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Abstract

A mixed effect model is proposed to jointly analyze multivariate longitudinal data with 

continuous, proportion, count and binary responses. The association of the variables is modeled 

through the correlation of random effects. We use a quasilikelihood type approximation for non-

linear variables, and transform the proposed model into a multivariate linear mixed model 

framework for estimation and inference. Via an extension to the EM approach, an efficient 

algorithm is developed to fit the model. The method is applied to physical activity data, which uses 

a wearable accelerometer device to measure daily movement and energy expenditure information. 

Our approach is also evaluated by a simulation study.
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1. Introduction

We propose a new framework to estimate multivariate longitudinal data that consists of 

multiple types of variables. Our methodology is motivated by physical activity data recorded 

by wearable accelerometer devices [1]. These devices have several advantages over 

traditional questionnaire-based measures of physical activity and are increasingly used in 
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studies investigating physical activity and health. One clear advantage is the ability to 

measure activity continuously over days or weeks at relatively high frequencies (e.g., 80 

Hz). However, since this data can be summarized into many metrics that are potentially 

associated, the increased information presents new analytic challenges.

Recent literature [2] shows that a complete description of an individual’s pattern of physical 

activity requires specification of multiple variables, such as those listed in Figure 1 (a)–(h). 

Among these eight variables, we note that two are continuous measures, two are proportions, 

two are counts, and two are binary. Our motivating example is an experimental study that 

examined the impact of 12-weeks of exercise training on health. The 63 participants wore 

monitors during baseline and weeks 3, 6, 9 and 12 of the intervention and we extracted the 

eight variables for one day’s wear in each week.

The main purposes of this work are to develop statistical methodology for jointly modeling 

the longitudinal pattern of the eight factors, which postulates their association structures. 

The association pattern can be widely used in this physical activity data analysis, including 

but not limit to, study daily sedentary time and energy expenditure levels under certain 

conditions. For example, we could explore the trend of the two outcomes for participants 

who are less likely to have sedentary activity but prefer to take more daily steps, more 

moderate to vigorous physical activity (MVPA) time, and higher intensity in activities at 

baseline. Although one may simply select the individuals who meet all criteria for the 

inference, the results would have a severe loss of information and there could be very few or 

even zero subjects satisfying all criteria in our small sample. On the other hand, as we will 

show in Section 5, the association structure obtained from our joint modeling uses the 

information from all participants and is flexible to handle user-specified conditions for 

different research purposes.

In this manuscript, we propose a flexible statistical model that handles a large number of 

response variables mixed with multiple types in longitudinal studies. A naive solution is to 

ignore the correlation among multiple outcomes and fit them separately as if they are 

independent, but this potentially losses important information from the data. The other 

simple approach is to consider the association only among the same type of variables (e.g. 

bivariate normal), while ignore the association across different types of responses. As we 

will show, our estimation for outcomes under specified conditions needs to understand the 

association patterns among all variables, while ignoring such correlation would lead to 

biased conclusions. For joint modeling approach, most of the current multivariate methods 

focus on one or two types of outcomes [3]. For example, Fieuws and Verbeke [4] and 

Fieuws et al. [5] respectively discuss the methods to handle multiple normal and binary 

outcomes, Gueorguieva and Agresti [6] develop a modeling strategy for one normal and one 

binary responses, and Buu et al. [7] propose a joint model for one count and one binary 

variables to handle zero-inflated count data. These models are limited in practice. Instead, 

we develop a multivariate mixed effect model for various types of outcomes, which 

incorporates the within individual correlation across variables by random effects.

The difficulty for this study is finding a method that can fit the proposed model. With the 

increasing number of variables of different types, the number of random effects also 
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increases. Current maximum likelihood methods for joint modeling are only feasible for low 

dimensional random effects. For multivariate linear mixed models, where the analytical 

formulation of marginal density is known, the model fitting is infeasible when the number of 

variables exceed four as the parameters in the covariance matrix for random effects are 

rapidly increasing [4]. For models of non-linear variables, large dimensional integration 

problems are more difficult to handle in the presence of multiple random effects. For 

example, the maximum likelihood approach using Monte Carlo or Gauss-Hermite 

quadrature is computationally extremely difficult for the integration of seven random effects 

in Fieuws et al. [5]. For our accelerometer data, we respectively set a random intercept and a 

random slope for eight variables. Therefore, our model involves 2 × 8 = 16 dimensional 

random effects, and it exceeds the limit for maximum likelihood.

An alternative model fitting approach is to use a pairwise likelihood strategy by splitting 

joint estimation into a series of bivariate joint mixed models [4, 5]. However, it could still be 

intractable as the number of pairs quadratically increases with the number of variables. 

Moreover, as our proposed model involves four types of variables, the paired structures 

involve different formulations (i.e. bivariate normal, normal and proportion, binary and 

count, etc), which is difficult to implement in practice.

We use an upgraded penalized quasilikelihood approach to fit the data [8, 9]. This method 

extends the previous approach [10] by accommodating the data with continuous, proportion, 

count, and binary variables. Based on the penalized quasilikelihood method, all of the non-

linear variables are transformed and approximately postulated by linear mixed models. 

Therefore, four types of measurements can be postulated by an approximated multivariate 

linear mixed model. In addition, the idea of an ECME algorithm [11] is extended to our joint 

model to solve the estimation problem for a large dimension of random effects. Our method 

avoids the numerical integrations for non-linear variables, and it only has modest 

computational workload. In addition, the updating of parameters in maximum likelihood 

method requires tedious computation of the first and second order derivatives with various 

formulations from different types of outcomes [12, 13], while our algorithm is easy to 

implement since it only involves the first derivatives of log-likelihood functions for linear 

mixed model.

The paper is organized as follows. Section 2 describes the models for multiple types of 

variables, and Section 3 describes our developed algorithm to fit the model. Section 4 gives 

results from our simulation studies. Section 5 analyzes the motivating physical activity data 

obtained from wearable accelerometer-based device. Concluding remarks are in Section 6.

2. Mixed Effects Model

2.1. Model Specification

Let  be the ℓth outcome at occasion j = 1, …, Ji for subject i = 1, …, n. To accommodate 

the data, we set ℓ = 1, 2 for continuous responses, ℓ = 3, 4 for proportional responses, ℓ = 5, 6 

for count responses and ℓ = 7, 8 for binary responses, respectively. We shall assume that 

comes from a specified distribution with mean , linear predictor , and link functions to 
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connect  and  in various forms for different types of outcomes. Then we define linear 

predictor , where  and  are covariate vectors for fixed and 

random effects, respectively, β(ℓ) is a vector of fixed effect coefficients,  is a vector of 

correlated random effects with Normal(0, Ψ(ℓℓ)).

For continuous data (ℓ = 1, 2), we assume that the response follows a normal distribution and 

let  to have

(1)

where  is independent random noise with Normal(0, σ2(ℓ)).

For proportional data, based on the Beta regression framework proposed by Ferrari and 

Cribari-Neto [14], the density function for proportional outcomes  given random effects 

 is assumed to have

where Γ(·) is the gamma function, and we reparameterize σ2(ℓ) = 1/{1 + ϕ(ℓ)} (ℓ = 3, 4) to 

unify the notations with continuous outcomes. We also have 

 and use logit link function to connect  and  as

(2)

Poisson distributions with log link function and binomial distributions with logit link 

function are employed to model the count and binary data, respectively. They lead to

(3)

(4)

We further assume that given , the observations are independent across all 

occasions, subjects, and different types of responses. Therefore, the random effects model 

the association pattern across visit time points and also postulate the correlation structure 

across all variables.
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For ease of exposition, we combine notations as  and 

 for responses,  and Xi to be a block 

diagonal matrix with elements  and Zi to be a 

block diagonal matrix with elements .

We also denote β = {β(1)T, …, β(8)T}T for fixed effect coefficients, and 

 for random effect variables. Thus, the random effect variables have 

ui = Normal(0, Ψ) with block matrix Ψ including diagonal elements Ψ(ℓℓ) and off-diagonal 

element Ψ(ℓℓ̃) (ℓ, ℓ̃ = 1, 2, …, 8; ℓ ≠ ℓ̃). The element Ψ(ℓℓ) denotes the covariance of . The 

element Ψ(ℓℓ̃) determines the covariance of  and , which measures the association level 

across two variables. We further denote σ2 = {σ2(1), …, σ2(4)}T.

Therefore, the multivariate longitudinal data model for various types of variables involves 

three sets of parameters to be estimated: (1) fixed effect coefficients β; (2) ui’s covariance 

matrix Ψ; (3) dispersion parameters σ2.

2.2. Approximated Linear Mixed Model

We approximate the proportion, count and binary variables using the penalized 

quasilikelihood method (PQL) proposed by Breslow and Clayton [8]. The approximation is 

upgraded by Goldstein and Rasbash [9] with second order approximation terms to improve 

performance. As we will show in simulation study, the upgraded approach employed in this 

manuscript leads to smaller bias comparing to the regular PQL method without using second 

order approximation. We briefly describe the formula for proportional variables here, and 

the formulas for count and binary data are displayed in the Appendix A.1. Let H(·) be our 

inverse function of logit link with H(·) = exp(·)/{1 + exp(·)}, and H′(·) and H″(·) be its first 

and second derivatives. Given specified values of (β̂, ûi), the proportional data model in (2) 

has . Following the approximation methods discussed in 

Lindstrom and Bates [15], Wolfinger and O’Connell [16], Goldstein and Rasbash [9] and 

Molenberghs and Verbeke [17], the formulation is displayed as follows with detailed 

derivations described in the Appendix A.2,

(5)

where  has mean zero and variance .
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After performing similar transformations for the binary and count variables, we now have 

six transformed outcomes  that have approximated mean structure 

 and variance structure . The 

estimation of model parameters can thus be implemented as fitting a linear mixed model. As 

these variables can be respectively fitted as approximated linear mixed model and two 

continuous responses are also postulated by linear mixed models, a multivariate linear mixed 

model can be used to jointly fit all variables. Therefore, despite the various types of 

outcomes, they are transformed into a unified framework which can be conveniently 

estimated by the algorithm described in Section 3.

3. Model Estimation

We estimate the parameters by extending the idea of an ECME algorithm [11]. The ECME 

algorithm updates the fixed effects parameters (β, σ2) by the Newton-Raphson method and 

updates the random effects parameters Ψ by the EM algorithm. Liu and Rubin [18] study the 

convergence properties of this algorithm. We provide detailed procedures for the model 

fitting here. Similar to the notation of Yi, we define the approximated response vector as 

, and combine these vectors with continuous 

outcomes as . Let Σi be the diagonal matrix with 

the variance for  as

(6)

where IJi is Ji × Ji identity matrix,  and 

. We also let Vi to be the approximated covariance 

for  as

(7)

The approximated conditional covariance for ui given  by assuming known β as

(8)

and for unknown β as

(9)
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where the estimate of  for (5), (A.1) and (A.2) can be obtained by extracting 

the corresponding elements.

The algorithm has

1.
Based on the current working values , 

calculate , update Σi,curr, Vi,curr, Ui,curr and 

sequentially by Equations (6) to (9), and then update  by Equations (5), (A.

1) and (A.2).

2. update β as

(10)

3.
Based on , repeat step 1 to calculate 

, Σi,new, Vi,new, Ui,new,  and , sequentially.

4. update σ2(ℓ) as 

, where 

, and 

.

5. update ûi as .

6.
update Ψ as .

We keep  for the next iteration by selecting subvectors from ûi,new. The 

procedure is iterated until convergence of .

According to equation (10), the covariance matrix for β̂ can be calculated by 

. This variance estimator leads to satisfactory results in our simulation 

studies and data analysis. However, the estimator is based on the approximation for  and 

assuming other parameters are known. The improved estimators discussed in [8] can be used 

to reduce bias.

Remark 1

We fit the data by a generalized linear model without random effects to obtain an initial 

value of β. We also set all elements in σ2 to be 0.01 and all elements in  to 

be 0 as starting values. Following the discussion from [8], we set the diagonal elements in 

the covariance matrix Ψ to be small positive values and off-diagonal elements to be 0. In a 

preliminary simulation study (not reported), the diagonal variances in Ψ are all set to be 0.1. 
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However, during estimation iteration, this initial value could lead to fairly extreme values in 

Σi for count outcomes, and thus Vi could be singular and may not be invertible. In the 

preliminary study, 36% of the simulation runs have this problem for 1 to 3 subjects. We 

solve the issue by resetting the variances in Ψ corresponding to the count outcomes as 

0.001. Based on the new initial value settings, none of the runs in moderate sample scenario 

has such issue in the study reported in Section 4. There are less than 1% of the runs in large 

sample scenario have one subject with singular Vi. For those rare runs with singular Vi 

under new starting values, we remove the corresponding subjects from iteration procedures, 

and then all of the runs successfully achieve convergence.

4. Simulation Studies

In this section, we use a simulation study to demonstrate the performance of our proposed 

approach (labeled as JOINT-PQL2). As a comparison, two naive approaches are also 

explored, where the first method fits eight variables by assuming them to be independent 

(labeled as NAIVE1), and the other approach only models the association among the same 

type of variables (labeled as NAIVE2). We also study the performance of the regular PQL 

method which models the complete association structure but not using second order 

approximations for our proportion, count and binary outcomes (labeled as JOINT-PQL1).

In the simulation study of 500 runs, we have n = 200 subjects and each subject has Ji = 5 

visits. We also consider a larger sample size with n = 400 and Ji = 9. At visit time j, subject i 

has eight observations  as described in Section 2. The continuous variables 

 and  are generated according to

where tij = j − 3 (j = 1, …, 5) for the moderate sample, tij = (j − 5)/2 (j = 1, …, 9) for the 

large sample, and  are generated from standard normal distribution and independent 

across i, j, ℓ. Other types of variables have similar linear predictor formulation with

We set  for ℓ = 1, 3, 5, 7, and 

 for ℓ = 2, 4, 6, 8, and the covariance matrix 

Ψ for ui has Ψ(ℓℓ) (ℓ = 1, 2, …, 8) in 2 × 2 matrix with diagonal elements to be 

 and off-diagonal elements to be , and Ψ(ℓℓ̃) in 2 × 2 matrix 

with all elements to be 0.1. We also set σ2(1) = σ2(2) = 1 and σ2(3) = σ2(4) = 1/30.

As the discussion in Section 1, we are interested in the estimation of model parameters as 

well as the longitudinal pattern of outcomes under certain conditions. The conditional 

patterns can be used to study the physical activity outcomes for participants who meet 
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particular criteria, and they will be discussed in Section 5. As an example, we use three 

approaches to fit simulated data, and the estimates are used to calculate the following 

conditional expectations by averaging the results from one million times of Monte Carlo 

samplings:

where ℓ = 1, 2, j = 1, …, 5 for the moderate sample, and j = 1, …, 9 for the large sample.

Tables 1–2 present the relative bias percent (Bias%), the average model-based standard error 

(ASE), the empirical standard error (ESE) and 95% coverage rate (CR) for β estimates in 

count and binary outcomes, respectively. The β estimates for continuous and proportional 

outcomes are listed in Online Supplementary Material. The results show that our proposed 

JOINT-PQL2 method yield small biases and the coverage rates are appropriate for β. ASE 

and ESE agree reasonably well, suggesting the variance estimates for β is appropriate. The 

JOINT-PQL1 method, however, has larger bias and poor coverage rate for some parameters 

in β. For the estimation of β, the NAIVE1 and NAIVE2 approaches lead to acceptable 

conclusions as the proposed JOINT-PQL2 method. We also report the estimates for σ2 and 

diagonal elements in Ψ using our JOINT-PQL2 approach in Online Supplementary Material, 

which indicate fairly good performance in the estimation of the model parameters.

Figure 2 shows the true and the averaged estimates of the conditional expectations for ℓ = 1, 

2 across j. Our JOINT-PQL2 approach generally captures the true patterns, while the 

NAIVE1 and NAIVE2 methods lead to obvious bias to describe the trends of conditional 

expectations. We do not present the results from the JOINT-PQL1 method in Figure 2 

because it leads to similar patterns as the JOINT-PQL2 method.

Therefore, the simulation results suggest that the JOINT-PQL1 method without using second 

order approximation, may have biased parameter estimation in β. The NAIVE1 and 

NAIVE2 approaches, which either completely or partially ignore the correlation among 

responses, may provide misleading conclusions in the estimation of conditional expectations 

with respect to multiple outcomes. On the other hand, our proposed JOINT-PQL2 method 

has satisfactory estimation results for both model parameters and conditional expectations.

5. Application to Physical Activity Data

In this section the proposed method is applied to the physical activity dataset collected by 

wearable devices. The project is to investigate the metabolic effects of exercise interventions 

to increase activity and reduce sedentary time in a group of office workers [1]. The raw 

activity data is obtained by a device named the ActivPAL™ (www.paltech.plus.com), which 

is taped in front of the thigh and uses a vertical-axis accelerometer to measure the angle of 

the thigh and the frequency of body movement. For this project, Zhang et al. [19] develop an 

R package “PAactivPAL” to handle the ActivPAL device’s raw records, which summarizes 

the dense time activity information into daily averages. We focus on the following eight 

variables: daily sedentary hours, daily energy expenditure (measured by METs hours), the 

proportion of time for sedentary bout greater than 20 minutes, the proportion of time for 
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active bout greater than 5 minutes, daily number of standing up activities, daily number of 

steps, whether daily MVPA time is greater than one hour, and whether the highest METs in 

10 minutes is greater than 3.

According to the data description in Section 1, the dataset has n = 63 subjects and 

 corresponds to eight selected responses. All individuals are scheduled to 

have one day’s measurement across five weeks with tij = −2, −1, 0, 1, 2, respectively. 

Incomplete daily observations are removed from our analysis. Moreover, the individual i 

enrolled in exercise group has  for all j and ℓ, while others in control group have 

.

The model used in simulation Section 4 are introduced to fit the data. This model includes 

intercept, group, time and a group-time interaction for fixed effects, and intercept and time 

for random effects. Our proposed JOINT-PQL2 approach is applied to estimate parameters. 

Table 3 presents β estimates for eight variables. The table illustrates that four outcomes, 

daily energy expenditure levels, the daily number of steps, the probability of daily MVPA 

time is greater than one hour, and the probability of highest METs in 10 minutes greater than 

3, have significantly higher levels in exercise treatment group than control group. It implies 

that the treatment group will gain health benefits associated with increased physical activity.

Based on the model of the association structure among eight activity factors, it is of interest 

to study the pattern of daily sedentary hour and energy expenditure among particular 

subgroups across five weeks. We select two subsets of subjects with active and inactive 

behaviors at Week 0, respectively. The criteria for active performance have: (1) the 

proportion of sedentary bout greater than 20 minutes is less than 20%; (2) the active bouts 

greater than 5 minutes are more than 30%; (3) daily standing up behaviors are more than 40 

times; (4) daily steps are more than 6000; (5) daily MVPA time is greater than one hour; (6) 

the highest METs in 10 minutes is greater than 3. The individual who reaches all six criteria 

at Week 0 is defined as active participant, while those who do not meet any term is taken 

into inactive group. Therefore, the conditional expectations to be estimated here are

and

where ℓ = 1, 2 and j = 1, …, 5. We study the situations with  and , 

respectively.

Figure 3(a)(b) shows the estimated conditional expectations for active/inactive participants 

with/without exercise training across five weeks. For daily sedentary hours, the estimates 

suggest that active participants have lower sedentary time than inactive subjects across 
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weeks. In addition, the sedentary time in both exercise and control groups is decreasing with 

increasing time, and the exercise group has faster decreasing rate. A reasonable explanation 

is that many subjects in both groups receive several lifestyle suggestions to increase 

spontaneous activities (e.g. walk the stairs), which reduces the sedentary time. The 

supervised structured exercise training for the exercise group led to further reductions in 

sedentary behaviors. For energy expenditure levels, in both exercise and control groups, the 

active participants have higher outcome than the inactive ones at Week 0 but the difference is 

fairly small at Week 12. Active subjects at baseline in both the exercise and control groups 

decreased energy expenditure by Week 12, while the less active subjects increased energy 

expenditure. In this study, all participants in the exercise groups completed the same amount 

of exercise each week (~ 200 min) regardless of their activity status at Week 0. Although this 

is standard practice in such trials to ensure all participants complete the same dose, these 

data suggest that more active participants at baseline decreased their energy expenditure as a 

result of the standard intervention and future studies could consider tailoring exercise 

recommendations based on activity status at Week 0 to promote increases in energy 

expenditure for all participants.

6. Discussion

We have proposed a joint modeling and estimation strategy for longitudinal data with 

continuous, proportion, count and binary variables. To avoid the computational difficulty 

resulting from the large dimension of random effects, our algorithm uses an improved 

quasilikelihood approximation to handle non-linear outcomes, while employs an efficient 

estimation method to fit multivariate linear mixed model data. The simulation results are 

promising and suggest that the proposed method has little bias and outperforms naive 

approaches which ignore the association among multiple responses. The data analysis on the 

physical activity data collected by using wearable accelerometer device proves the utility of 

our method in applications.

The penalized quasilikelihood (PQL) method is often criticized for its biased estimates [20]. 

However, Goldstein and Rasbash [9] suggest that the second order approximation greatly 

improves the PQL approach. Vonesh et al. [21] study the asymptotic results for the PQL 

method and prove that it provides a consistent estimator if the number of subjects and the 

number of measurements per subject go to infinity. The simulation studies in this manuscript 

agree with these conclusions. We noted that our proposed approach has a small bias in the 

estimation for both β and conditional expectations with moderate sample sizes, and the bias 

become negligible with larger sample sizes.

To compare our method with commonly used model fitting approaches, we further 

investigate the performance of two maximum likelihood approaches, which are based on 

Laplace approximation (implemented by the R package “lme4” [22, 23]) and Gauss-Hermite 

quadrature approximation (11 quadrature points are used), respectively. Both methods are 

employed only to fit one binary outcome . The estimates for the parameter β(8) are 

briefly reported in Online Supplementary Material and they are comparable to the estimates 

produced by our newly proposed method. However, in our multivariate data structure with 

eight responses, these maximum likelihood approaches are computationally intractable.
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Finally, we have discussed the approach to select initial values in Section 3. Based on the 

suggestion from [8], we use small positive values for diagonal elements in Ψ (0.001 for 

count outcomes and 0.1 for other types of responses). This method works well in our 

simulation and application studies. Moreover, it would be interesting to consider selecting 

the initial Ψ from original data. This could be implemented by using either a maximum 

likelihood or restricted maximum likelihood estimation procedure, for example, see [8] and 

[16].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Li was supported by discovery grants program from the Natural Sciences and Engineering Research Council of 
Canada (NSERC, RGPIN-2015-04409). Carroll was supported by a grant from the National Cancer Institute (U01-
CA057030). The authors thank Sarah Kozey Keadle for making the physical activity data available to them.

References

1. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Changes in sedentary time 
and spontaneous physical activity in response to an exercise training and/or lifestyle intervention. 
Journal of Physical Activity and Health. 2014; 11:1324–1333. [PubMed: 24184493] 

2. Keadle SK, Sampson J, Li H, Lyden K, Matthews CE, Carroll RJ. An evaluation of accelerometer-
derived metrics to assess daily behavioral patterns. Medicine & Science in Sports & Exercise. 2017; 
49:54–63. [PubMed: 27992396] 

3. Verbeke G, Fieuws S, Molenberghs G, Davidian M. The analysis of multivariate longitudinal data: 
A review. Statistical methods in medical research. 2014; 23:42–59. [PubMed: 22523185] 

4. Fieuws S, Verbeke G. Pairwise fitting of mixed models for the joint modeling of multivariate 
longitudinal profiles. Biometrics. 2006; 62:424–431. [PubMed: 16918906] 

5. Fieuws S, Verbeke G, Boen F, Delecluse C. High dimensional multivariate mixed models for binary 
questionnaire data. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2006; 
55:449–460.

6. Gueorguieva RV, Agresti A. A correlated probit model for joint modeling of clustered binary and 
continuous responses. Journal of the American Statistical Association. 2001; 96:1102–1112.

7. Buu A, Li R, Tan X, Zucker RA. Statistical models for longitudinal zero-inflated count data with 
applications to the substance abuse field. Statistics in Medicine. 2012; 31:4074–4086. [PubMed: 
22826194] 

8. Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the 
American Statistical Association. 1993; 88:9–25.

9. Goldstein H, Rasbash J. Improved approximations for multilevel models with binary responses. 
Journal of the Royal Statistical Society. Series A. 1996; 159:505–513.

10. Li H, Staudenmayer J, Carroll RJ. Hierarchical functional data with mixed continuous and binary 
measurements. Biometrics. 2014; 70:802–811. [PubMed: 25134936] 

11. Schafer, JL. Tech. rep. The Methodological Center, The Pennsylvania State University; 1998. 
Some improved procedures for linear mixed models. 

12. Lindstrom MJ, Bates DM. Newton-raphson and em algorithms for linear mixed-effects models for 
repeated-measures data. Journal of the American Statistical Association. 1988; 83:1014–1022.

13. Broström G, Holmberg H. Generalized linear models with clustered data: Fixed and random effects 
models. Computational Statistics and Data Analysis. 2011; 55:3123–3134.

14. Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. Journal of Applied 
Statistics. 2004; 31:799–815.

Li et al. Page 12

Stat Med. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics. 
1990; 46:673–687. [PubMed: 2242409] 

16. Wolfinger R, O’Connell M. Generalized linear mixed models a pseudo-likelihood approach. 
Journal of Statistical Computation and Simulation. 1993; 48:233–243.

17. Molenberghs, G., Verbeke, G. Models for Discrete Longitudinal Data. Springer; 2005. 

18. Liu C, Rubin DB. The ECME algorithm: A simple extension of EM and ECM with faster 
monotone convergence. Biometrika. 1994; 81:633–648.

19. Zhang Y, Li H, Kozey-Keadle S, Matthews CE, Carroll RJ. PAactivPAL: Summarize Daily 
Physical Activity from ’activPAL’ Accelerometer Data. R package version 1.0. 2015

20. Rodriguez G, Goldman N. Improved estimation procedures for multilevel models with binary 
response: A case-study. Journal of the Royal Statistical Society. Series A (Statistics in Society). 
2001; 164:339–355.

21. Vonesh EF, Wang H, Nie L, Majumdar D. Conditional second-order generalized estimating 
equations for generalized linear and nonlinear mixed-effects models. Journal of the American 
Statistical Association. 2002; 97:271–283.

22. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing; Vienna, Austria: 2017. 

23. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal 
of Statistical Software. 2015; 67:1–48.

Appendix

A.1. Second Order Approximation for Count and Binary Variables

For count variables, we have

(A.1)

where  has mean zero and variance .

For binary variables, we have

(A.2)

where  has mean zero and variance .

A.2. Second Order Approximation in Penalized Quasilikelihood

The derivation of penalized quasilikelihood (PQL) based approximations for proportion 

outcomes follows the techniques in Molenberghs and Verbeke [17]. For simplicity, we 
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remove (ℓ) from notations. Given known values of (β̂, ûi) which lead to ηîj = Xijβ̂ + Zijûi. A 

Taylor series expansion of H(ηij) around η̂
ij for Yij has

(A.3)

where  has mean zero and variance σ2H′(ηîj). However, the approximation in (A.3) may 

lead to a severely biased estimator. To solve this problem, we could use a quadratic Taylor 

expansion with

(A.4)

In practice the term (ηij − η̂ij)2 may be intractable. Goldstein and Rasbash [9] suggest to 

work on a simplified formulation of (A.4) with the second order expansion only for ui, 

which has

(A.5)

and the term (Zijui − Zijûi)2 can be replaced by  in computation. We take a 

transformation for (A.5) to obtain

(A.6)

where εij has mean zero and variance σ2/H′{η̂
ij}. Define the term on the left side of (A.6) as 

variable 

and (A.6) implies
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Figure 1. 
Sample data from two subjects on weeks 0, 3, 6, 9 and 12. Solid lines and “X” labels display 

the observations from individual with ID 4. Dashed lines and ”O” labels represent the 

outcomes from individual with ID 5. (a) Y(1): continuous variable for daily sedentary hours; 

(b) Y(2): continuous variable for energy expenditure; (c) Y(3): proportion of sedentary time 

greater than 20 minutes, (d) Y(4): proportion of active time greater than 5 minutes; (e) Y(5): 

count number of daily standing up behaviors; (f) Y(6): count number of daily steps; (g) Y(7): 

binary variable for whether daily moderate to vigorous physical activity (MVPA) time is 
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greater than one hour; (h) Y(8): binary variable for whether the highest energy expenditure 

rate measured by metabolic equivalents (METs) in 10 minutes is greater than 3.
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Figure 2. 
Simulation results for the conditional expectations for ℓ = 1, 2 defined in Section 4. (a)(b) 

moderate sample size scenario with n = 200 and Ji = 5, (c)(d) large sample size scenario with 

n = 400 and Ji = 9. Dotted lines denote the true conditional expectation values. Solid lines 

represent the averaged values of the estimates from our JOINT-PQL2 method. Shadowed 

areas display the 10% to 90% quantiles of the estimated values in 500 simulation runs. Thick 

and thin dashed lines represent the averaged estimates by the NAIVE1 and NAIVE2 

methods, respectively.
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Figure 3. 

The estimates of conditional expectations across five weeks for daily sedentary hours 

and energy expenditure levels  defined in Section 5. The individual who reaches the 

criteria in Section 5 at Week 0 is defined as active participant, while those who do not meet 

any term at Week 0 is defined as inactive participant. Thick and thin lines represent the 

Li et al. Page 18

Stat Med. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimates of active and inactive participants, respectively. Solid and dotted lines display the 

exercise treatment group and the control group, respectively.

Li et al. Page 19

Stat Med. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 20

Ta
b

le
 1

Si
m

ul
at

io
n 

re
su

lts
 f

or
 β

(5
)  a

nd
 β

(6
)  i

n 
co

un
t o

ut
co

m
es

. A
s 

de
fi

ne
d 

in
 S

ec
tio

n 
4,

 “
JO

IN
T-

PQ
L

2”
 d

en
ot

es
 o

ur
 p

ro
po

se
d 

m
et

ho
d,

 “
N

A
IV

E
1”

 a
nd

 “
N

A
IV

E
2”

 

re
pr

es
en

t t
he

 a
pp

ro
ac

he
s 

co
m

pl
et

el
y 

or
 p

ar
tia

lly
 ig

no
ri

ng
 th

e 
as

so
ci

at
io

n 
st

ru
ct

ur
e 

am
on

g 
re

sp
on

se
s,

 a
nd

 “
JO

IN
T-

PQ
L

1”
 is

 th
e 

m
et

ho
d 

in
vo

lv
in

g 
fu

ll 

as
so

ci
at

io
n 

pa
tte

rn
 b

ut
 n

ot
 u

si
ng

 s
ec

on
d 

or
de

r 
ap

pr
ox

im
at

io
n.

 D
is

pl
ay

ed
 a

re
 th

e 
re

la
tiv

e 
bi

as
 p

er
ce

nt
 (

B
ia

s%
),

 th
e 

av
er

ag
e 

m
od

el
-b

as
ed

 s
ta

nd
ar

d 
er

ro
r 

(A
SE

),
 th

e 
em

pi
ri

ca
l s

ta
nd

ar
d 

er
ro

r 
(E

SE
) 

an
d 

95
%

 c
ov

er
ag

e 
ra

te
 (

C
R

) 
fo

r 
th

e 
es

tim
at

es
. R

el
at

iv
e 

bi
as

 g
re

at
er

 th
an

 1
0%

 is
 h

ig
hl

ig
ht

ed
 in

 b
ol

d.

n 
= 

20
0,

 J
i =

 5
n 

= 
40

0,
 J

i =
 9

B
ia

s%
A

SE
E

SE
C

R
B

ia
s%

A
SE

E
SE

C
R

N
A

IV
E

1
−

1.
42

0.
06

0.
06

0.
95

−
0.

90
0.

04
0.

04
0.

93

N
A

IV
E

2
−

1.
62

0.
06

0.
06

0.
96

−
0.

93
0.

04
0.

04
0.

93

JO
IN

T-
PQ

L
1

18
.6

6
0.

05
0.

05
0.

59
11

.5
3

0.
04

0.
04

0.
67

JO
IN

T-
PQ

L
2

−
1.

22
0.

06
0.

06
0.

95
−

1.
23

0.
04

0.
04

0.
96

N
A

IV
E

1
−

1.
49

0.
05

0.
05

0.
96

−
0.

92
0.

04
0.

04
0.

96

N
A

IV
E

2
−

2.
67

0.
05

0.
05

0.
94

−
0.

98
0.

04
0.

04
0.

96

JO
IN

T-
PQ

L
1

1.
26

0.
05

0.
05

0.
94

−
0.

64
0.

04
0.

04
0.

94

JO
IN

T-
PQ

L
2

−
1.

68
0.

05
0.

05
0.

94
−

1.
43

0.
04

0.
04

0.
95

N
A

IV
E

1
−

0.
50

0.
03

0.
03

0.
93

0.
05

0.
01

0.
01

0.
94

N
A

IV
E

2
−

0.
05

0.
03

0.
03

0.
94

0.
08

0.
01

0.
01

0.
94

JO
IN

T-
PQ

L
1

−
1.

44
0.

03
0.

03
0.

95
−

0.
40

0.
01

0.
01

0.
95

JO
IN

T-
PQ

L
2

0.
27

0.
03

0.
03

0.
95

0.
34

0.
01

0.
01

0.
94

N
A

IV
E

1
0.

22
0.

02
0.

02
0.

97
0.

01
0.

01
0.

01
0.

95

N
A

IV
E

2
−

0.
38

0.
02

0.
02

0.
95

0.
09

0.
01

0.
01

0.
94

JO
IN

T-
PQ

L
1

−
0.

91
0.

02
0.

02
0.

95
0.

13
0.

01
0.

01
0.

95

JO
IN

T-
PQ

L
2

−
0.

62
0.

02
0.

02
0.

96
0.

30
0.

01
0.

01
0.

94

N
A

IV
E

1
4.

83
0.

07
0.

08
0.

90
1.

95
0.

04
0.

05
0.

93

N
A

IV
E

2
4.

99
0.

07
0.

07
0.

91
1.

86
0.

04
0.

05
0.

93

JO
IN

T-
PQ

L
1

−3
4.

49
0.

06
0.

06
0.

19
−2

5.
18

0.
04

0.
04

0.
12

JO
IN

T-
PQ

L
2

4.
55

0.
07

0.
07

0.
93

1.
36

0.
04

0.
05

0.
94

N
A

IV
E

1
5.

61
0.

06
0.

06
0.

95
0.

11
0.

04
0.

04
0.

94

Stat Med. Author manuscript; available in PMC 2018 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 21

n 
= 

20
0,

 J
i =

 5
n 

= 
40

0,
 J

i =
 9

B
ia

s%
A

SE
E

SE
C

R
B

ia
s%

A
SE

E
SE

C
R

N
A

IV
E

2
5.

57
0.

06
0.

06
0.

94
0.

05
0.

04
0.

04
0.

94

JO
IN

T-
PQ

L
1

−
9.

75
0.

05
0.

05
0.

94
−

9.
25

0.
04

0.
04

0.
93

JO
IN

T-
PQ

L
2

4.
23

0.
06

0.
06

0.
95

0.
56

0.
04

0.
04

0.
95

N
A

IV
E

1
−

0.
23

0.
04

0.
04

0.
97

0.
07

0.
02

0.
02

0.
95

N
A

IV
E

2
−

0.
32

0.
04

0.
04

0.
97

−
0.

00
0.

02
0.

02
0.

95

JO
IN

T-
PQ

L
1

−
4.

25
0.

04
0.

04
0.

95
−

1.
09

0.
02

0.
02

0.
95

JO
IN

T-
PQ

L
2

0.
80

0.
04

0.
04

0.
97

0.
26

0.
02

0.
02

0.
96

N
A

IV
E

1
1.

04
0.

03
0.

03
0.

97
−

0.
16

0.
01

0.
01

0.
97

N
A

IV
E

2
−

1.
31

0.
03

0.
03

0.
97

−
0.

06
0.

01
0.

01
0.

97

JO
IN

T-
PQ

L
1

−
5.

04
0.

03
0.

03
0.

94
0.

37
0.

01
0.

01
0.

95

JO
IN

T-
PQ

L
2

0.
42

0.
03

0.
03

0.
97

0.
99

0.
01

0.
01

0.
97

Stat Med. Author manuscript; available in PMC 2018 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 22

Ta
b

le
 2

Si
m

ul
at

io
n 

re
su

lts
 f

or
 β

(7
)  a

nd
 β

(8
)  i

n 
bi

na
ry

 o
ut

co
m

es
. A

s 
de

fi
ne

d 
in

 S
ec

tio
n 

4,
 “

JO
IN

T-
PQ

L
2”

 d
en

ot
es

 o
ur

 p
ro

po
se

d 
m

et
ho

d,
 “

N
A

IV
E

1”
 a

nd
 

“N
A

IV
E

2”
 r

ep
re

se
nt

 th
e 

ap
pr

oa
ch

es
 c

om
pl

et
el

y 
an

d 
pa

rt
ia

lly
 ig

no
ri

ng
 th

e 
as

so
ci

at
io

n 
st

ru
ct

ur
e 

am
on

g 
re

sp
on

se
s,

 r
es

pe
ct

iv
el

y,
 a

nd
 “

JO
IN

T-
PQ

L
1”

 is
 th

e 

m
et

ho
d 

in
vo

lv
in

g 
fu

ll 
as

so
ci

at
io

n 
pa

tte
rn

 b
ut

 n
ot

 u
si

ng
 s

ec
on

d 
or

de
r 

ap
pr

ox
im

at
io

n.
 D

is
pl

ay
ed

 a
re

 th
e 

re
la

tiv
e 

bi
as

 p
er

ce
nt

 (
B

ia
s%

),
 th

e 
av

er
ag

e 
m

od
el

-

ba
se

d 
st

an
da

rd
 e

rr
or

 (
A

SE
),

 th
e 

em
pi

ri
ca

l s
ta

nd
ar

d 
er

ro
r 

(E
SE

) 
an

d 
95

%
 c

ov
er

ag
e 

ra
te

 (
C

R
) 

fo
r 

th
e 

es
tim

at
es

. R
el

at
iv

e 
bi

as
 g

re
at

er
 th

an
 1

0%
 is

 

hi
gh

lig
ht

ed
 in

 b
ol

d.

n 
= 

20
0,

 J
i =

 5
n 

= 
40

0,
 J

i =
 9

B
ia

s%
A

SE
E

SE
C

R
B

ia
s%

A
SE

E
SE

C
R

N
A

IV
E

1
1.

20
0.

09
0.

10
0.

91
0.

92
0.

05
0.

05
0.

93

N
A

IV
E

2
2.

39
0.

09
0.

10
0.

92
0.

74
0.

05
0.

06
0.

92

JO
IN

T-
PQ

L
1

−1
5.

06
0.

08
0.

08
0.

84
−1

3.
18

0.
05

0.
04

0.
70

JO
IN

T-
PQ

L
2

1.
63

0.
09

0.
10

0.
92

0.
17

0.
05

0.
05

0.
94

N
A

IV
E

1
3.

57
0.

07
0.

08
0.

92
2.

83
0.

05
0.

05
0.

93

N
A

IV
E

2
6.

71
0.

07
0.

08
0.

91
2.

56
0.

05
0.

05
0.

93

JO
IN

T-
PQ

L
1

−2
1.

84
0.

06
0.

06
0.

87
−1

9.
72

0.
04

0.
04

0.
83

JO
IN

T-
PQ

L
2

2.
13

0.
07

0.
08

0.
92

1.
44

0.
05

0.
05

0.
95

N
A

IV
E

1
−

0.
73

0.
08

0.
08

0.
94

−
1.

40
0.

04
0.

04
0.

94

N
A

IV
E

2
0.

26
0.

08
0.

08
0.

93
−

1.
26

0.
04

0.
04

0.
93

JO
IN

T-
PQ

L
1

−
9.

87
0.

07
0.

07
0.

92
−

7.
92

0.
04

0.
04

0.
94

JO
IN

T-
PQ

L
2

−
0.

45
0.

08
0.

08
0.

94
−

0.
54

0.
04

0.
04

0.
95

N
A

IV
E

1
−

0.
97

0.
06

0.
06

0.
93

−
1.

79
0.

03
0.

03
0.

96

N
A

IV
E

2
−

3.
75

0.
06

0.
06

0.
94

−
1.

72
0.

03
0.

03
0.

95

JO
IN

T-
PQ

L
1

−1
1.

40
0.

05
0.

05
0.

96
−1

2.
47

0.
03

0.
03

0.
95

JO
IN

T-
PQ

L
2

−
2.

35
0.

06
0.

07
0.

93
−

2.
28

0.
03

0.
03

0.
94

N
A

IV
E

1
3.

31
0.

09
0.

10
0.

93
0.

68
0.

05
0.

05
0.

95

N
A

IV
E

2
3.

47
0.

09
0.

10
0.

93
0.

50
0.

05
0.

05
0.

95

JO
IN

T-
PQ

L
1

−1
4.

35
0.

08
0.

08
0.

85
−1

3.
04

0.
05

0.
05

0.
72

JO
IN

T-
PQ

L
2

2.
98

0.
09

0.
09

0.
95

0.
62

0.
05

0.
06

0.
94

Stat Med. Author manuscript; available in PMC 2018 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 23

n 
= 

20
0,

 J
i =

 5
n 

= 
40

0,
 J

i =
 9

B
ia

s%
A

SE
E

SE
C

R
B

ia
s%

A
SE

E
SE

C
R

N
A

IV
E

1
6.

16
0.

07
0.

08
0.

92
3.

23
0.

05
0.

05
0.

93

N
A

IV
E

2
6.

43
0.

07
0.

08
0.

90
3.

20
0.

05
0.

05
0.

93

JO
IN

T-
PQ

L
1

−2
1.

24
0.

06
0.

06
0.

90
−1

9.
48

0.
04

0.
04

0.
82

JO
IN

T-
PQ

L
2

5.
89

0.
07

0.
08

0.
92

2.
71

0.
05

0.
05

0.
93

N
A

IV
E

1
2.

95
0.

08
0.

08
0.

94
−

0.
57

0.
04

0.
04

0.
95

N
A

IV
E

2
1.

14
0.

08
0.

08
0.

93
−

0.
32

0.
04

0.
04

0.
94

JO
IN

T-
PQ

L
1

−1
0.

23
0.

07
0.

07
0.

94
−

9.
68

0.
04

0.
04

0.
92

JO
IN

T-
PQ

L
2

1.
53

0.
08

0.
08

0.
93

0.
23

0.
04

0.
04

0.
94

N
A

IV
E

1
4.

15
0.

06
0.

06
0.

93
0.

32
0.

03
0.

03
0.

94

N
A

IV
E

2
0.

70
0.

06
0.

06
0.

93
0.

17
0.

03
0.

03
0.

94

JO
IN

T-
PQ

L
1

−1
2.

04
0.

05
0.

05
0.

94
−1

2.
39

0.
03

0.
03

0.
92

JO
IN

T-
PQ

L
2

6.
81

0.
06

0.
07

0.
92

0.
02

0.
03

0.
03

0.
93

Stat Med. Author manuscript; available in PMC 2018 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 24

Ta
b

le
 3

Ph
ys

ic
al

 a
ct

iv
ity

 d
at

a 
an

al
ys

is
 r

es
ul

ts
 f

or
 β

 u
si

ng
 o

ur
 p

ro
po

se
d 

JO
IN

T-
PQ

L
2 

ap
pr

oa
ch

. D
is

pl
ay

ed
 a

re
 th

e 
es

tim
at

es
 (

E
st

.)
, t

he
 s

ta
nd

ar
d 

er
ro

r 
(S

E
),

 a
nd

 p
–

va
lu

es
.

C
on

tin
uo

us
Pr

op
or

tio
n

E
st

.
SE

p–
va

lu
e

E
st

.
SE

p–
va

lu
e

9.
77

0.
30

<
 0

.0
1

−
1.

27
0.

09
<

 0
.0

1

−
0.

13
0.

14
0.

38
−

0.
02

0.
04

0.
55

−
0.

05
0.

40
0.

91
−

0.
01

0.
12

0.
92

−
0.

17
0.

19
0.

38
−

0.
01

0.
05

0.
92

20
.9

8
0.

47
<

 0
.0

1
−

0.
75

0.
07

<
 0

.0
1

0.
13

0.
25

0.
59

0.
01

0.
03

0.
80

1.
67

0.
64

0.
01

0.
10

0.
10

0.
30

0.
12

0.
34

0.
73

0.
04

0.
05

0.
36

C
ou

nt
B

in
ar

y

E
st

.
SE

p–
va

lu
e

E
st

.
SE

p–
va

lu
e

3.
75

0.
05

<
 0

.0
1

−
3.

70
0.

54
<

 0
.0

1

−
0.

01
0.

02
0.

70
0.

29
0.

37
0.

43

−
0.

00
0.

07
0.

97
4.

79
0.

69
<

 0
.0

1

Stat Med. Author manuscript; available in PMC 2018 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 25

−
0.

02
0.

03
0.

49
0.

83
0.

48
0.

08

8.
67

0.
06

<
 0

.0
1

−
1.

58
0.

41
<

 0
.0

1

0.
05

0.
03

0.
11

0.
52

0.
31

0.
10

0.
49

0.
09

0.
00

4.
08

0.
60

<
 0

.0
1

0.
05

0.
04

0.
25

1.
00

0.
46

0.
03

Stat Med. Author manuscript; available in PMC 2018 November 10.


	Abstract
	1. Introduction
	2. Mixed Effects Model
	2.1. Model Specification
	2.2. Approximated Linear Mixed Model

	3. Model Estimation
	Remark 1

	4. Simulation Studies
	5. Application to Physical Activity Data
	6. Discussion
	References
	Appendix
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3

