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Summary

Complex interplay between genetic and environmental factors characterizes the etiology of many 

diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown 

functional form of the environment term in the true data-generating mechanism. We study the 

impact of misspecification of the environmental exposure effect on inference for the GxE 

interaction term in linear and logistic regression models. We first examine the asymptotic bias of 

the GxE interaction regression coefficient, allowing for confounders as well as arbitrary 

misspecification of the exposure and confounder effects. For linear regression, we show that under 

gene-environment independence and some confounder-dependent conditions, when the 

environment effect is misspecified, the regression coefficient of the GxE interaction can be 

unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, 

we show that the regression coefficient is generally biased if the genetic factor is associated with 

the outcome directly or indirectly. Further we show that the standard robust sandwich variance 

estimator for the GxE interaction does not perform well in practical GxE studies, and we provide 

an alternative testing procedure that has better finite sample properties.
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1. Introduction

Many human diseases possess an etiology which is characterized by complex relationships 

between genetic and environmental risk factors. Studying gene-environment (GxE) 
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interactions can help us understand biological mechanisms that cause these complex 

diseases (Thomas, 2010). There has been a dramatic increase in the number of Genome 

Wide Environmental Interaction Studies (GWEIS) over the past decade, yet remarkably, the 

number of replicable GxE interactions in the literature is only a handful (Aschard et al., 

2012; Hutter et al., 2013). The lack of success in identifying GxE interactions is often 

attributed to study design issues, such as inadequate sample size and population 

heterogeneity (Thomas, 2010), but it also suggests limitations with current statistical 

methodology.

The standard approach to GWEIS performs single-marker analysis over a large number of 

Single Nucleotide Polymorphisms (SNPs) across the genome, repeatedly fitting a gene-

environment interaction generalized linear model - e.g. linear regression for continuous traits 

and logistic regression for binary traits. In these models, the effect of the environmental 

exposure is often modeled parametrically. However we generally do not know the correct 

functional form of the environment covariate in the true data-generating mechanism 

(Aschard et al., 2012). Therefore the exposure effects can be misspecified, resulting in 

invalid model-based inference, as presented in the example of Cornelis et al. (2012). 

Environment misspecification may also cause the appearance of heteroscedasticity with 

respect to the exposure, which can similarly invalidate inference (Almli et al., 2014).

Our work is motivated by a GWEIS from the Harvard School of Public Health Superfund 

Research Project. One of the main goals of the Superfund program is to study how toxic 

metal exposures and genetic variants interact to affect neurodevelopment outcomes, such as 

Bayley Scales of Infant Development (BSID) scores, among infants. Data are available on 

approximately 500 infants in Bangladesh and 400 infants in Mexico. About 500,000 SNPs 

are used in an initial analysis, and a standard GxE interaction linear model is fit for each 

SNP. The QQ-plots of p-values generated by testing for GxE interaction show large 

departures from uniformity across many different exposures, multiple outcomes, both 

cohorts, and even in meta-analyses of the two cohorts together. See Figure 3 for an example. 

However, tests for the main effects of SNPs (G) while adjusting for exposure (ε) produce a 

very uniform distribution of p-values. These diagnostics suggest misspecification of the GxE 

mean model, as described and explained in detail by Voorman et al. (2011). Surprisingly, 

GxE inference which utilizes the Huber-White ’sandwich’ variance estimator, a commonly-

proposed remedy for incorrect inference in GWEIS (Voorman et al., 2011; Tchetgen and 

Kraft, 2011; Almli et al., 2014) often produces inflated p-values that show a larger departure 

from uniformity than p-values calculated from model-based standard errors. Again, see 

Figure 3 for an example. Here inflation means there is an excess of small p-values, while 

deflation refers to the opposite.

The impact of performing inference with misspecified models for the effects of covariates 

has been investigated by many authors, primarily in main effects models. The GWEIS 

setting is unique, because we are interested in testing a possibly misspecified interaction 

term and not a main effect. Additionally, we allow for confounders in the model, and these 

confounders may be arbitrarily misspecified. In contrast, past work primarily focuses on 

main effect terms and often assumes the term of interest is completely independent of other 
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covariates in the model. Relevant literature includes Gail, Weiand, and Piantadosi (1984), 

Lagakos (1988), and Begg and Lagakos (1992).

For interaction models, Vansteelandt et al. (2008) derived a set of multiply robust estimators 

for interaction effects, but these estimators require specification of a distribution for each 

SNP conditional on the other covariates in the model, a complicated task with hundreds of 

thousands of SNPs. Rosenblum and van der Laan (2009) and Tchetgen and Kraft (2011) 

studied misspecification constrained to the setting when G is completely independent of all 

other terms in the fitted model, including the outcome. In this scenario, they showed that the 

estimated GxE interaction effect will be asymptotically unbiased under the null, even under 

environment misspecification. While important, these findings are heavily constrained by the 

independence assumption. For example, under the infinitesimal model of genetic 

contribution to disease (Gibson, 2012), a large number of G terms are associated with an 

outcome, so a large proportion of tests in GWEIS will violate the assumption. Furthermore, 

adjusting for population stratification with genotype principal components is important in 

genetic association studies. The principal components will introduce regression covariates 

that are associated with G, another example of common practice that violates the above 

assumption. Our work considers arbitrary dependence among all covariates in the model and 

can hence incorporate confounders like principal components. We allow for misspecification 

of these confounders as well.

There are two main objectives to this paper. First, we provide conditions for valid GxE 

interaction inference under the null hypothesis of no interaction effect when the 

environmental exposure, and possibly other covariates, are misspecified in a generalized 

linear model. We perform asymptotic bias analysis to show that for a linear regression 

model, the estimated interaction coefficient is asymptotically unbiased under the null if the 

genetic factor is independent of the environment and additionally all other covariates in both 

the true and working model are independent of either the SNP or the environment or both. 

However, standard inference on the GxE interaction is incorrect even under these conditions 

due to biased model-based standard error estimates. In addition, we show that for a logistic 

regression model, the asymptotic estimate of the interaction coefficient will generally be 

biased under environmental misspecification when the genetic factor is associated directly or 

indirectly with the outcome, even under gene-environment independence. For both models 

we confirm that bias in the model-based standard error estimate can lead to inflated and 

deflated QQ-plots.

Secondly, we describe why the often-proposed sandwich variance estimator may not be a 

panacea for inference in practical GWEIS with moderate sample sizes. Specifically, we 

show that the sandwich estimate can be plagued by high variability under environmental 

misspecification. We propose an estimator that has better finite sample properties and 

illustrate its utility through both simulation and application to the Superfund dataset.
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2. Exposure Misspecification in GxE Inference

2.1 Assumptions and Standard Approach

Suppose that the outcome Yi is related to covariates Gi, εi, Zi, and Mi by the generalized 

linear model (McCullagh and Nelder, 1989)

g(μi) = β0 + βGGi + βε f (εi) + βIGih(εi) + Zi
T βZ + Mi

T βM, (1)

where μi = E (Yi|Gi, εi,Zi,Mi). For binary outcomes, g(·) is the logistic link. For continuous 

outcomes, g(·) is the identity link and var(Yi|Gi, εi,Zi,Mi) = σ2. Let Gi denote a discrete 

genetic marker and εi an environmental exposure variable. The additional covariates 

Zi
T = (Z1i, …, Z pi) are correctly modeled, and the covariates Mi

T = (M1i, …, Mqi) are subject to 

mismodeling. Take f(·) and h(·) to be possibly nonlinear functions of ε. While f(·) and h(·) 

are specified to perform theoretical bias analysis of a misspecified GxE model, we do not 

presume that these functions will be known in a practical analysis, and knowledge of their 

exact forms is not necessary for our proposed inference procedure. In vector notation, we 

have β = (β0, βG, βε, βI, βZ
T, βM

T )T and Xi = 1, Gi, f (εi), Gih(εi), Zi
T, Mi

T T
 so that g(μi) = Xi

Tβ. 

In the context of GWEIS, which are hypothesis-generating procedures, we are most 

interested in inference about whether βI = 0.

Suppose that the observed data consist of n independent and identically distributed random 

vectors (Yi,Gi, εi,Zi,Wi) for i = 1, ..., n, where additional observed covariates 

Wi
T = (W1i, …, Wri) are a possibly misspecified version of Mi

T. The only restriction we place 

on Wi is that E (Yi|Gi, εi,Zi,Mi,Wi) = E (Yi|Gi, εi,Zi,Mi), or in other words, the misspecified 

covariates do not add information about Yi above that given by (Gi, εi,Zi,Mi).

The standard test for gene-environment interaction fits the misspecified model

g(μ∼i) = α0 + αGGi + αεεi + αIGiεi + Zi
TαZ + Wi

TαW (2)

and performs inference on H0 : αI = 0. We use μ̃i to denote that this is a misspecified model 

and not the true conditional mean.

Let α = α0, αG, αε, αI, αZ
T, αW

T T
 and X∼i = 1, Gi, εi, Giεi, Zi

T, Wi
T T

 so that g(μ∼i) = X∼i
Tα. We 

denote α to be the large sample limiting value of the parameter in the fitted model and let 𝜶 ̂ 

represent the data estimate of α.

2.2 Misspecification of the Exposure Effect May Appear as Heteroscedasticity

Almli et al. (2014) studied GxE interaction models in a post-traumatic stress disorder dataset 

and reported that the presence of heteroscedasticity was invalidating their inference. The 
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authors found that the residual variance was a function of the environment, which led a QQ-

plot to show heavily inflated p-values when performing genome-wide interaction testing 

with the standard GxE model. We show in this section that for linear regression, 

misspecification of the exposure effect may cause the appearance of heteroscedasticity in the 

environment as reported by Almli et al. (2014).

Suppose the true linear GxE interaction model is given by

Yi = β0 + βGGi + βε f (εi) + βIGih(εi) + ϵi,

where f(·) and h(·) are non-linear functions of εi, and ϵi ~ N(0, σ2). Assume we fit the 

misspecified GxE interaction model with a linear effect of εi:

Y i = α0 + αGGi + αεεi + αIGiεi + ei . (3)

One can easily show that under the misspecified model (3),

E(ei
2 ∣ Gi, εi) = σ2 + d(Gi, εi),

where d(Gi, εi) = {μi(Gi, εi) − μi,mis(Gi, εi)}2, and

μi(Gi, εi) = β0 + βGGi + βε f (εi) + βIGih(εi)
μi, mis(Gi, εi) = α0 + αGGi + αεεi + αIGiεi .

If f(·) is not linear in εi, then the function d(Gi, εi) is generally not 0 even under the null 

hypothesis βI = 0. Thus there will appear to be heteroscedasticity with respect to the effect 

of the environment. This example suggests that it is possible GxE studies of continuous 

outcomes may misdiagnose exposure misspecification as heteroscedasticity; such studies 

may also find the following results relevant to their work.

3. Inference in the Misspecified Model

3.1 Asymptotic Bias of Fitted Coefficients for the Identity Link

Although our primary concern lies in testing αI, it is often also of interest to estimate other 

parameters in α for interpretability reasons or joint tests such as the 2-df test of H0 : αG = αI 

= 0 proposed by Kraft et al. (2007) and utilized by Almli et al. (2014).

When g(·) is the identity link, the p + r + 4 score equations for estimating α under the fitted 

model (2) are

Sun et al. Page 5

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(nσ2)−1 ∑
i = 1

n
(1, Gi, εi, Giεi, Zi

T , Wi
T)T Yi − X∼i

Tα = 0(p + r + 4) × 1 .

The asymptotic limit α of the MLE 𝜶 ̂ is the value such that

E (1, G, ε, Gε, ZT, WT)T XT β − X∼Tα = 0(p + r + 4) × 1 . (4)

Under distributional assumptions, it is possible to solve equation (4) in closed form and find 

the asymptotic bias of each fitted covariate. In derivations for this section, we will assume 

without loss of generality that the covariates G and ε are centered at 0. Also, subscripts on μ 
will denote the expectation of those subscripts, so that μGε = E(Gε) = Cov(G, ε).

The asymptotic value of αI takes the general form

αI = βε ∗ C1 + βI ∗ C2 + C3
T βM,

where (C1, C2) denote constants and C3 denotes a q×1 vector of constants. These constants 

depend on the form of the misspecification as well as the marginal and joint distribution of 

the covariates. Similarly, αG is also a complicated function of the true effect sizes. Under the 

null, we can perform valid inference on αI if C1 = 0 and C3 = 0q×1. The same is true for the 

constants relating to αG. The full expansions are unwieldy and difficult to examine, so we 

leave them to Web Appendix A. Web Appendix B also explores how these equations can be 

extended to consider joint testing for interactions between the exposure and a set of SNPs, 

e.g., SNPs in a gene.

In the following paragraphs, we briefly highlight some of the most interpretable 

consequences of the equations and describe the implications on GWEIS study design. For an 

arbitrary set of covariates and dependence structures, we offer an R package GEint that is 

able to calculate the exact magnitude of bias in fitted coefficients, given some inputs on the 

true model. This software offers a very flexible platform for users to analyze bias on a case-

by-case basis, and it can also be used, for example, to perform sensitivity analysis on 

GWEIS models.

• Consider first a simple testing case where only the environment term is 

misspecified in the fitted model, that is, W =M = 0. Under H0 : βI = 0, sufficient 

conditions for αI = 0 are gene-environment independence combined with

μGεZ1
= … = μGεZ p

= 0. (5)
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The sufficient conditions are achieved under gene-environment independence 

and if at least one of G or ε is independent of each Zj for all j = 1, ..., p.

• Additionally, under the joint null H0 : βG = βI = 0, sufficient conditions for αG = 

αI = 0 are gene-environment independence combined with

μGZ1
= … = μGZ p

= 0. (6)

The sufficient condition (6) is achieved if G is independent of each Zj for all j = 

1, ...p, which is much more stringent. This result suggests the joint test is much 

more susceptible to issues of bias due to model misspecification.

• Next consider the case where other covariates are also misspecified, so that W ≠ 

M. Under the null H0 : βI = 0, two sufficient conditions for αI = 0 are gene-

environment independence combined with

μGεZ1
= … = μGεZ p

= μGεM1
= … = μGεMq

= μGεW1
= … = μGεWr

= 0. (7)

The sufficient condition (7) is achieved if at least one of ε or G is independent of 

each (Z1...Zp), each (M1...Mq), and each (W1...Wr) in addition to gene-

environment independence. The result of Rosenblum and van der Laan (2009) is 

a special case of this result.

• Under the joint null hypothesis H0 : βG = βI = 0, two sufficient conditions for αG 

= αI = 0 are gene-environment independence combined with

μGZ1
= … = μGZ p

= μGM1
= … = μGMq

= μGW1
= … = μGWr

= 0. (8)

The sufficient condition (8) is achieved if G is independent of each (Z1, ...,Zp), 

each (M1, ...,Mq), and each (W1, ...,Wr).

The scenarios discussed above suggest that when genetic and environmental covariates are 

independent, GWEIS inference is likely to be more robust to model misspecification. When 

G and ε are dependent and the effect of ε is misspecified, the estimate of the interaction term 

will often be asymptotically biased. In addition, the results suggest that introducing many 

additional covariates into the model, for instance to reduce the standard error of estimated 

coefficients, is likely to increase the chance of model misspecification and cause biased 

inference on GxE interactions.

3.2 Controlling for Population Stratification

Population stratification due to heterogeneous populations is common in genetic association 

studies and is routinely adjusted for by introducing genetic principal components as 

covariates. In the presence of population stratification and use of principal components, the 

results in (7) suggest that if the environmental exposure varies with sub-populations, 
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misspecification of the exposure is likely to result in biased inference on the GxE 

interaction. For instance, if a cohort is composed of Northern and Southern Europeans, and 

the exposure of interest is differentiated between these two sub-population groups, neither 

the environmental term nor the genetic term will be independent of the principal components 

covariates. Then inference on αI is likely to be sensitive to misspecification of the exposure 

effects.

3.3 Asymptotic Bias of Fitted Coefficients for the Logistic Link

For binary outcomes and a logistic regression model, the score equations become:

0 = n−1 ∑
i = 1

n
(1, Gi, εi, Giεi, Zi

T, Wi
T)T Y i − μi(X

∼
i
Tα) , (9)

where μ(x) = g−1(x) = exp(x)/{1 + exp(x)}. The asymptotic limit α is the value such that

E (1, G, ε, Gε, ZT, WT)T Y − μ(X∼α) = 0 . (10)

These equations generally do not have closed forms. Rosenblum and van der Laan (2009) 

and Tchetgen and Kraft (2011) studied the case where βG = βI = 0 and G is independent of 

all other terms in the true model (1). The authors showed that in this setting, αG = αI = 0 

even under environment misspecification.

Here we focus on situations where the independence assumptions do not hold. We perform 

asymptotic bias calculations by numerically solving (10) for specific cases to demonstrate 

that when the Rosenblum and van der Laan conditions are not met, αI will likely be biased. 

That is, if G has some association with Y and the effect of the environment is misspecified, 

then αI is generally biased away from 0 under the null.

Figure 1 illustrates the asymptotic bias in the interaction term under four different 

misspecification scenarios. To be completely clear, we assume in these scenarios and for the 

rest of this section that the main effect of the exposure exists in the true model and has been 

misspecified in the fitted model. In all cases, we solve the asymptotic score equations (10) 

using numerical methods. For each setting we assume that G has a Binomial(2, 0.3) 

distribution and that it is correlated with the underlined variable (see Figure 1 for definition) 

by an amount given on the x-axis. The variable correlated with G is assumed to be a mixture 

of normal random variables, with mean conditional on G, and it has marginal mean 0 and 

variance 1. In scenarios 2–4 of Figure 1, the environment term is independently generated as 

a standard normal random variable. In scenario 3, M = W2 provides additional 

misspecification.

We see that in scenario 1, the interaction coefficient is biased because G is associated with ε, 

which is in the true model. Thus when there is no gene-environment independence, the 

interaction coefficient will be biased. In scenarios 2 and 3, the interaction coefficient is 
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biased because G is indirectly associated with Y through correlation with Z and W 
respectively. Thus if the true model includes principal components to control for population 

stratification, αI will be biased. In scenario 4, G is correlated with W, but W has no 

association with terms in the true model, so there is no bias.

These four scenarios cover a wide range of possibilities, and they show that the estimate of 

the interaction term is generally biased under environment misspecification if the genetic 

term is directly or indirectly associated with the outcome. In Web Appendix C we are able to 

provide some more intuition on how bias arises in the simplest situations where there are no 

additional covariates. If G is not directly or indirectly associated with the outcome Y 
through correlation with other terms in the true model, then the interaction regression 

coefficient will be asymptotically unbiased under the null.

3.4 Asymptotic Standard Error of Fitted Coefficients

Most earlier work on model misspecification (Voorman et al., 2011; Tchetgen and Kraft, 

2011) advocates that using a robust sandwich standard error estimate will provide 

asymptotically correct Type I error when αI is unbiased under the null. The same theory 

holds for the models we study, because the asymptotic covariance matrix of α̂ is given by:

Vα = B(α)−1A(α) B(α)−1 T;

B(α) = E ∂ψ(X∼, α)
∂αT , A(α) = E ψ(X∼, α)ψ(X∼, α)T ,

where ψ(X̃,α) are the p + r + 4 score equations from above. The model-based variance 

estimator assumes that B(α) = −A(α), which is incorrect under exposure misspecification 

and will invalidate the inference, even if the regression coefficient estimate is unbiased.

Denote by m̂αI the model-based standard error estimate of α̂
I . We show in Web Appendix D 

that the model-based Wald statistic for testing the interaction term Tmod = (α̂
I/m̂αI )

2 

asymptotically follows a scaled chi-square distribution cχ1
2, where the expressions of c for 

linear and logistic regression are given in that appendix. If c > 1 for many SNPs across the 

genome, then the QQ-plot for GxE interactions using model-based standard errors will show 

inflated p-values. If c < 1 for many SNPs, then the QQ-plot will show deflated p-values. The 

value of c converges to a figure which is determined by both the true and fitted models.

Using a sandwich estimator with 𝜶̂ instead of α in the above expression provides a 

consistent variance estimate. However, as noted above, when we utilized this strategy on our 

Superfund dataset, p-values calculated with the robust standard error sometimes seemed less 

uniform than p-values calculated with the model-based standard error.

4. Alternative Standard Error Estimates

4.1 Inflation Caused by the Sandwich Estimator

Even though many studies suggest to use the robust sandwich variance estimator, the 

Superfund data (n ≈ 400), the study of Almli et al. (2014) (n > 3000), and the analysis of 
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Cornelis et al. (2012) (n > 3000) are a few examples where inference conducted with the 

sandwich estimator appears to return an excess of highly significant p-values. It is known 

that the sandwich estimator is often biased downwards and is more variable than model-

based estimators (Kauermann and Carroll, 2001) even when the model is not misspecified, 

which can cause inflated Type I error in hypothesis testing (Kauermann and Carroll, 2001).

Exposure misspecification can exacerbate the variability of the sandwich estimator in linear 

regression. This occurs because the sandwich estimator is a linear combination of the 

squared regression residuals, and the squared regression residuals have more variance under 

exposure misspecification. We demonstrate in detail in Web Appendix E how the variance of 

the sandwich estimator can be much larger under model misspecification than when the 

model is correctly specified. The natural downward bias of the sandwich estimator as well 

the additional variability caused by exposure misspecification provide intuition for the 

heavily inflated sandwich p-values seen in the Superfund data.

A similar derivation incorporating residual variability in logistic regression is complicated 

by the difficulty of specifying a distribution for the residuals. However, in our simulations, 

we find that testing for binary outcomes with the sandwich standard error can have slightly 

incorrect size as well. Thus it is of interest to find variance estimators which can better 

protect the level of the test when performing inference under exposure misspecification.

4.2 Bootstrap Inference with a Corrected Sandwich

As an alternative to the model-based and sandwich variance estimators, we propose a 

resampling-based method. The proposed method can be thought of as a finite sample 

correction to the sandwich estimator. Denote by Tsand = (α̂
I/ŝα̂I)

2 a test statistic for the 

interaction effect calculated using the sandwich standard error estimate ŝα̂I. This test statistic 

should asymptotically have a χ1
2 distribution under the null. If the sandwich estimator is 

biased in finite samples, then the bias will cause the test statistic to instead have an 

approximately scaled chi-square distribution: Tsand ≈ cχ1
2. We can approximate the cχ1

2

distribution by resampling the test statistic and matching the moments of its sampling 

distribution with a Satterthwaite-type idea as follows:

Fit model (2) on the observed data to find the estimated interaction coefficient αI
(init) and 

sandwich test statistic Tsand
(init). For each of b = 1, 2, ...,B, say B = 1000, bootstrap iterations, 

perform a nonparametric bootstrap by sampling (Yi, X̃
i) from the original data n times with 

replacement. Fit model (2) on the new sample. Calculate the squared, centered bootstrap test 

statistics Tsand
(b) = {(αI

(b) − αI
(init))/sαI

(b)}2
 where αI

(b) and sαI
(b) are the regression coefficient and 

the sandwich standard error estimate for the interaction term based on the bth bootstrap 

sample. Match the mean and variance of T = Tsand
(1) , …, Tsand

(B)  to the moments of a k χa
2

distribution, where we solve for (k, a) using the equations k = Var(T)/ {2 * Mean(T)} and a 

= Mean(T)/k. Find the p-value of the original test statistic Tsand
(init) using k χa

2 as the reference 

distribution. We will refer to this method as the Bootstrap Inference with Corrected 
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Sandwich (BICS) procedure; an extension to the joint testing case with multiple interaction 

terms is discussed in Web Appendix F. We also note that a natural alternative, using the 

empirical standard error of αI
(1), …, αI

(B) instead of the sandwich estimate, does not work 

well.

5. Simulation Studies

We conducted a variety of simulations to evaluate control of Type I error rate in GWEIS for 

different testing procedures over a range of misspecification scenarios. All misspecified 

models we consider are generated under the null of βI = 0, and all satisfy the conditions for 

valid inference discussed previously, that is, αI = 0 asymptotically. The Type I error rate of 

the tests should be controlled at the nominal size of 0.05 with an unbiased standard error 

estimator. In all simulations we fit model (2) with Zi = Wi = 0. We use a Wald t-test to 

generate p-values with the naive and sandwich standard errors. Each misspecified model is 

tested at sample sizes from 400 to 3200 to reflect the finite sample problem which affects the 

Superfund study. We perform 50,000 replications of the simulation at each parameter setting 

and report the percentage of times that each testing procedure rejects the null.

We first describe the misspecification for continuous outcomes. Simulation A has outcome 

Y generated from the model Y i = βεεi
3 + ϵi, ϵi ~ N(0,1) where βε is chosen such that ε 

explains 10% of the variance in Y. In Simulation B we increase the degree of 

misspecification by taking the true model to be Y i = βεεi
3 + ϵi, ϵi ~ N(0,1), where βε is again 

chosen such that ε explains 10% of the variance in Y. For both Simulations A and B, we 

generate εi ~ N(1, 1). Simulations C and D have the same true model as A and B, except we 

generate εi ~ Beta(2,5) to introduce skewness into the exposure variable. We also adjust βε 
so that ε continues to explain 10% of the variance in Y. Finally, Simulation E differs from 

the previous four in that we generate the outcome as Y i = βGGi + βεεi
2 + ϵi, with εi and ϵi 

again as they were in Simulation A. This situation mimics testing for interaction with a SNP 

that has a marginal effect but no interaction effect. The values of βG and βε are chosen such 

that ε and G would explain 10% and 1% of the variance in Y respectively if G had minor 

allele frequency 0.3. For all scenarios above, G is simulated by using HAPGEN2 to generate 

the number of minor alleles at a random SNP on chromosome 1 (HapMap3 CEU population 

used as reference), thus G and ε are always independent.

We see from Table 1 that the sandwich estimator often produces inflated Type I error rates. 

BICS performs very well, protecting the size almost exactly in every single situation. Of 

course, the sandwich estimator performs progressively better as the sample size increases. In 

contrast, BICS does not appear to show a trend in n and increases its relative superiority over 

the sandwich estimator at the smallest sample sizes. The naive estimator is always biased 

and shows the most inflation. These results closely reflect the trends in our data example, 

where QQ-plots of p-values calculated with the sandwich and naive estimators show very 

early departures from the 45-degree line, indicating lack of uniformity.
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Next we consider binary outcomes. Simulations F,G,H,I, and J are conducted in the same 

spirit as the previous five. The outcome Yi in simulation F is generated from the model:

Yi Bernoulli(πi); πi =
exp (0.4εi

2)

1 + exp (0.4εi
2)

.

The parameter β0 = 0 is chosen to give a subject with ε = 0 a disease probability of 0.5. 

Simulation G is conducted under a higher degree of misspecification as we take the true 

probability of disease to be πi = exp (0.2εi
3)/{1 + exp (0.2εi

3)}. For simulations F and G we 

generate εi ~ N(0, 1). Simulations H and I have πi = exp (εi
2)/{1 + exp (εi

2)} and 

πi = exp (εi
3)/{1 + exp (εi

3)} respectively with εi ~ Beta(2,5). Finally, in Simulation J each 

SNP has a marginal effect with πi = exp (0.1Gi + 0.4εi
2)/{1 + exp (0.1Gi + 0.4εi

2)}, and εi ~ 

N(0, 1) again.

In these logistic regression simulations we see that the sandwich estimator actually performs 

fairly well, with the correct size in most situations. It can be slightly conservative when n = 

400. BICS similarly performs well, although it appears to be slightly less conservative than 

using the sandwich estimate. In absolute terms, BICS and the sandwich estimator both 

appear to deviate a similar amount from the expected size. Once again the naive standard 

error estimate is biased and produces tests at an incorrect size.

Our simulation study suggests that BICS protects against inflated p-values in linear 

regression GWEIS of moderate size. In the simulations and in published articles, inflation 

from inference with the sandwich estimator appears to occur even at n = 3000; while each 

study is unique, we would use this figure as a rough benchmark for moderate size. Although 

our simulations consider a finite number of settings, our results show that the trends 

presented above appear to hold for a variety of different scenarios. When n is large or 

logistic regression is used, we agree with previous suggestions that the sandwich estimator 

should be employed for its speed and simplicity, however BICS can be used as an alternative 

if diagnostic QQ-plots appear worrisome. A simple and fast implementation is available 

through GEint. Additional power simulations are available in Web Appendix G.

We also note that in practical setting, the environment term will remain constant for each 

SNP, while in our simulation the environment term is newly generated with each different 

SNP. This choice was made to present the fairest possible comparison in simulation. When 

the environment term is held constant for each SNP, the difference between BICS and the 

sandwich estimator can be even more drastic (again see Figure 3).

6. Application to Superfund Data

One major goal of the Superfund Research Program is to study the interplay of genes and 

toxic metal exposures on childhood neurological outcomes. The metal exposure of interest is 

lead concentration in the umbilical cord blood. The neurological outcome is a mental 

composite score calculated from the BSID. There exists evidence that exposure to certain 
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metals during the prenatal period can seriously impair the cognitive development of infants 

(Claus Henn et al., 2012), but to date we are unaware of any previous gene-environment 

interaction studies covering toxic metal exposures and neurodevelopment outcomes.

The participants enrolled in the study come from two cohorts. Recruitment in Mexico was 

described in Burris et al. (2013), with 389 of the recruited mother-infant pairs having 

complete genetic and covariate data. Recruitment in Bangladesh was described in Kile et al. 

(2014), with 497 pairs having complete genetic and covariate data. Briefly, women were 

enrolled during hospital visits in the early weeks of their pregnancy, and covariate 

information was collected upon subsequent visits to the hospital. Genotyping was performed 

using the Illumina OmniExpressExome-8 in the Bangladesh cohort and the Illumina 

HumanOmni1-Quad Beadchip in the Mexico cohort. About 500,000 SNPs common to both 

cohorts remained after quality control.

We conducted a standard GWEIS by repeatedly fitting the model

Y i = α0 + αGGi + αεεi + αIGiεi + Zi
TαZ + ϵi, (11)

where Zi is an 8×1 vector of additional covariates including sex, birthweight, gestational 

age, education of mother (binary, 1 if primary school or greater), household environmental 

smoke (binary), child’s age at time of assessment, and the first two genotype principal 

component vectors. Here ε is the logarithm of umbilical cord blood lead concentration. Two 

distinct genome-wide scans were conducted, one for each cohort. A meta-analysis was then 

performed to pool the data and provide a final measure of association for each SNP.

The initial analyses implemented with a model-based standard error produced QQ-plots of 

highly non-uniform p-values (Figure 2 and Figure 3). We conjectured that a major cause of 

the non-uniformity was misspecification of the effect of the environmental covariate. To 

investigate possible misspecification, we repeated the initial analyses but introduced a spline 

term for the environment instead of modeling it linearly. QQ-plots produced after this 

modification improved somewhat but still showed some non-uniformity. We also performed 

a standard GWAS by removing the interaction term from the fitted model and only testing 

for the marginal effect of G. QQ-plots for the GWAS seemed relatively uniform.

Under model misspecification, the theoretical results derived in Section 3 suggest that we 

can have robust tests of the null hypothesis under some independence conditions, which we 

believe are reasonable to assume here. Still, as shown in Figures 2 and 3, the QQ-plots based 

on sandwich standard errors are inflated.

We next re-analyze the data by fitting model (11) and using BICS to generate p-values for 

the cohort-specific GWEIS. For the meta-analysis, we use METAL (Willer et al., 2010) to 

combine the BICS p-values from each cohort. After meta-analysis, the resampling-based p-

values are much more uniform than p-values calculated using the naive or sandwich variance 

estimate. It appears that our assumptions about independence mostly hold, as there is little 

inflation using BICS. The corrected p-values seem to reflect that αI = 0 throughout much of 
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the genome, and inflation seen from using the sandwich estimate can likely be attributed to 

the drawbacks discussed in Section 4.

After applying BICS and accounting for multiple testing, we do not find any SNPs to be 

significant at the genome-wide level in either of the cohorts. No SNPs reach genome-wide 

significance in the meta-analysis either. However, the meta-analysis does suggest a 

promising region for future study. Two of the top SNPs identified in the meta-analysis are 

rs9642758 and rs10503970 (p-values of 8.79×10−6 and 2.57×10−5 respectively), which are 

both located on chromosome 8 in the region of the gene UNC5D. UNC5D encodes a 

receptor for netrin, which may be involved in axon guidance and could plausibly affect 

infant neurodevelopment through interaction with toxic metals. We believe the interaction 

between UNC5D, exposure to lead, and neurodevelopment outcomes is a promising 

candidate for further study.

7. Discussion

It is often the case in the standard GWEIS approach that the parametric form of the 

environmental covariate will be misspecified. We have demonstrated conditions under which 

inference for the interaction effect is still valid under model misspecification. These results 

provide guidance on fitting GxE interaction models. We show that for linear regression 

models, the estimate of the interaction effect will be asymptotically unbiased if there is both 

gene-environment independence and also either the genetic or environment term is 

independent of each coefficient in both the true and fitted models. For logistic regression 

models, the estimate of the interaction effect will generally only be asymptotically unbiased 

if the genetic term is neither directly nor indirectly associated with the outcome.

When the conditions for valid inference on GxE interactions are met, hypothesis testing may 

still be difficult to conduct because the model-based estimate of standard error is biased 

under environment misspecification, and the Huber-White sandwich estimator can lead to 

excess Type I error in finite samples. We provide a resampling-based method of obtaining p-

values and show its advantages both in simulation and through application to the Superfund 

dataset; BICS provides an especially useful inference tool in linear regression GWEIS with 

moderate sample sizes. After reanalysis of the Superfund data, we have identified UNC5D 

as a strong candidate gene for further study in how lead exposure can affect infant 

neurodevelopment.

While our resampling method can be computed rather quickly and has been found to work 

well in practical studies of moderate sample size, it is still a minor drawback to perform a 

bootstrap procedure for every SNP across the genome. It is of future research interest to 

develop more computationally efficient inference methods for robust testing of GxE 

interactions in GWEIS. Similarly, it is desirable to develop semiparametric gene-

environment interaction models that are more robust to model misspecification in both the 

exposure and confounder covariates. For example, Maity et al. (2009) introduced a 

semiparametric interaction model with a nonparametrically-modeled exposure.

Sun et al. Page 14

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We additionally showed in this paper that our asymptotic bias analysis and resampling 

inference method are applicable to SNP-set by environment interaction models when the 

number of SNPs in a set is not large. When the number of SNPs in a set is large, for example 

when considering SNPs in a genetic pathway, Lin et al. (2013) proposed a variance 

component test for SNP-set by environment interaction that demonstrated attractive 

performance in joint testing of many interaction terms. It is also of future research interest to 

study the validity of such variance component interaction tests when exposure effects are 

misspecified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bias of the fitted interaction coefficient in logistic regression over four different 

misspecification settings. The underlined terms are correlated, with the magnitude of 

correlation given on the x-axis. At each data point we solved the score equations numerically 

and confirmed these results through simulation.
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Figure 2. 
QQ-plots of p-values generated by testing for interaction effect in model (11) with naive 

model-based variance, sandwich variance, and BICS procedure. The outcome is mental 

composite score calculated from the BSID. The exposure is logarithm of umbilical cord 

blood lead concentration. We expect to see close adherence to the 45-degree line through the 

left half of the x-axis. On the right half of the x-axis are less than 0.1% of all terms; these 

show the most evidence of association and may indicate true signals. However in both 

cohorts the sandwich and naive p-values show very early departures from the 45-degree line. 

Such behavior is worrisome because it indicates the inference procedure is not producing 

uniform p-values under the null, and thus all inferences we make may be invalidated. A 

quantitative measure of the departure from uniformity is given by the genomic inflation 

factor, provided in the legend. This factor is defined as the ratio of the median of the 

empirically observed test statistics to the expected median of a chi-squared distribution with 

one degree of freedom.
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Figure 3. 
The meta-analysis p-values provide our final measure of association for each interaction 

term. For each method of inference (naive, sandwich, BICS), we use METAL to combine the 

cohort-specific p-values with sample size weights. The default genomic control option in 

METAL is turned off. Again we see the p-values calculated using the sandwich and naive 

variance estimates depart from the 45-degree line very early. The BICS p-values lie almost 

perfectly on the line.
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