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Abstract

We develop a Bayes factor based testing procedure for comparing two population means in high 

dimensional settings. In ‘large-p-small-n’ settings, Bayes factors based on proper priors require 

eliciting a large and complex p×p covariance matrix, whereas Bayes factors based on Jeffrey’s 

prior suffer the same impediment as the classical Hotelling T2 test statistic as they involve 

inversion of ill-formed sample covariance matrices. To circumvent this limitation, we propose that 

the Bayes factor be based on lower dimensional random projections of the high dimensional data 

vectors. We choose the prior under the alternative to maximize the power of the test for a fixed 

threshold level, yielding a restricted most powerful Bayesian test (RMPBT). The final test statistic 

is based on the ensemble of Bayes factors corresponding to multiple replications of randomly 

projected data. We show that the test is unbiased and, under mild conditions, is also locally 

consistent. We demonstrate the efficacy of the approach through simulated and real data examples.
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1 Introduction

High dimensional population mean testing is common in many application areas including 

genomics, where gene-set testing is often of more interest than individual gene tests (Ein-

Dor et al., 2006; Subramanian et al., 2005). A natural high dimensional test is based on the 

distance between the sample mean vectors weighted by the inverse sample covariance 

matrix, also known as the Mahalanobis distance (Johnson and Wichern, 1992). However, the 

weight becomes undetermined when the dimension of the population mean vectors is larger 

than the total sample size minus 2.

To circumvent these limitations, two major approaches have emerged. The first approach is 

centered around constructing tests that eliminate the need to invert ill-formed covariance 

matrices. Bai and Saranadasa (1996) replaced the sample covariance matrix by a diagonal 

covariance matrix, for which the inverse exists. Srivastava (2007) substituted the inverse 

covariance matrix by its Moore-Penrose inverse, under the assumption that the groups have 

the same covariances. Wu et al. (2006) and Gregory et al. (2014) proposed tests based on the 

pooled squared univariate t-tests, eliminating the need to invert non-positive definitive 

matrices.

The latter approach centers around transforming the data, instead of the test statistics, so that 

existing tests could be applied to the transformed data. Random projection (RP) is one such 

method that works by projecting high dimensional data into lower dimensions while only 

slightly distorting the distances between the original vectors. See, for example, Dasgupta 

and Gupta (2003). RP has become a popular tool used extensively in machine learning 

literature where texts documents, imaging and MRI data are often high dimensional. 

Dasgupta (2000), for example, used RP to uncover the components of high dimensional 

mixtures of Gaussians. Fern and Brodley (2003) showed the improvement in clustering high 

dimensional data using RP over other standard approaches. Recently, Guhaniyogi and 

Dunson (2015) proposed a Bayesian compression regression approach in n ≪ p scenarios, 

where RP is used to reduce the covariate space. RP has entered the frequentist hypothesis 

testing literature where the T2 statistics are based on the projected version of the data in 

‘large-p-small-n’ setting. See, for example, Lopes et al. (2011) and Srivastava et al. (2016).

However, to our knowledge, no work has been done to extend Bayesian machineries to 

hypothesis testing in high dimensional group means testing. Bayesian hypothesis testing 

differs from its frequentist counterpart in that the decision to reject or accept a null 

hypothesis is based on the Bayes factor and a chosen evidence threshold (Jeffreys, 1961; 

Kass and Raftery, 1995). More precisely, the Bayes factor in favor of the alternative 

hypothesis H1, denoted by BF10, is defined as

BF10 =
m(Y ∣ H1)
m(Y ∣ H0) =

∫ f (Y ∣ Θ) π(Θ ∣ H1)dΘ
∫ f (Y ∣ Θ) π(Θ ∣ H0)dΘ (1)
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where m(Y|Hi) denotes the marginal distribution of Y under Hi; π(Θ|Hi) denotes the prior 

distribution of Θ under Hi, for i = 0, 1.

Equation (1) involves high dimensional integrals and the choice of π(Θ|Hi) often focuses on 

distributions that lead to closed form expressions for the Bayes factor.

In this paper, we use the random projection approach to develop a Bayes factor based 

restricted most powerful Bayesian test (RMPBT) (Goddard and Johnson, 2016) for the high 

dimensional group means testing problem. In an RMPBT, the prior distribution under the 

alternative is chosen by maximizing the power of the test with respect to a restricted class of 

priors. The evidence threshold is selected to match the rejection region of its non-Bayesian 

counterpart. We show that our proposed test is unbiased and consistent.

The paper is organized as follows. In Section 2, we derive RMPBT for testing differences 

between two mean vectors. We establish some asymptotic properties of the test in Section 3. 

Section 4 provides a simulation study investigating the power of the proposed test. We apply 

the proposed test to the analysis of some real data sets in Section 5. Section 6 concludes with 

a discussion.

2 Bayes factor in high dimensions

Let Np(μ,Σ) denote a p-dimensional multivariate normal density with mean vector μ and 

covariance matrix Σ. Let X1, · · ·, Xn1 ∈ ℝp and Y1, · · ·, Yn2 ∈ ℝp be independent random 

draws from Np(μ1,Σ) and Np(μ2,Σ), respectively. Also, let Xn1×p = (X1, · · ·, Xn1)T and Yn2×p 

= (Y1, · · ·, Yn2)T.

The minimal sufficient statistics are D = Ȳ − X̄, A = (n1Ȳ +n2X̄)/(n1 +n2) and 

S = {(n1 − 1)∑i = 1
n1 (Xi − X)(Xi − X)T + (n2 − 1)∑i = 1

n2 (Yi − Y)(Yi − Y)T}/(n1 + n2 − 2). Also, 

D Np(δ, n0
−1∑), A ~ Np(μ, n−1Σ) and (n − 2)S ~ Wp(n − 2,Σ), independently, where δ = μ2 − 

μ1, μ = (n1μ1 + n2μ2)/n, n0
−1 = n1

−1 + n2
−1, n = n1 + n2 and Wp(n,Σ) denotes a Wishart 

distribution on the space of p×p dimensional positive definite matrices with degrees of 

freedom n and mean nΣ.

The problem is to test H0 : μ1 = μ2 against H1 : μ1 ≠ μ2. We will work with the 

reparametrization in terms of δ, μ and Σ, which parametrize the distribution of the minimal 

sufficient statistics. The hypotheses of interest can accordingly be reformulated as

H0:δ = 0 against H1:δ ≠ 0 .

The generic form of the prior that we consider is given by π(δ,μ,Σ |Hi) = π(μ,Σ) π(δ|Σ,Hi). 

For π(μ,Σ), we consider the Jeffrey’s prior given by
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π(μ, ∑) ∝ ∣ ∑ ∣−(p + 1)/2 . (2)

The choice π(δ|Σ,H0) = 1{δ = 0} is trivially dictated by H0. For π(δ|Σ,H1), we consider the 

prior

π(δ ∣ ∑, τ0, H1) Np(0, ∑/τ0) . (3)

The choice of the hyper-parameter τ0 ∈ (0,∞) is crucial and is discussed in Section 2.1. 

Throughout the paper, we assume the same prior weight for each hypothesis, that is, P(H0) = 

P(H1) = 0.5.

When 1 < p < n−2, the Bayes factor admits a closed form expression under the assumed 

priors, as shown by the following result.

Lemma 1—With 1 < p < n− 2 and under the priors (2) and (3), we have

BF10(X, Y) = (1 + η)− p/2 1 + p f
(1 + η)(n − p − 1)

1 + p f
(n − p − 1)

−(n − 1)/2

, (4)

where η = n0/τ0 and f = (n − p − 1)
(n − 2)p n0(Y − X)TS−1(Y − X).

We show the derivation of BF10 in Appendix A. Here, f is the scaled Hotelling’s T2 statistic 

with f ~ Fp,n−p−1 under H0, where Fν1,ν2 denotes a central F distribution with ν1 and ν2 

degrees of freedom. When p ≥ n − 2, S is no longer positive definite, hence its inverse is not 

unique and (4) can not be employed to test H0 against H1. To handle the dimensionality 

problem, we project the data vectors to a lower dimensional subspace using a random 

projection matrix Rp×m satisfying RTR = Im×m where 1 < m < n−2. The projected data for 

group 1 are then obtained as Xi
★ = RTXi, i = 1, · · ·, n1. Likewise, the projected data for 

group 2 are Yi
★ = RTYi, i = 1, · · ·, n2. For a given projection matrix Rp×m, under the priors 

(2) and (3), using Lemma 1 and basic properties of multivariate normal distributions, BF10 

based on the projected data is given by

BF10(X★, Y★) = (1 + η)−m/2 1 + m f ★
(1 + η)(n − m − 1)

1 + m f ★
(n − m − 1)

−(n − 1)/2

, (5)
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where f ★ = (n − m − 1)
(n − 2)m n0(Y − X)TR(RTSR)−1

RT(Y − X), 1 < m < n− 2, p ≥ n − 2, and n = n1 + 

n2. Also, f★ ~ Fm,n−m−1 under H0. The following result establishes some desirable 

asymptotic properties of BF10(X★,Y★) when τ0 is fixed and also when τ0 is allowed to 

depend on n.

Theorem 1—Let nmin = min{n1, n2} → ∞ and m→∞ with limnmin→∞ m/n = θ ∈ (0, 1).

a. If τ0 is fixed, under H0, log {BF10(X★, Y★)} →p − ∞, and, under H1, 

log {BF10(X★, Y★)} →p ∞.

b. If n0/τ0 → 0 and mn0/τ0 → ∞, under H0, log{BF10(X★,Y★)} = p(1). For the 

corresponding sequence of H1
n, log {BF10(X★, Y★)} →p ∞, with f ★ →p ∞ as nmin 

→∞.

The proof of Theorem 1 is deferred to Appendix B. Part (a) of Theorem 1 states that for 

fixed τ0, the Bayes factors is consistent under H0 and a fixed alternative H1. However, if τ0 

is allowed to depend on n so that n0/τ0 → 0 at a slower rate than 1/n, BF10(X★,Y★) is not 

consistent under H0, but is consistent for that sequence of local alternatives, provided that 

the F-statistic f★ is unbounded as nmin →∞. Although the lack of consistency of the Bayes 

factors in part (b) of Theorem 1 under H0 seems unsettling at first, this property is similar to 

that of frequentist tests, where, for a chosen significance level, the null hypothesis has a non-

zero probability of being rejected regardless of the sample size when the null is actually true. 

We show below that the construction of the restricted most powerful Bayesian test satisfies 

the conditions enumerated above.

2.1 Restricted most powerful Bayesian tests

Recently, Johnson (2013b) introduced the idea of the uniformly most powerful Bayesian 

tests (UMPBTs) in the context of point hypothesis testing, providing a Bayesian parallel to 

the idea of uniformly most powerful tests (UMPTs) proposed by Neyman and Pearson 

(1928, 1933). UMPTs are defined as tests with the highest power among all possible tests of 

a given size. For a fixed size, UMPTs have the rejection region with the highest probability 

under the alternative. The rejection region refers to the range of values of the test statistics 

that leads to a rejection of the null.

In Bayesian hypothesis testing, the decision to reject the null hypothesis is based on the 

Bayes factor or evidence (log Bayes factor) for a given fixed alternative. Johnson (2013b) 

defines a UMPBT for testing a null against a fixed alternative as the test corresponding to 

the prior under the alternative that maximizes the probability of deciding in favor of the 

alternative for a fixed evidence level γ, among all possible data generating parameters. More 

precisely, we have a UMPBT for a given evidence threshold γ if the Bayes factor in favor of 

an alternative hypothesis H1 against a fixed null hypothesis H0 satisfies

Pθ(BF10 > γ) ≥ Pθ(BF20 > γ)
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for all possible values of the data generating parameter θ and all alternative hypotheses H2. 

However, as noted in Johnson (2013b), UMPBTs exist in a limited number of relatively 

simple testing scenarios. Finding a UMPBT in our setting is also a daunting task. Recently, 

Goddard and Johnson (2016) introduced the idea of restricted most powerful Bayesian tests 

(RMPBTs). RMPBTs are obtained by restricting the choice of the alternatives to a smaller 

family of distributions. Here, we focus the search of alternatives to a narrow class of 

distributions, preferably to priors that lead to Bayes factors with closed forms, like the prior 

considered in (3). We can subsequently choose the hyper-parameter τ0 using the idea of 

RMPBT by maximizing the probability of deciding in favor of the alternative for a fixed 

evidence level γ. In other words, we choose τ0 = τ★ so that

Pθ {BF10(X★, Y★, τ★) > γ} ≥ Pθ {BF10(X★, Y★, τ0) > γ},

for a chosen value of the evidence threshold γ, all possible values of τ0 and all data 

generating model parameters θ = (δ,μ,Σ). That is, we choose τ0 so as to maximize the 

following probability

Pθ
m f ★

m f ★ + n − m − 1
>

1 + n0/τ0
n0/τ0

[1 − {γ(1 + n0/τ0)m/2}−2/(n − 1)] ,

which is at its maximum when the quantity on the right-hand side of the inequality is at its 

minimum. The RMPBT is thus obtained with

τ0 = arg min
1 + n0/τ0

n0/τ0
[1 − {γ(1 + n0/τ0)m/2}−2/(n − 1)] . (6)

The optimization in (6) requires a value of γ which can be chosen according to the evidence 

threshold suggested in Kass and Raftery (1995). Alternatively, we can choose γ by equating 

the rejection region of the Bayes factor to that of the classical F statistic. In the non-

Bayesian setting, a level α test would reject H0 if f★ > Fα,m,n−m−1, where Fα,m,n−m−1 is the 

upper α quantile of an F distribution with m and n − m − 1 degrees of freedom. The 

rejection region based on the Bayes factor in favor of the alternative can be expressed as

(X, Y): f ★ >
Cn(n − m − 1)

m(1 − Cn) , (7)

where Cn = {(1 + n0/τ0)/(n0/τ0)}[1 − {γ(1 + n0/τ0)m/2}−2/(n−1)]. Setting
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Fα, m, n − m − 1 = {Cn(n − m − 1)}/(m(1 − Cn)), (8)

we can then solve for γα. This way, under H0, we have P{BF10(X★,Y★) > γα} = P(f★ > 

Fα,m,n−m−1) = α. We obtain an exact form for τ0, denoted τα(n), that satisfies (6) given (8) 

as

τα(n) = n0
m

(n − 1)
(1 − Cn)

(Cn − m
n − 1)

=
n0

Fα, m, n − m − 1 − 1, (9)

where, from (8), Cn = (mFα,m,n−m−1)/(mFα,m,n−m−1 + n − m − 1).

We can then obtain the equivalent value of γ, denoted γα(n), as

γα(n) = {1 + n0/τα(n)}−m/2 1 −
n0/τα(n)

{1 + n0/τα(n)}Cn

−(n − 1)/2
. (10)

The plot of the evidence threshold γα(n) along with the associated τα(n) value for various 

values of α is shown in Figure 1 for two different cases. In both cases, we note that the 

values of γα(n) above 20 (strong evidence) are associated with very small significance level 

α < 0.007. This is consistent with the findings that the evidence reflected in Bayes factors 

often requires very strong evidence in classical settings (Johnson, 2013a).

2.2 Choice of R and m

We discuss the choice of R and m here. We make no attempt to find an optimal projection 

matrix but are primarily motivated by practical convenience.

Intuitively, however, the projection matrix R should be selected so to only slightly perturb all 

pairwise distances between the sample vectors (Li et al., 2006). One possible way to achieve 

this is to sample the entries of R from a distribution with mean zero and variance one. Since 

our test statistics involves the inversion of RTSR, which is positive definite if RTR = Im (see 

Lemma 1 of Srivastava et al., 2016), we further restrict our choices to the family of semi-

orthogonal matrices. We consider two constructions of the projection matrix. The first one, 

denoted R1, is similar to the one permutation + one random projection considered in 

Srivastava et al. (2016) and yields a sparse matrix with only p non-zero elements. It is 

constructed as follows.

1. Start with a p × m matrix of zero in each entry.

2. Simulate {r1, r2, · · ·, rp} independently from a standard normal.

3. For each of the m columns, iteratively select ⌊p/m⌋ elements from r = {r1, r2, · · ·, 

rp} without replacement and assign them respectively to the positions 1 to ⌊p/m⌋ 
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for column 1 vector, ⌊p/m⌋+1 to 2⌊p/m⌋ for column 2 vector, and elements (m
−1)⌊p/m⌋ to m⌊p/m⌋ for column m vector. Finally, assign the remaining elements 

of r, if any, one per column and per row in the remaining rows. Each row of R1 

should now have exactly one non-zero element.

4. Randomly permute the row vectors of R1.

5. Finally, standardize the columns vectors so that they have length 1.

The second approach obtains R2 as the Q matrix of the QR decomposition of a p × m matrix 

with entries simulated independently from a standard normal distribution.

QR decomposition of a large matrix is computationally intensive.

Note, however, that any matrix U ∈ ℝp×m admits a QR decomposition U = RB, where R ∈ 
ℝp×m is an orthonormal matrix, that is, RTR = Im and B ∈ ℝm×m is an upper triangular 

matrix with positive entries on the diagonal. This implies U(UTSU)−1UT = RB(BTRTSRB)
−1BTRT = R(RTSR)−1RT.

This suggests that we could simply replace R by U in the equation for f★ to speed up the 

computation.

As one reviewer pointed out, the matrix R could also be obtained from singular value 

decomposition (SVD) of the sample covariance matrix by ignoring the eigenvectors 

associated with small eigenvalues. However, since such a construction involves the data, the 

projected data would have a more complex distribution, adding another layer of complexity 

to the test. Simulation experiments, where we approximated the null distribution of the test 

statistic using Monte Carlo simulations, also suggest that this approach does not perform 

well in practice. The results are summarized in Section S.2 of the Supplementary Material.

Now, we discuss how to choose m. Intuitively, small values of m will tend to ignore 

dependence in the data and the value m = 1 completely ignore any correlation. Large values 

of m close to n1 +n2 −2, on the other hand, will lead to tests with low power as the sample 

covariance matrix is getting closer to a degenerate matrix with small eigenvalues as noted by 

Bai and Saranadasa (1996). It is expected that the best value of m will tend to depend on the 

form of the true unknown covariance matrix - while smaller values of m may perform well 

when the true covariance matrix is diagonal, larger values will be appealing in more complex 

cases. Here, we present a heuristic approach to obtain m in general settings.

For a significance level α and a random projection matrix R(m), we have Pm[BF10{X★

(m),Y★(m),m} > γα | H1,R(m)] = Pm{f★(m) > Fα,m,n−m−1 | H1,R(m)}. Ideally, we would 

want to choose a value of m that maximizes this probability and hence optimizes the power. 

This, however, is a difficult problem since m is also involved in the construction of f★ itself 

and in its distribution as well. We obtain an approximate solution instead by minimizing the 

value of the threshold Fα,m,n−m−1 with respect to m. The values of m hence obtained are 

similar to the values of m obtained by Srivastava et al. (2016) using a similar argument. We 

show in the proof of Theorem 2 in Appendix C that such a choice of m satisfies the 

assumptions of Theorem 1.
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Numerical experiments also suggest the empirical power of the test based on such a choice 

of m to be very close to the optimal power.

3 Test based on Bayes factor and random projections

3.1 Single random projection

We derived the Bayes factor in Section 2 after we apply a single random projection R to the 

data (see Equation 5). Given the sample sizes n1 and n2 and a choice of α, we choose m(n), 

τα(n), and γα(n) as discussed in Sections 2.1 and 2.2. A test based on the resulting Bayes 

factor is then obtained as

ϕ(R) = 1 if BF10(X★, Y★) > γα(η),
0 Otherwise,

(11)

where ϕ(R) = 1 signifies rejection of H0 in favor of H1, and ϕ(R) = 0 accept H0. We make 

the following observations about the test in (11).

Theorem 2—For a given significance level α ∈ (0, 1), we have

a. Under H0, for fixed n1, n2, and m(n), E{ϕ(R) | H0} = α.

b. Under H1, for fixed n1, n2, and m(n), E{ϕ(R) | H1} ≥ α.

c. Let the assumptions in Theorem 1 part (b) be satisfied such that n1, n2, p → ∞, 
with m(n), τα(n), γα(n) chosen as described in Section 2.2. Then, 

limnmin ∞ E{ϕ(R) ∣ H1
n} = 1, where m(n)/n → θ ∈ (0, 1), n0m(n)/τα(n)→∞.

We show the proof of Theorem 2 in Appendix C. Note that (a) shows that the test described 

in (11) has size α; (b) shows that the test is unbiased; finally (c) shows that the power 

converges to 1 with increasing sample size. In part (c) of Theorem 2, we impose that m(n)/n 
→ θ ∈ (0, 1) and n0m(n)/τα(n) → ∞ which are satisfied by our construction suggested in 

Section 2.2.

3.2 Multiple random projections

A test based on a Bayes factor obtained from a single random projection may lead to 

different decisions for two different random projection matrices. To avoid that, we consider a 

multitude of Bayes factors computed using many different random projections. 

Subsequently, we define our test statistic based on the ensemble of Bayes factors and study 

its power.

Let R1, · · ·, RN be a collection of independently and identically distributed random 

projection matrices. For a choice of n1, n2, and α, the values of m(n), τα(n), and γα(n) are 

obtained as discussed in Sections 2.1 and 2.2. We then define ϕ̄(N) as
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ϕ(N) = 1
N ∑

i = 1

N
ϕ(Ri) = 1

N ∑
i = 1

N
1{BF10(Ri) > γα(n)}, (12)

where 1{A} = 1 if A is true and 0 otherwise. Clearly, BF10(Ri) depends on τα(n). Note that 

ϕ̄(N) represents the proportion of Bayes factors based on projected data that yield Bayes 

factor larger than the specified evidence threshold γα(n), for a choice of α and m(n). We 

then define RMPBT as

Reject H0 if ϕ(N) > ϕα
0,

Accept H0 Otherwise,
(13)

where ϕα
0 is the upper α quantile of the distribution of ϕ̄(N) under H0, which depends on 

m(n), n1, n2, p and α.

Theorem 3—Suppose the assumptions of Theorems 1 and 2 hold. Given a collection R1, · · 

·, RN of random projections matrices, where Ri
TRi = I for all i = 1, · · ·, N, then 

limnmin ∞ P{ϕ(N) > ϕα
0} = 1 under the sequence H1

n of alternatives.

We show the proof of Theorem 3 in Appendix D. For fixed m(n), p, n1, n2 and α, RMPBT in 

(13) requires that we first compute ϕα
0. Under H0, δ = 0, but μ1 = μ2 = μ and Σ are unknown. 

Fortunately, the asymptotic null distribution of ϕ̄(N) is independent of the nuisance 

parameters μ and Σ, providing a simple way of finding ϕα
0. The result is formalized in the 

following theorem.

Theorem 4—Under H0, the distribution of ϕ̄(N) as N →∞ is independent of μ and Σ for 
any fixed n1, n2, m ∈ (1, n1 + n2 − 2) and p ≥ n1 + n2 − 2.

We show the proof of Theorem 4 in Appendix E. Theorem 4 suggests that for large values of 

N we can approximate the null distribution of ϕ̄(N) by simulating data assuming Σ = I and 

μ1 = μ2 = 0.

4 Simulation study

We designed a simulation study aimed at investigating the power of the test proposed in (13) 

with respect to the proportion of true elements of δ that are actually zero for various choices 

of covariance matrices and different scenarios or conditions. We consider two simulation 

settings. In the first, we assume p = 200 and n1 = n2 = 50. Using the approach described in 

Section 2.2, we find m = 43. In the second setting, p = 1000, n1 = n2 = 70 and we get m = 

62. We denote by p0 the proportion of entries of the vector δ that are exactly zero. We 

choose p0 = 0.5, .75, .80, 0.95, 0.99, 1.00. In each setting, the values of τα and γα are 
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chosen according to our discussion in Section 2.1. We consider two types of random 

projections matrices, R1 and R2, as described in Section 2.2.

We consider the following choices for Σ = ((σij)).

1. Σ1 = Ip×p is the identity matrix.

2. Σ2 is a diagonal matrix where the first 20 elements are set at 1 to 20 and the 

remaining are set exactly 1.

3. Σ3 is an AR(1) covariance matrix with σij = σ2ρ|i−j|. We chose σ2 = 1 and ρ = 0.4.

4. Σ4 is block diagonal matrix, with block B = 0. 85I25×25 + 0.15J25×25. J denotes a 

matrix with 1 in all of its entries.

5. Σ5 is an ARIMA(1,1) covariance matrix with σij = σ2γ1{|i−j|>0}ρ|i−j|1{|i−j|≥2}. We 

chose σ2 = 1, γ = 0.5, ρ = 0.9.

We also consider two possible alternatives.

a. We simulate μ2 ~ Np(1, I), set p0 randomly selected elements to zero, and scale 

μ2 so that (μ2 − μ1)TΣ−1(μ2 − μ1) = 2.

b. We simulate μ2 ~ Np(1, I) and set p0 of its elements to zero and rescale μ2 so that 

‖μ2 − μ1‖2

tr ∑2 = 0.1.

μ1 is chosen to be a vector of zeros. The two alternatives described above were also 

considered by Srivastava et al. (2016). We include in these comparisons the following 

competitors.

A. The approach of Srivastava et al. (2016) referred to as RAPTT.

B. The approach of Bai and Saranadasa (1996) referred to as BS96.

C. The approach of Srivastava and Du (2008) referred to as SD08.

D. The approach of Chen et al. (2010) referred to as CQ10.

To estimate the power of our test, we use N = 5000 random projections for each of the 1000 

independently simulated data sets under each of the alternatives considered. Recall that 

when p0 = 1.0, the null hypothesis is true and the power represents the type-I error rate 

estimate. When the true covariance matrix Σ is diagonal (Σ1 and Σ2) (see Table 1 and Table 

S.1 in the Supplemental Material), the tests that do not rely on random projections, namely 

BS96, SD08 and CQ10, perform slightly better compared to the tests based on random 

projections, namely RAPTT and the proposed RMPBT. However, RMPBT tended to have 

higher power when compared to RAPTT for Σ1 and Σ2. Also, for Σ3, an AR(1) covariance 

matrix with ρ = 0.4, RMPBT performed better than all its competitors, especially for sparse 

alternatives (Table S.2 in the Supplemental Material). Also, the random projection based 

tests tended to be slightly more conservative when Σ = Σ1, Σ2, or Σ3. For more complex 

covariance matrices (Σ4, Σ5), the non-random projection based approaches tended to have 

lower overall power (Table 2, Table 3), and, in some cases, significantly lower power than 
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their random projection based competitors, especially when n1 = n2 = 50. However, random 

projection based approaches tended to have slightly higher or similar estimated type-I error 

rates for complex true covariance matrices.

This performance differences can be explained as follows. All three non-projection 

approaches attempt to get around the issue related to inverting an ill-formed sample 

covariance matrix. In doing so, BS96 based their test statistic on a quadratic norm of the 

vector sample means, ignoring any possible weighing for the vectors entries. CQ10 develop 

their test around the cross-product of the sample vectors, also ignoring possible weighing. 

SD08 also based their test statistic around the square differences of the group sample means, 

but used the diagonal sample covariance as weights. Consequently, all three approaches 

tended to only perform well for diagonal or near diagonal structure covariance matrices. On 

the other hand, because the random projection based approaches make no assumption about 

the data covariance matrix, they can use the additional information provided in the 

dependency relationships to improve power. Both random projection based approaches seem 

to perform similarly under less sparse alternatives, that is, smaller value of p0.

However, RMPBT tended to have, in most cases, much higher power when compared to 

RAPTT for cases where the true mean differences are very sparse, especially in the scenario 

n1 = n2 = 50 and p = 200. Note that both RMPBT and RAPTT depend on the F-statistics. We 

think that the difference observed between the power of RMPBT and RAPTT are not due to 

the F-statistic and the choice of m per se. Instead, the differences found between RMPBT 

and RAPTT are due to the way each test quantifies the evidence contained in each F-statistic 

computed from each projected copies of a data set. For example, consider two arbitrary 

values, 20 and 1, for the F-statistic with 2 and 3 degrees of freedom. The RMPBT statistic is 

0.5, and the equivalent test statistic for the RAPTT is 0.256. Suppose now that the values of 

the F-statistics are 10 and 0.01 instead. The test statistic for the RMPBT remains unchanged, 

but the test statistic for RAPTT become 0.518. Because in sparse alternatives scenarios and 

small sample setting, a large number of F-statistics are reported large (small p-values), and a 

smaller number is reported small (large p-values), the test statistic in RAPTT would tend to 

be affected by these few less significant p-values and causing non-rejection. RMPBT does 

not suffer this problem since the test statistic only relies on a 0–1 decision. In less sparse 

alternatives however, this discrepancy between RMPBT and RAPTT is less severe, which is 

reflected in very similar power reported by both approaches.

The Bayes factor based test proposed in this article assumed a non-informative prior for the 

nuisance parameters with a single scalar hyper-parameter. Other possibilities include proper 

priors, like a joint normal-inverse-Wishart prior for the nuisance parameters. Specifying such 

a prior, however, requires a practitioner to carefully choose high dimensional prior hyper-

parameters, including a large p×p covariance matrix, a very difficult exercise for most 

applications. We found the power of the resulting test to be highly sensitive to the choice of 

the covariance matrix hyper-parameter of the normal-inverse-Wishart prior. Results are 

deferred to Section S.3 of the Supplemental Material.
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5 Applications

5.1 Colon organoids data

Stem cells have some unique regenerative abilities and offer new potential to treating 

chronic diseases. But stem cells are often modulated by many factors, like the aryl 

hydrocarbon receptors (AhR), which are not well understood. A study was designed to 

examine the effect of the AhR on intestinal stem cells. Intestinal crypts were isolated from 

one mouse, plated, cultivated, separated in 4 sets of 3 plates and each set was treated with 

one of the following 4 treatments: TCDD only, Indole only, TCDD+Indole, DMSO 

(control). TCDD is a cancer inducing agent and has the effect of changing the expressions of 

many genes by activating the AhR. Indole has the role of modulating the effect of TCDD 

whereas DMSO has an anti-inflammatory property. Finally, RNA is isolated from each of 

the 12 organoids and sequenced. A gene-by-gene comparison between the TCDD only 

group versus TCDD+Indole group resulted in only 6 differentially expressed (DE) genes 

after adjusting for multiple comparisons (McCarthy et al., 2012). We use RMPBT to 

compare the expression of p = 2000 genes simultaneously between TCDD only and TCDD

+Indole groups, with n1 = 3 and n2 = 3. Before we apply the tests, we take a log2 

transformation of the gene expressions (after adding one to avoid issues with log2 of 0). In 

this set of 2000 genes, all the 6 DE genes previously found are included. For RMPBT, we 

use m = 2, N = 100000 random projections, ϕα
0 = 0.054, τα = 0.175, and γα = 4.302. Based 

on the results in Table 4, RMPBT is the only test that reports significance, when the random 

projection matrix is R1. This is consistent with the findings in the simulation where RMPBT 

showed high power for sparse alternative when the projection matrix was R1. The next 

smallest p-value is also produced by RMPBT with the projection matrix R2.

5.2 Breast cancer data

We apply the proposed method to the analysis of a breast cancer data set reported by 

Gravier, Eleonore et al. (2010). The study investigates the involvement of small, invasive 

ductal carcinoma without lymph (T1T2N0) in predicting metastasis of small node-negative 

breast carcinoma. Gene expression levels of around 2905 genes were reported for 168 

patients over five years. Of the 168, n1 = 111 patients with no event after diagnosis were 

labelled good and the remaining n2 = 57 with early metastasis were labelled poor. We 

performed three gene-set comparisons between the two groups, good and poor. The gene-

sets were similar to the sets compared in Thulin (2014). The first gene set had p = 374 genes 

located on Chromosome 1. The second set had p = 233 genes located on Chromosome 2 and 

the third set had p = 191 genes located on Chromosome 12. A restricted most powerful test 

15 is obtained by choosing τα = 86.880 and evidence threshold γα = 3.852 with m = 75 and 

N = 10000 random projections. The values of ϕα
0, the cutoff values for the test statistic in 

Chromosome 1, 2 and 12 are 0.127, 0.165, and 0.175 respectively. We also compared both 

groups using RAPTT, BS96, SD08 and CQ10. The results reported in Table 4 indicate that 

RMPBT and RAPTT found significance in each gene set, but the non-random projection 

based approaches failed to find significance for the genes on Chromosome 1.
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To investigate the impact of smaller sample sizes on the performance of each test, we 

compare again the two groups, now by only considering one-third of the total samples (n1 = 

37 and n2 = 19). We run the tests on 100 independently sampled data sets from the original 

data set. For all three chromosomes, the median (over the 100 p-values) p-value for RMPBT 

(R1), RMPBT (R2), RAPTT (R1), RAPTT (R2) are all highly significant, whereas the p-

values for BS96, SD08 and CQ10 are highly insignificant (see Table 4). We see that the 

approaches based on random projection are able to detect differences between both groups 

even for relatively smaller sample sizes. However, the other approaches fail to detect 

difference between both groups for smaller samples sizes.

5.3 SRBCT data

We finally apply our approach to the small round blue cell tumors (SRBCTs) data set which 

is available at http://www.biolab.si/supp/bi-cancer/projections/info/SRBCT.htm. SRBCT’s 

are comprised of 4 different childhood tumors. In this exercise, we would like to test for 

equality of expression mean of the genes between the neuroblastoma(NB) and the Burkitt’s 

lymphoma(BL) tumors group. The data contain p = 2308 gene expression for both NB and 

BL tumors with sample sizes 11 and 18 respectively. We estimate ϕα
0 = 0.0604, τα = 4.836, 

γα = 3.720, and N = 10000. We report the p-values for each of these tests (see Table 4 

SRBCT part). All the tests rejected the null hypothesis with high significance.

6 Conclusion

In this article, we proposed a Bayes factor based test for differences between group means in 

high dimensions. We transformed the data points to lower dimensional spaces using random 

projections. Using the transformed data, we obtained a closed form Bayes factor by carefully 

choosing the priors for the model parameters, involving a single scalar hyper-parameter. The 

hyper-parameter was chosen to obtain a restricted most powerful Bayesian test (RMPBT). 

Our final test was based on an ensemble of Bayes factors obtained from multiple projected 

copies. We showed unbiasedness and consistency of the proposed test under mild conditions. 

We illustrated the efficacy of the test in real and simulated examples.

An ongoing extension of the proposed test also considers non-local priors of Johnson and 

Rossell (2010) for the distribution of δ under the alternative and relaxes the assumption of 

equal covariance matrices between the two groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A Lemma 1 - Derivation of the Bayes factor

We recall that the minimal sufficient statistics are D = Ȳ−X̄, A = (n1Y +n2X)/(n1+n2) and 

S = {(n1 − 1)∑i = 1
n1 (Xi − X)(Xi − X)T + (n2 − 1)∑i = 1

n2 (Yi − Y)(Yi − Y)T}/(n1 + n2 − 2). Also, 

D Np(δ, n0
−1∑), A ~ Np(μ, n−1Σ) and (n − 2)S ~ Wp(n − 2,Σ), independently, where δ = μ2 − 

μ1, μ = (n1μ1 + n2μ2)/n, n0
−1 = n1

−1 + n2
−1, n = n1 + n2. Under our assumed framework, the 

joint distribution of the data in terms of the minimal sufficient statistics D, A and S is given 

by

P(Data ∣ μ, δ, ∑) = Np(D ∣ δ, n0
−1∑) Np(A ∣ μ, n−1∑) W p {(n − 2)S ∣ n − 2, ∑} .

We assume the following joint prior for μ and Σ as π(μ,Σ) ∝ |Σ|−(p+1)/2. Under H1, we 

choose the following conditional prior for δ as δ | Σ ~ Np(0,Σ/τ0). Under H1, we have

P(D ∣ ∑) = ∫ Np(D ∣ δ, n0
−1∑)Np(δ ∣ 0, ∑/τ0)dδ = Np(D ∣ 0, nτ

−1∑),

where nτ
−1 = τ0

−1 + n0
−1. If we denote the marginal distribution of the data under H1 by 

m1(Data), then we have

m1(Data) ∝ ∫ Np(D ∣ 0, nτ
−1∑)Np(A ∣ μ, n−1∑)W p {(n − 2)S ∣ n − 2, ∑} ∣ ∑ ∣−(p + 1)/2dμd∑

∝ ∫ Np(D ∣ 0, nτ
−1∑)W p {(n − 2)S ∣ n − 2, ∑} ∣ ∑ ∣−(p + 1)/2d∑,

where the second line is obtained by taking the integral with respect to μ. This integral only 

involves Np(μ | A, n−1Σ) and evaluates to 1. With a little bit of algebra, we get that
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m1(Data) = A0nτ
p/2 1 +

nτ
n − 2 DTS−1D

−(n − 1)/2
,

where A0 represents a quantity independent of the data. Similarly, under H0, δ = 0 and we 

can show that the marginal distribution of the data, denoted m0(Data), is

m0(Data) = A0n0
p/2 1 +

n0
n − 2 DTS−1D

−(n − 1)/2
.

Therefore, the Bayes factor in favor of the alternative is

BF10 =
nτ
n0

p/2 1 +
nτ

n − 2 DTS−1D

1 +
n0

n − 2 DTS−1D

−(n − 1)/2

.

Setting η = n0/τ0 and f = (n − p − 1)
(n − 2)p n0(Y − X)TS−1(Y − X), we get Equation (4).

Appendix B Proof of Theorem 1

Part(a) For 1 < m < n− 2, we integrate out the parameters with respect to the 

conjugate priors to obtain the Bayes factor in favor of the alternative as

BF10(X★, Y★) = (1 + η)−m/2 1 − m f ★η/(1 + η)
m f ★ + n − m − 1

−(n − 1)/2
,

where

f ★ = n − m − 1
(n − 2)m n0(Y − X)TR(RSRT)−1

RT(Y − X) .

Recall that n = n1+n2, 1/n0 = 1/n1+1/n2, η = n0/τ0, and nmin = min{n1, n2}. Since τ0 

is fixed, η → ∞ as nmin → ∞. For a randomly chosen R, under H0, f★ ~ Fm,n−m−1 

with m and n − m − 1 degrees of freedom. Thus, f★ = Op(1). Also, from well-known 

properties of the F distribution, we have that

U = m f ★/(n − m − 1)
{m f ★/(n − m − 1) + 1}

= m f ★

(m f ★ + n − m − 1)
Beta{m/2, (n − m − 1)/2},

where Beta(a, b) denotes a Beta distribution. Therefore, {η/(1+η)}U = Op(1). Hence, 

log {1 − ηU/(1 + η)} = Op(1) as nmin →∞. We then get
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− m
2n log (1 + η) − (n − 1)

2n log 1 − ηU /(1 + η) →p − ∞ ,

since log(1+η)→ ∞ as nmin → ∞ and limnmin→∞ m/n = θ ∈ (0, 1). We conclude 

that log BF10(R) →p − ∞ under the null hypothesis.

Under the alternative, μ1 ≠ μ2 and δ ~ Np(0,Σ/τ0). Then, f★ | λ ~ Fm,n−m−1(λ) with 

non-centrality λ = n0δTR(RTΣR)−1RTδ. Since δ ~ Np(0,Σ/τ0), λ n0χm
2 /τ0, where χm

2

denotes a χ2 distribution with m degrees of freedom. The non-centrality parameter 

depends on n through n0. We can show that the unconditional distribution of f★/(1+η) 

~ Fm,n−m−1 (see Johnson, 2005, page 704). If we denote f0 = f★/(1+η), we have f0 = 

Op(1), and mf0/n = Op(1), as nmin →∞. We have that

ηU
(1 + η) = m f 0η

m f 0(1 + η) + n − m − 1

From the above equation, we get

− log 1 − ηU
(1 + η) = log m f 0(1 + η)/(n − m − 1) + 1

{m f 0/(n − m − 1)} + 1
.

Since f0 = Op(1), and m/(n − m − 1) converges, we have

− log 1 − ηU
(1 + η) →p ∞ .

We conclude that log {BF10(R)} →p ∞, under the alternative hypothesis.

Part(b) We now assume that η → 0 and mη → ∞. We have

log {BF10(X★, Y★)} = n
2 1 − m

n log (1 + η) − n
2 log {1 + η(1 − U)} + 1

2 log 1 − ηU
1 + η ,

where U ~ Beta {m/2, (n − m − 1)/2} under H0. For large n, none of the terms with n 
dominates and their difference converges. The distribution log{BF10(X★,Y★)} then 

depends on that of U, which is bounded in probability. Therefore, under H0, 

log{BF10(X★,Y★)} = p(1).

Under H1
n, again we have

log {BF10(X★, Y★)} = − m
2 log (1 + η) − (n − 1)

2 log 1 − ηU
1 + η ,
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where U →p 1 with f ∗ →p ∞. Since log(1 + η){(n − 1)/2 − m/2} → ∞, we conclude 

that log {BF10(X★, Y★)} →p ∞.

Appendix C Proof of Theorem 2

In this proof, we denote m(n), τα(n) and γα(n) simply as mn, τn and γn, respectively. That 

the projection matrix R, the Bayes factor, the variable f★, their distributions etc. all depend 

on mn is implicitly understood and hence mn is suppressed in their notation.

Part(a) Under H0, and some chosen values of α and mn, we have

E{ϕ(R)} = ER PX, Y{BF10(XR, YR) > γn ∣ R} = ER(α) = α,

making use of the results in Section 2.1 and noting that PX,Y {BF10(XR,YR) > γn} is 

computed over the data generating model under the null hypothesis.

Part(b) Under the alternative hypothesis, δ = δ1 ≠ 0, and f★ | λ ~ Fmn,n−mn−1(λ) 

distribution, with degrees of freedoms mn and n − mn − 1 and non-centrality 

parameter λ = n0δ1
TR(RT∑R)−1

RTδ1. Hence, under the alternative hypothesis 

P{BF10(XR,YR) > γα} = P(f★ > Fα,mn,n−mn−1) ≥ α, where Fα,mn,n−mn−1 is the α 
upper quantile of a Fmn,n−mn−1 distribution, as seen in Section 2.1. Marginalizing 

over δ1 under the alternative, f★/(1+ηn) ~ Fmn,n−mn−1, where ηn = n0/τn. Therefore, α 
= P{f★/(1 + ηn) > Fα,mn,n−mn−1} = P{f★ > (1 + ηn)Fα,mn,n−mn−1} ≤ P(f★ > 

Fα,mn,n−mn−1). We conclude ER{ϕ(R) | H1} ≥ α.

Part(c) First, we show that our construction of mn satisfies mn/n → θ ∈ (0, 1). For 

chosen n, Fα,m,n−m−1 is a convex function over the range of possible values of m, 

suggesting that mn and n − mn both diverge. See Figure 3.

The mean μn and variance σn
2 of an Fmn,n−mn−1 distribution are given by 

μn =
n − mn − 1
n − mn − 3 > 1 and σn

2 =
2(n − mn − 1)2(n − 3)

mn(n − mn − 5)(n − mn − 3)2
. For large mn and n − mn, we 

have Fα,mn,n−mn−1 ≈ μn + ΣnΦ−1(α), where Φ−1(α) is the upper α-quantile of the 

standard normal distribution. So Fα,mn,n−mn−1 is at its minimum when Σn is at its 

minimum, which happens when mn ≈ n − 5
2 . Hence, mn/n → θ = 1/2 ∈ (0, 1) as nmin 

→ ∞. Second, we show that nηn → ∞ as nmin → ∞. From equation (8), we have

Cn =
mnFα, mn, n − mn − 1

mnFα, mn, n − mn − 1 + n − mn − 1 . (A.1)

We have
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nηn =
nn0
τn

=
n(n − 1){Cn − mn/(n − 1)}

mn(1 − Cn) = n(n − 1)
Cn

mn(1 − Cn) − 1
(n − 1)(1 − Cn)

= n(n − 1)
Fα, mn, n − mn − 1

(n − mn − 1) −
mnFα, mn, n − mn − 1 + n − mn − 1

(n − 1)(n − mn − 1)

= n
(n − mn − 1){(n − mn − 1)Fα, mn, n − mn − 1 − (n − mn − 1)}

= n (Fα, mn, n − mn − 1 − 1) .

The variance of a central F distribution with mn and n−mn −1 degrees of freedom is 

2(n−mn−1)2(n−3)/{mn(n−mn−3)2(n−mn−5)} = O(1/mn). The convergence of 

Fα,mn,n−mn−1 is thus slower than 1/ n. We conclude that nηn and hence mnηn → ∞. 

For a chosen α and the sequence of alternatives H1
n, we have

lim
nmin ∞ ERϕ(R ∣ H1

n) = ER lim
nmin ∞ PX, Y{BF10(XR, YR) > γα(n) ∣ R, H1

n}

= ER lim
nmin ∞ PX, Y{ f ★ > Fα, mn, n − mn − 1 ∣ R, H1

n} .

Since f ★ →p ∞ and Fα,mn,n−mn−1 → 1, we conclude that 

limnmin ∞ ERϕ(R ∣ H1
n) = 1.

Appendix D Proof of Theorem 3

The power of RMBPT is P{ϕ(N) > ϕα
0 ∣ H1

n}. Henceforth, we make it explicit that ϕα
0 depends 

on (n1, n2) and write ϕα
0(n1, n2) instead.

For given n1, n2 and α, we choose ϕα
0(n1, n2) so that P{ϕ(N) > ϕα

0(n1, n2) ∣ H0} = α. Since 

0 < ϕα
0(n1, n2) < 1, for 0 < α < 1, we have that 

P{∑i = 1
N ϕ(Ri) ≥ 0 ∣ H1

n} ≥ P{∑i = 1
N ϕ(Ri) > Nϕα

0(n1, n2) ∣ H1
n} ≥ P{∑i = 1

N ϕ(Ri) ≥ N ∣ H1
n}.

We have that P{ϕ(Ri) = 1 ∣ H1
n} 1 as nmin → ∞, under the alternative for i = 1, · · ·, N. So, 

P{∑i = 1
N ϕ(Ri) ≥ 0 ∣ H1

n] = 1 − ∏i = 1
N P{ϕ(Ri) = 0 ∣ H1

n} 1. Additionally, 

P{∑i = 1
N ϕ(Ri) ≥ N ∣ H1

n} = P{∑i = 1
N ϕ(Ri) = N ∣ H1

n} = ∏i = 1
N P{ϕ(Ri) = 1 ∣ H1

n} 1 for fixed 

N as nmin →∞. We conclude that P{ϕ(N) ≥ ϕα
0 ∣ H1

n} 1 as nmin →∞.
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Appendix E Proof of Theorem 4

The proof is similar to that of Theorem 2 of Srivastava et al. (2016) except that we do not 

rely on the cumulative distribution function of the F distribution.

Suppose R1, R2, · · ·, RN is a collection independently sampled projection matrices. Let ϕi = 

ϕ(Ri) = 1{BF10(Ri, τα) > γα} for i = 1, 2, · · ·, N. Recall that ϕ(N) = ∑i = 1
N ϕi/N. Evaluating 

the conditional probability that ϕ̄(N) < x over the distribution of the random projection 

matrices given X and Y and then taking the expectation over the data, we get

P{ϕ(N) < x} = EX, Y [PR {ϕ(N) < x ∣ X, Y}] . (A.2)

We have

PR {ϕ(N) < x ∣ X, Y} = PR
ϕ(N) − ER(ϕ1 ∣ X, Y)

varR (ϕ1 ∣ X, Y)/N <
x − ER(ϕ1 ∣ X, Y)
varR (ϕ1 ∣ X, Y)/N ∣ X, Y ,

where ER(ϕ1 | X,Y ) and varR(ϕ1 | X,Y ) are respectively the conditional mean and variance 

of ϕ1. Given X and Y, the binary variables ϕi, i = 1, · · ·, N, are independent and identically 

distributed with finite mean and variance. By the Central Limit Theorem,

lim
N ∞ PR {ϕ(N) < x ∣ X, Y} − Φ

x − ER(ϕ1 ∣ X, Y)
varR (ϕ1 ∣ X, Y)/N = 0 (A.3)

where Φ(a) is the standard normal cumulative distribution function evaluated at a. We need 

to show that both ER(ϕ1 | X,Y ) and varR(ϕ1 | X,Y ) have a distribution independent of μ1, μ2 

and Σ under H0. This is equivalent to showing that EX,Y {ER(ϕ1 | X,Y )}r is independent of 

μ1, μ2, and Σ, for r = 1, 2, · · ·. From (7), we have

ER(ϕ1 ∣ X, Y) = PR { f (R1 ∣ X, Y) > Fα, mn, n − mn − 1},

where f (R ∣ X, Y) =
n − mn − 1
(n − 2)mn

n0(Y − X)TR(RTSR)−1
RT(Y − X). PR is a probability measure 

associated with the random projection matrices. Thus, the rth moment of ER{ϕ1 | X,Y )} is 

expressed as

EXY{ER(ϕ1 ∣ X, Y)}r = ∫ ∫ 1 { f (R ∣ X, Y) > Fα, mn, n − mn − 1}dPR
r
dPX, Y . (A.4)
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Since 0 ≤ ER(ϕ1 | X,Y ) ≤ 1, we have

∫ ∫ [1 { f (R ∣ X, Y) > Fα, mn, n − mn − 1}]rdPR dPX, Y

= ∫ ∫ [1 { f (R ∣ X, Y) > Fα, mn, n − mn − 1}]rdPX, Y dPR,

(A.5)

where we can safely interchange the order of integration by Fubini’s Theorem. Under H0, 

f(R | X,Y ) ~ Fmn,n−mn−1 and PX,Y {f(R | X,Y ) > Fα,mn,n−mn−1} = α. We conclude that (A.5) 

is independent of μ1, μ2, and Σ for any positive integer r.

Next, from (A.4), we have

EXY{ER(ϕ1 ∣ X, Y)}r = ∫ ⋯∫ ∫ ∏
i = 1

r
1 { f (Ri ∣ X, Y) > Fα, mn, n − mn − 1} dPX, Y

∏
i = 1

r
dPRi

,

(A.6)

where we can again safely exchange the order of integration using Fubini’s Theorem. In (A.

6), since Ri, i = 1, · · ·, N, are identically and independently distributed with respect to the 

probability measure PR, we get that

∫ ∏
i = 1

r
1 { f (Ri ∣ X, Y) > Fα, mn, n − mn − 1}dPX, Y

is also independent of μ1, μ2, and Σ based on the result obtained in (A.5).

Also, we have

PR {ϕ(N) < x ∣ X, Y} − Φ
x − ER(ϕ1 ∣ X, Y)
varR (ϕ1 ∣ X, Y)/N ≤ 2. (A.7)

Using (A.2), (A.3), (A.7) and the bounded convergence theorem, we have

lim
N ∞ P {ϕ(N) < x} − EX, Y Φ

x − ER(ϕ1 ∣ X, Y)
varR (ϕ1 ∣ X, Y)/N = 0 (A.8)
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We conclude that for n1, n2, mn, and α, the asymptotic distribution of ϕ̄(N) as N → ∞ does 

not depend on the true parameters μ1, μ2, and Σ under H0.
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Figure 1. 
Plot of the estimated Bayes factor threshold γα(n) and the value of τα(n) for various values 

of α, the significance level. The values of Bayes factor above the horizontal line at 20 

denotes the (γα, τα, α) triplet that represents strong evidence against the null hypothesis 

according to Kass and Raftery (1995).
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Figure 2. 
Empirical distribution function of ϕ̄(N) under the null hypothesis for 5 different covariance 

matrices based on N = 50000 random projections and 1000 data sets.
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Figure 3. 
Plot of Fα,m,n−m−1 against m = 1, 2, · · ·, n − 2 for different values of n = n1 + n2. The arrows 

point to values of mn obtained by our method for different n.
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