be obtained by averaging for ea
h stratum separately the 
ontributionsto the 
onditional likelihood and then multiplying these averages than it wouldby multiplying and then averaging. This is be
ause treating the strata separatelyredu
es the dimensionality of the integrals being estimated from the size of theentire study to the size of a single stratum. The 
onditional likelihood approa
h istypi
ally used for data sets that have many strata, ea
h 
ontaining a modest number11



of individuals. The dimension redu
tion is 
ru
ial to the feasibility of the MonteCarlo integration in this situation.5.2 More eÆ
ient samplingFor Monte Carlo integration to be eÆ
ient it is preferable that the samples generatedshould be 
on
entrated in the region where the integrand is non-negligible. Toa
hieve that here it may be desirable to sample x from a density q(x) di�erent top(xjz). Rewriting the integral in (4) as`(�; y; z) = Z (`
(�; y; x)p(xjz)q(x) ) q(x)dx; (5)shows that one then needs to 
ompute for ea
h sample from q(x) the term in f gand average this over samples. Though the dependen
e is not expli
itly shown, q(x)may depend on z or even on y. In parti
ular it may be helpful to sample fromdi�erent distributions for 
ases and 
ontrols, be
ause `
(�; y; x) as a fun
tion of xfor �xed � > 0 and y attains its largest values when the 
ases have greater x thanthe 
ontrols, and will be relatively small for most samples when p(xjz) is used forboth 
ases and 
ontrols. This idea is used in the example des
ribed below and isdis
ussed further in that 
ontext.5.3 ComputationThe 
omputations for the example below were 
arried out partly using Epi
ure [20℄and partly using MATLAB. The original intention had been to use Epi
ure for all the
omputations with the 
onditional likelihood, but the program was never intendedto be embedded in a Monte Carlo simulation, and proved to be una

eptably slow for12



su
h use. Therefore the algorithm of Gail et al. [21℄ was programmed in MATLABand 
he
ked against results from Epi
ure. One point of note in the 
omputationsis that it is the likelihoods, not the log likelihoods, that are averaged, and 
are isneeded to avoid over
ows or under
ows in these.5.4 Some 
ommentsThe idea of integrating the likelihood is not new. Carroll et al. [5℄ (Se
tion 7.9.1)des
ribe an approa
h due to M
Fadden [22℄ in whi
h the likelihood is integratednumeri
ally at ea
h step in an iterative maximum likelihood pro
edure for multipleparameters. What is di�erent here is that be
ause there is only one parameter, �, itis possible to tabulate the likelihood, simplifying the whole pro
edure 
onsiderably.An alternative pro
edure that might appear tempting would be to 
ompute themaximum likelihood estimate �̂ml for ea
h Monte Carlo sample from p(xjz) and usethe mean and standard deviation of the distribution of these values to estimate �and the extra variability due to the measurement error. However, the average of thelo
ations of the maxima of the individual likelihoods, whi
h is what this pro
edureuses to estimate �, 
an be very far from the lo
ation of the maximum of the averagedlikelihoods. Theoreti
al 
al
ulations in the 
ase of simple linear regression suggestthat the average of the �̂ml obtained by this alternative pro
edure will be almostthe same as if the measured values z had been used in the regression. Theory alsosuggests that a weighted average, using the values of the likelihood at the maximumas weights, might give a reasonable point estimate for �. Some 
omputations withthe linear odds model 
on�rm that these results hold for this model also. The13



approa
h of tabulating the integrated likelihood seems preferable though, be
auseit provides a simple way of quantifying the un
ertainty.
6 Some results from the European 
ollaborativeanalysisOne analysis of the European data was 
arried out using measured radon 
on
entra-tions with no adjustment for measurement error. In this analysis the value used fora home for whi
h no measurement was available was an estimate of the mean mea-sured radon 
on
entration in the population of homes in the region, or in some 
asesa subregion, of the study. The regression 
oeÆ
ient � was estimated as 0.00084, witha 95% likelihood-based 
on�den
e interval of (0:00030; 0:00158) [2, 9℄. This valueof � 
orresponds to an in
rease of 8.4% in the risk of lung 
an
er per 100 Bq/m3in
rease in radon 
on
entration. Corre
ting for measurement error using the inte-grated likelihood approa
h nearly doubled the point estimate to 0.0016, and 
hangedthe 
on�den
e interval to (0:0005; 0:0031). Corre
ting using regression 
alibrationgave virtually identi
al results. The implementation of these 
orre
tions is des
ribedin detail elsewhere [2℄. Essentially the same pro
edures are followed in the arti�
ialexample of the next se
tion.
7 An arti�
ial exampleA possible 
on
lusion from the results des
ribed above is that sin
e both approa
hesagree they are both working well. In order to in
rease the 
on�den
e in this 
on
lu-14



sion an arti�
ial example was 
onstru
ted to mimi
 at least the main features of theradon studies. For this arti�
al data set the true radon exposures and the true valueof � are known, making it possible to judge the performan
e of 
orre
tion methods.7.1 Simulation of the dataPopulations were generated, separately for ea
h of two areas, as follows. Ea
hindividual was assumed to have lived in two homes, with equal lengths of time inea
h home. A true radon value for ea
h home was generated as exp(x), with xsampled independently from N(4:25; 0:64) in area 1 and N(5:25; 0:64) in area 2.Given the two radon values exp(x1) and exp(x2) for an individual, a binary diseasestatus y was generated with p(y = 1) = �(1 + �r)1 + �(1 + �r) ;where the exposure variable r = fexp(x1) + exp(x2)g=2 and the two 
onstants are� = 0:0023 and � = 0:008.This pro
ess generates populations with in
iden
e rates of 0.4% in area 1 and0.7% in area 2. The populations were generated to be large enough so that datafor two 
ase-
ontrol studies, one for ea
h area, 
ould be 
onstru
ted by randomsampling of 500 diseased 
ases and 1000 non-diseased 
ontrols. Within ea
h studythe 1500 observations were randomly split into 60 strata of 25 observations ea
h, theresulting numbers of 
ases per stratum varying from 3 to 14. The 
ombined sampleof 3000 observations in 120 strata forms the arti�
ial data set. Of 
ourse it wouldbe possible to get 500 
ases without generating su
h large populations by in
reasing� very substantially, but this would lead to a quite di�erent distribution of radon15



values for the 
ases in the resulting data.The �nal step was to add measurement errors sampled independently fromN(0; 0:25) to the log-radon values x for ea
h house to give a measured log-radon z,and to 
ag some of these measurements as missing. Ea
h measurement was 
aggedindependently with probability 0.2, resulting in 20% missing measurements over-all and, as expe
ted, 4% of individuals with missing measurements for both theirhouses.The main di�eren
es between the arti�
ial example and the 
ollaborative analysisare that the arti�
ial example is smaller, with 3000 rather than 21 000 individuals,and the e�e
t is larger, with � = 0:008 
ompared to the estimate of 0:0016. The nete�e
t of these two di�eren
es is that � is estimated with roughly the same relativepre
ision in the two data sets. The radon distributions and the overall stru
ture arevery similar. The result derived in the appendix (see also the dis
ussion se
tion)suggests that the fa
t that the e�e
t is larger in the arti�
ial example should makeit more of a 
hallenge for the regression 
alibration method.7.2 Analysis with true and measured valuesThe arti�
ial data were �rst analysed using the 
onditional likelihood (2), �rst withr = fexp(x1)+exp(x2)g=2, the true radon, and then withm = fexp(z1)+exp(z2)g=2,the measured radon, as the explanatory variable, in ea
h 
ase with no missing ob-servations. Figure 1 shows the two log likelihoods, ea
h with its maximum valuesubtra
ted. Maximum likelihood estimates and 95% likelihood 
on�den
e intervals,the latter derived from the interse
tion of the log likelihoods with the horizontal line16



at 1.92 in Figure 1, are given in the �rst two rows of Table I.***** Insert Figure 1 and Table I around here *****The dis
repan
y between the maximum likelihood estimate of 0.0062 based onthe true radon 
on
entrations and the value of 0.0080 used to generate the dataset is well within sampling variability. The attenuation due to measurement error is
onsiderable: both estimate and 
on�den
e interval are shrunk by a fa
tor of around0.5.7.3 Regression 
alibrationImplementing the regression 
alibration approa
h requires the 
onditional expe
ta-tion of the true exposure variable given the measured one. Here the true log radon
on
entrations x in area A are drawn from N(�A; �2A) for A = 1; 2, and the 
orre-sponding measurement z has distribution N(x; �2m). Combining these two leads tothe distribution of xjz as N(�xjz; �2xjz) with�xjz =  1�2m + 1�2A!�1  z�2m + �A�2A! (6)and �2xjz =  1�2m + 1�2A!�1 :Then the true radon exp(x) for a parti
ular home, given the measurement z on thathome, has expe
tation exp(�xjz + 0:5�2xjz), and to apply the regression 
alibrationmethod we use these values to 
onstru
t the explanatory variable. Homes for whi
hthere is no measurement are 
overed by the same formulae if we let �2m ! 1, sothat �xjz = �A and �2xjz = �2A. This 
orresponds, though now using true rather than17



measured radon, to the way su
h homes were treated in the 
ollaborative analysiswithout 
orre
tion for measurement error, sin
e exp(�A+0:5�2A) estimates the meanof the distribution of true radon 
on
entrations in area A.Implementing the above requires estimates of the measurement error varian
e�2m and the means �A and varian
es �2A of the distributions of true log radonsin ea
h area. For �2m we used the 
orre
t value 0.25. In the 
ollaborative analysismeasurement error varian
es were estimated from the repli
ated measurements madein several of the studies. To estimate the other parameters we used, as in the
ollaborative analysis, the measured log radons in the data set. This estimation is
ompli
ated by the fa
t that we have separate random samples of 
ases and 
ontrols,but �A and �2A 
orrespond to the overall populations in the two areas. The �rst tworows of Table II show the observed means and varian
es of the non-missing measuredlog radons, separately for 
ases and 
ontrols, in areas 1 and 2. The varian
es in the
olumns headed `Corre
ted' have had the measurement error varian
e �2m = 0:25subtra
ted from them so that they, like the means, are unbiased estimates of the
orresponding population parameters for true log radon values.***** Insert table II around here *****The third row of Table II 
ombines the separate 
ase and 
ontrol estimates toprodu
e estimates for the populations from whi
h the 
ase and 
ontrol sampleswere drawn. This requires independent estimates of the in
iden
e rates � in thepopulations, taken to be 0.04 for area 1 and 0.07 for area 2 here. Then�pop = ��
ase + (1� �)�
ontrol18



and �2pop = �2�2
ase + (1� �)2�2
ontrol + �(1� �)(�
ase � �
ontrol)2:The e�e
t of the low in
iden
e rates and the modest di�eren
es between radon
on
entrations in 
ase and 
ontrol groups is that the result is the same, to thea

ura
y used, as simply using the mean and 
orre
ted varian
e from the 
ontrolsample to estimate �A and �2A. This is what was done in the 
ollaborative analysis.Using these data-based estimates for the parameters involved in p(xjz) introdu
esan extra sour
e of variability into the pro
edure, and indu
es various dependen
iesbetween quantities treated as independent in some of the arguments above. Be-
ause the estimates are based on large samples, both the extra variability and thedependen
ies are small, and they will be negle
ted.The result of applying the regression 
alibration method to the arti�
ial data setis the log likelihood shown as a dashed line in Figure 2. For 
omparison, the solidline in Figure 2 is the log likelihood using true radon values, already seen in Figure1. The maximum likelihood estimate and likelihood-based 95% 
on�den
e intervalusing regression 
alibration are given in the third row of Table I.***** Insert Figure 2 around here *****The 
orre
tion re
overs almost exa
tly the point estimate obtained with the trueexplanatory variable, as it is designed to do. The spread of the log likelihood, andin 
onsequen
e the width of the 
on�den
e interval, are in
reased 
ompared withthat derived from the true values. This is appropriate, be
ause there is now extraun
ertainty due to the measurement error. In Se
tion 7.5 the 
overage of the intervalis investigated in some further simulations.19



7.4 Integrating the likelihoodTo integrate the likelihood the same distributions of x given z were employed as inthe regression 
alibration approa
h, using the same estimates for population meansand varian
es. A naive approa
h, sampling from p(xjz), and a more eÆ
ient sam-pling strategy, des
ribed in detail below, were both investigated. In both 
ases thelikelihoods were averaged separately for ea
h of the 120 strata and the resultingaverages multiplied.To make the sampling more eÆ
ient the idea des
ribed in Se
tion 5.2 was used.Controls were still sampled from p(xjz). For 
ases, the 
ase means, m
ase, withvalues 4.30 and 5.52 for areas 1 and 2 (Table II, row 1), were used instead of thepopulation means, mpop, with values 4.26 and 5.26 (Table II, row 3), as substitutesfor �A in 
al
ulating �xjz via (6). The varian
e estimates, vpop, of 0.58 and 0.68were not 
hanged. Radon 
on
entrations for homes asso
iated with 
ases were thensampled from this modi�ed form of p(xjz). With this 
hoi
e for the density q in (5),the fa
tor p(xjz)=q(x) in (5) is 1 for 
ontrols but 
an be shown after some algebrato re
eive a multipli
ative 
ontribution ofexp( mpop �m
asevpop ! x) (7)for ea
h x sampled for a home asso
iated with a 
ase. It is worth emphasizingthat no 
hange has been made to the integral being 
omputed, whi
h is still (4)with p(xjz) based on the overall population radon distribution. The distribution ofradon for 
ases is introdu
ed only to obtain samples that give higher likelihoods,and the e�e
t of the 
hange is exa
tly 
ompensated by the fa
tors in (7). Somepreliminary 
omparisons showed that this approa
h gave a worthwhile redu
tion in20



the varian
e of the Monte Carlo integration results, and the results reported belowemploy it.The dotted 
urve in Figure 2 is the log of the integrated likelihood averaged overten thousand samples. The resulting maximum likelihood estimate �̂ and 
on�den
einterval (L; U) are given in the last row of Table I. To give some idea of the extent of
onvergen
e, Figure 3 shows ten log likelihoods, ea
h using one thousand of the tenthousand samples, and ea
h with its maximum value subtra
ted. The ten estimatesof �̂, L and U have relative standard deviations of around 1% in ea
h 
ase. Theupper 
on�den
e limits U , whi
h are the most variable in absolute terms, range from0.0131 to 0.0136. This is a

eptable a

ura
y in this 
ontext.***** Insert Figure 3 around here *****7.5 Repeated sampling behaviour of the regression 
alibra-tion estimate and 
on�den
e intervalA further simulation was 
arried out to investigate the behaviour under repeatedsampling of the point estimate and 
on�den
e interval given by regression 
alibra-tion. Fixing the strata, the 
ase-
ontrol status, and the missing-value indi
ators inthe arti�
ial data set, 10 000 su
h sets were generated by repeated simulation of thetrue and measured radon values from the appropriate distributions. Point estimatesand likelihood 
on�den
e intervals were 
omputed for ea
h data set using the trueradon values and by applying the regression 
alibration method to the measuredones. In
luding the integrated likelihood approa
h in this simulation would havebeen impra
ti
al in terms of 
omputer time.21



Using the true radon values, the 10 000 point estimates of �, whose value isknown here to be 0.008, had sample mean 0.0085, median 0.0080 and 
oeÆ
ientof variation 0.31 and were distributed lognormally. The 10 000 point estimatesderived from the measured radons using regression 
alibration had sample mean0.0088, median 0.0080 and 
oeÆ
ient of variation 0.42 and were also distributedlognormally.On a log s
ale, both samples of estimates of � had mean and median log(0:0080)making them unbiased estimators of log(�). The biases on the untransformed s
aleare due to the skewed sampling distributions, and the di�eren
e in the biases is a
onsequen
e of the di�eren
e in the 
oeÆ
ients of variation. The in
rease in the
oeÆ
ient of variation (or the standard deviation on the log s
ale) of the samples ofpoint estimates from 0.31 when the true radon values are used to 0.42 in the 
ase ofregression 
alibration is an indi
ation of the impa
t of the measurement errors andmissing values on the inferen
e.The initial arti�
ial data set, for whi
h the results are given in Table I, was notspe
ially sele
ted, but it is 
lear that su
h perfe
t agreement between the regression
alibration �̂ and that using true radon values was fortuitous. With measurementerrors as large as they are here there is substantial variabilty in both estimators of� and in the di�eren
es between them. However the simulations 
on�rm that thereis no systemati
 error in the regression 
alibration estimate.The results for the 
overage of the 95% likelihood 
on�den
e intervals also 
on-�rm the 
orre
t performan
e of the regression 
alibration approa
h. In 10 000 repe-titions the true � = 0:008 should be ex
luded 250 times at ea
h end of the interval,22



with the observed numbers of ex
lusions having a standard deviation of 16, derivedfrom the binomial distribution with N =10 000 and p = 0:025. The observed num-bers of ex
lusions at the lower and upper ends respe
tively were 257 and 243 usingthe true radons, an overall 
overage of exa
tly 95%, and 258 and 267 using themeasured radons and regression 
alibration, giving an overall 
overage of 94.75%.All these results are 
onsistent with 
orre
t 
overage properties.
8 Dis
ussionThe initial motivation for implementing the integrated likelihood approa
h was toimprove on regression 
alibration for the 
ollaborative analysis of the 13 radon stud-ies. When, after a great deal of 
omputation, the two approa
hes gave virtuallyidenti
al results, the further investigations des
ribed here were 
arried out. For thearti�
ial example, whi
h 
opies the key features of the radon studies and for whi
hthe two approa
hes also give very similar results, it seems that there is little s
ope forimproving on regression 
alibration. Not only does it give good point estimates but,perhaps more surprisingly, the 
overage properties of the resulting 
on�den
e inter-val are also 
orre
t. We 
on
lude that there is no need for any more sophisti
atedapproa
h in the 
ollaborative analysis.Should it have been obvious a priori that regression 
alibration was adequate?One way of assessing this for the linear odds model is to examine the values of thefa
tor f in equation (11) of the appendix. If these are 
lose to 1 for all observations,it suggests that regression 
alibration may perform well. For the arti�
ial examplethe values of f are mostly 
lose to 1, with the most extreme values rea
hing only23



1.1. Thus the fa
t that regression 
alibration produ
es su
h good point estimates of� might have been predi
ted. However the remarkable a

ura
y of the 
on�den
eintervals is still somewhat surprising.Though the integrated likelihood approa
h is not needed for the radon studies,regression 
alibration will not always work so well. For example, some further lim-ited simulations with larger values of � suggest that the integrated likelihood andregression 
alibration begin to diverge as � in
reases, as one would expe
t fromexamination of (11). When it is ne
essary, integrating the likelihood is a feasibleapproa
h, even with quite large datasets.
AppendixWhen the exposure variable in the linear-odds model (1) is r = exp(x), and thedistribution of the true x given the observed z is normal, it is possible to derive agood approximation to the form of p(y = 1jz), thus extending the results of Reeveset al. [16℄ to this 
ase.Dropping the subs
ript s and expressing the probability in terms of x givesp(y = 1jx) = �(1 + �ex)1 + �(1 + �ex) ; (8)whi
h 
an be written in the formp(y = 1jx) = �1 + � + 11 + ��(� + x) � �1 + � + 11 + ��(kf� + xg) ; (9)where �(t) = et=(1 + et) is the logisti
 fun
tion, � = lnf��=(1 +�)g, �(:) is the 
dfof the standard normal distribution, and k = 0:588 = 1=1:70 is the 
onstant in thewell-known [23℄ approximation �(t) � �(kt).24



If xjz has a normal distribution with mean z� and varian
e �2 it is possible tointegrate the approximate form (9) over this distribution to givep(y = 1jz) � �1 + � + 11 + �� kf� + z�gp1 + k2�2! :Reversing the initial manipulations, this be
omesp(y = 1jx) � �(1 + f�ez�)1 + �(1 + f�ez�) ; (10)where the fa
tor f is given by f = � �1 + ��ez���Æ ; (11)with Æ = 1� (1 + k2�2)�0:5. The only approximation in this argument is the use of�(t) � �(kt), and this is known to be good ex
ept in the extreme tails [23℄.The expression in (10) is the equivalent for this model of equation (20) of Reeveset al. for the logisti
 model. It shares with the logisti
 
ase the problem that theinter
ept parameters do not 
an
el if this form is used in the 
onditional likelihood,making it diÆ
ult to exploit this result in the analysis here. However, when f is
lose to 1, (10) is 
lose to (8) with x repla
ed by z� = E(xjz). Thus, examination ofthe size of f may suggest when regression 
alibration will be adequate for the linearodds model.
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Table I. Point estimates, �̂ and the lower, L, and upper, U , limits of 95% likelihood-based 
on�den
e intervals for the regression parameter in the arti�
ial example ofSe
tion 7.1. Analysis �̂ L UTrue radon values 0.0062 0.0035 0.0109Measured radon, no 
orre
tion 0.0034 0.0019 0.0057Regression 
alibration 0.0059 0.0027 0.0127Integration 0.0061 0.0028 0.0134
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Table II. Means and varian
es of non-missing measured log radons in ea
h area,separately for 
ases and 
ontrols and 
ombined to produ
e estimates for the true logradons in the overall population.Area 1 Area 2Mean Varian
e Mean Varian
eRaw Corre
ted Raw Corre
tedCases 4.30 0.97 0.72 5.52 0.91 0.66Controls 4.26 0.83 0.58 5.26 0.93 0.68Overall 4.26 0.58 5.26 0.68
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Figure 1. Log likelihoods for � for the arti�
ial example of Se
tion 7.1 using thetrue (solid line) and the measured (dashed line) radon exposures.
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Figure 2. Log likelihoods for � for the arti�
ial example of Se
tion 7.1 using thetrue radon exposures (solid line) and using two approa
hes to 
orre
t for the e�e
tof measurement error, regression 
alibration (dashed line) and integrated likelihood(dotted line).
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Figure 3. Ten log integrated likelihoods for � for the arti�
ial example of Se
tion7.1. Ea
h is the result of a separate Monte Carlo integration.
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